
The Representation of Belief

Isaac Wilhelm

(Please do not cite or circulate without permission)

Abstract

I derive a novel sufficient condition for a belief set to be representable by a probabil-

ity function: if at least one comparative confidence ordering of a certain type satisfies

Scott’s axiom, then the belief set used to construct that ordering is representable. This

provides support for Kenny Easwaran’s project of analyzing doxastic states in terms of

belief sets rather than credences.

0 Introduction

Kenny Easwaran argues that Bayesian credences can be reinterpreted as mathematical

tools for summarizing agential belief [1]. The idea is to ascribe belief sets to agents, and

then use probability functions to represent those belief sets in a way that reaps the benefits

of credences without incurring the costs.1 In short, what Bayesians take to be a credence

function is really just a representation of an agent’s belief set. The mathematical idealizations

of probability axioms, the infinite precision of credences, and Lockean thresholds are merely

mathematical tools for analyzing belief sets and the value that agents place on truth and

falsity.

So under what conditions is a belief set representable by a probability function? In

partial answer, Easwaran lists several necessary conditions for representability. One is strong

coherence: a belief set B is strongly coherent just in case there is no other belief set that is at

1See [1] for a detailed discussion of those costs.
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least as accurate as B in every possible state of the world, but that is strictly more accurate

in at least one state. Easwaran shows that if B is representable, then B is strongly coherent

[1, p. 14].2

It would benefit Easwaran’s project considerably if strong coherence were also a suffi-

cient condition for representability. Then, by satisfying strong coherence, an agent’s belief

set would conform to many of the constraints that credences impose on rationality, since that

set would be representable by a probability function that mimics the behavior of credences.

Moreover, strong coherence itself seems like a plausible rationality constraint: if an agent is

rational, then her belief set had better not be less accurate, overall, than another belief set.

But unfortunately, strong coherence is not sufficient for representability: there are subsets of

Boolean algebras that are strongly coherent yet unrepresentable [1, pp. 31-32].

This raises two questions. First, what conditions are sufficient for a belief set to be

representable by a probability function? Second, does any such sufficient condition provide

a plausible constraint on rationality, the way strong coherence does?

In this paper, I answer both questions with a new sufficient condition for representabil-

ity. In Section 1, I review the basic notions which are used to articulate that condition.

In Section 2, I derive representability from the sufficient condition. Finally, in Section 3, I

explain why this condition seems to provide a plausible constraint on rationality.

1 Basic Notions

1.1 Belief Sets

Roughly, an agent’s belief set is the set consisting of all propositions which she believes.

2The proof assumes that the probability function which represents B assigns a non-zero probability to
every state of the world.
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Definition 1 (Belief Set). Let X be a finite Boolean algebra. A belief set is a set B Ď X .

Think of the atoms3 of the algebra as mutually exclusive states of the world. The

propositions which agent A believes are disjunctive combinations of these atomic states. For

example, if the atoms of the algebra are a1, a2, and a3, A’s belief set might contain a1, or

a2 _ a3, or any other disjunctive combination of zero or more of the ai.
4 The algebra is

assumed to be finite (and non-empty) so as to simplify the forthcoming analysis.

The following definition states the conditions under which a belief set B is representable

by a probability function. The idea, roughly, is that B is representable just in case all the

propositions in B are at least as likely as not to be true, and all the propositions not in B

are at least as likely as not to be false.

Definition 2 (B-Representability). Let X be a finite Boolean algebra, and let B Ď X be a

belief set. Say that B is b-representable (for ‘belief-representable’) just in case there is a

probability function Pr such that

(i) if Prppq ą 1
2

then p P B, and

(ii) if Prppq ă 1
2

then p R B.

If Prppq “ 1
2
, then Pr b-represents B regardless of whether p P B or p R B.

It is a general fact that for any probability function Pr and any p P X , Prppq ą 1
2

if and only

if Prp pq ă 1
2
. Read through the light of this fact, definition 2 says that if a proposition is

more likely than its negation then it is believed, and if a proposition is less likely than its

negation then it is not believed.5

3These are the algebra’s primitive propositions.
4The proposition which consists of zero atoms is the empty proposition, denoted K.
5For justification of the last clause in definition 2, which treats the case Prppq “ 1

2 , see [1, p. 13].
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The following two simple facts about belief sets will be useful later. The first fact,

theorem 1.1, says that if a proposition and its negation are both in B or both not in B, then

they are equiprobable.

Theorem 1.1. Let X be a finite Boolean algebra and let B Ď X be a belief set. If B is

b-represented by a probability function Pr, then the following holds.

(i) For every proposition p P B, if  p P B then Prppq “ Prp pq “ 1
2
.

(ii) For every proposition p R B, if  p R B then Prppq “ Prp pq “ 1
2
.

Proof. For (i): suppose that p P B and  p P B. By definition 2, Prppq ě 1
2

and Prp pq ě 1
2
.

Since Prppq “ 1´ Prp pq, it follows that Prppq “ Prp pq “ 1
2
.

For (ii): suppose that p R B and  p R B. By definition 2, Prppq ď 1
2

and Prp pq ď 1
2
.

Again, since Prppq “ 1´ Prp pq, it follows that Prppq “ Prp pq “ 1
2
.

Roughly put, the second fact about belief sets—theorem 1.2—says that if two sets only

differ on pairs of propositions and their negations, then they are b-represented by exactly

the same probability functions.

Theorem 1.2. Let X be a finite Boolean algebra and let B Ď X be a belief set. Suppose

B is b-representable by the probability function Pr, and suppose B1 Ď X is a belief set that

satisfies the following two conditions.

(i) If p P BzB1 then  p P B.

(ii) If p P B1zB then  p R B.

Then Pr b-represents B1.
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Proof. Let p P X be such that Prppq ą 1
2
. Then p P B (since Pr b-represents B). Suppose

p R B1. Then  p P B by condition (i). But then Prppq “ 1
2

by theorem 1.1, which contradicts

the supposition. Therefore, p P B1.

Now let p P X be such that Prppq ă 1
2
. Then p R B (since Pr b-represents B). Suppose

that p P B1. Then  p R B by condition (ii). But then Prppq “ 1
2

by theorem 1.1, which

contradicts the supposition. Therefore, p R B1.

So by definition 2, Pr b-represents B1.

As will become clear in Section 2, this little theorem is quite important. Think of

it as showing that if two belief sets are ‘sufficiently similar’ to each other, establishing the

b-representability of one suffices to establish the b-representability of the other.

1.2 Comparative Confidence Orderings

Comparative confidence orderings encode information about whether an agent is more

(or less) confident in one proposition than another.

Definition 3 (Comparative Confidence Ordering). Let X be a finite Boolean algebra. A

comparative confidence ordering is a set ľ Ď X ˆ X .

Intuitively, if A is an agent and p, q P X , then p ľ q just in case A is at least as confident in

the truth of p as in the truth of q. Let p ą q be shorthand for p ľ q & q ń p.

Comparative confidence orderings, like belief sets, can be represented by probability

functions.
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Definition 4 (C-Representability). Let X be a finite Boolean algebra, and let ľ Ď X ˆ X

be a comparative confidence ordering. Say that ľ is c-representable (for ‘comparative-

representable’) just in case there is a probability function Pr such that for every p, q P X ,

p ľ q if and only if Prppq ě Prpqq.

So a comparative confidence ordering is c-representable just in case there is a probability

function on the underlying algebra which preserves the ordering.

Of the five axioms that are typically taken to govern comparative confidence orderings

(Fitelson, p.c.), just three will be relevant here. Let X be a finite Boolean algebra, and let

ľ Ď X ˆ X be a comparative confidence ordering. Here are three conditions that seem,

intuitively, like they should hold of ľ for every p, q P X .

(A1) pp ľ qq _ pq ľ pq.

(A2) J ą K.

(A3) p ľ K.

(A1) says that the ordering is total: for every pair of propositions, the agent is at least as

confident in one as in the other. (A2) says that the agent is strictly more confident in J, the

tautological proposition that contains every atom in X , than K, the contradictory proposition

that is empty. (A3) says that for every proposition, the agent is at least as confident in that

proposition as in K.

The following condition will play a central role in this paper.

(SA) (Scott’s Axiom) Let X be a finite Boolean algebra, let ľ Ď X ˆ X , and let

X “ xx1, . . . , xny and Y “ xy1, . . . , yny be arbitrary sequences of propositions in

X of length n ě 2. If
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(i) X and Y have the same number of truths in every atom of X ,6 and

(ii) for all i P r1, nq, xi ľ yi,

then

(iii) yn ľ xn.

The idea of (SA) can be explained via a simple example drawn from a more familiar

context: the real numbers under the usual ě relation. Let x1, x2, y1, and y2 be real numbers.

Suppose that x1 ` x2 “ y1 ` y2, which is the analogue of condition (i). Also suppose that

x1 ě y1, which is the analogue of condition (ii). It follows that y2 ě x2,
7 which is the analogue

of (iii). Thus, the ě relation on the reals satisfies an analogue of (SA) for the case n “ 2.8

One can think of (SA) as encapsulating this fact about ě in the context of Boolean algebras.

As discussed in Section 3, despite its complicated appearance, (SA) articulates an

intuitively plausible constraint on rational belief. For if agent A is at least as confident in all

the xi as the yi for i P r1, nq (condition (ii)), and A is strictly more confident in xn than in

yn (the negation of condition (iii)), then A is irrational if she knows that the X propositions

and the Y propositions are equally accurate (condition (i)). To put it roughly: if the X

propositions and Y propositions are known by A to be equally accurate, then A better not

be strictly more confident in the X propositions than in the Y propositions.

Dana Scott used (SA) to prove what is now called “Scott’s Theorem” [3], one version

of which is given below.

Theorem 1.3 (Scott’s Theorem). Let X be a finite Boolean algebra, and let ľ Ď X ˆX . ľ

satisfies pA1q, pA2q, pA3q, and pSAq if and only if ľ is c-representable.

6Formally, this is represented as
n
ř

i“1

xi “
n
ř

i“1

yi, where each xi and yi are understood to be characteristic

functions of the corresponding elements in X .
7If x2 ą y2, and x1 ě y1, then x1`x2 ą y1`y2, which contradicts the supposition that x1`x2 “ y1`y2.
8It is not hard to show that ě on the reals satisfies an analogue of (SA) for all n ě 2.
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Thus, satisfaction of pA1q, pA2q, pA3q, and pSAq is sufficient and necessary for c-representability.

Theorem 1.3 is important here because it connects (SA) to c-representability. So if c-

representability connects to b-representability in the right way, then in virtue of theorem 1.3,

(SA) can be used to derive a sufficient condition for b-representability. In the next section,

I show how c-representability and b-representability are so connected, and then derive the

sufficient condition.

2 The Sufficient Condition

Before deriving the sufficient condition for b-representability, I discuss a particular way

of constructing comparative confidence orderings from belief sets. The construction proceeds

in two steps. First, starting from a belief set B, I construct a partial comparative confidence

ordering ľ‹
B. Second, I construct the set of all total extensions of ľ‹

B that satisfy some

relatively minor restrictions.

From now on, I assume that K R B and that J P B. It is not hard to prove that if K P B

or if J R B, then B is not representable by a probability function.9 Since the only belief sets

of interest here are those which might be b-representable, this is a reasonable assumption to

adopt.

The ordering ľ‹
B is constructed as follows. Let B Ď X be the belief set of agent A. To

start, define the following three sets.

D1 “ txp, py | p P Bu.

D2 “ tx p, py | p R Bu.

D3 “ txp,Ky | p P X u.

Then let ľ‹
B“ D1 YD2 YD3.

9Every probability function Pr assigns 0 to K and 1 to J. So if Pr b-represents B, then K R B and J P B.
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In virtue of containing D1, ľ‹
B says that for every p P B, A is at least as confident in p

as in  p. In virtue of containing D2, ľ‹
B says that for every p R B, A is at least as confident

in  p as in p. Finally, in virtue of containing D3, ľ‹
B says that for every p P X , A is at least

as confident in p as in the empty proposition.

Now for the second step of the construction. Let K be the set of total comparative

confidence orderings ľ that contain ľ‹
B as a subset, and that also satisfy the following two

conditions.

pC1q xK,Jy R ľ.

pC2q For all p P B, if  p R B then x p, py R ľ.

Given that xJ,Ky is automatically in each ordering in K (since it is in D3), pC1q simply

says that in all those orderings, A is strictly more confident in J than in K. pC2q is a little

more complex, but basically, it implies that D1 and D2 exhaust the comparisons between

propositions and their negations that orderings in K may include. As shown in theorem 2.3,

this ensures that the belief sets which can be ‘read off’ orderings in K are ‘sufficiently similar’

to the belief set B, for the purposes of drawing conclusions about b-representability.

The following definition provides a succinct way to refer to this construction.

Definition 5 (Constructed from B in the manner of C). Let X be a finite Boolean algebra,

let B Ď X be a belief set, and let K be the set of total comparative confidence orderings

that contain ľ˚
B and that satisfy pC1q and pC2q. Then K is the set of comparative confidence

orderings constructed from B in the manner of C.

I now derive the sufficient condition for b-representability. To start, the following lemma

shows that orderings constructed in the manner of C satisfy pA1q, pA2q, and pA3q.
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Lemma 1. Let X be a finite Boolean algebra, let B Ď X be a belief set, and let K be the

set of comparative confidence orderings constructed from B in the manner of C. Each ľ P K

satisfies pA1q, pA2q, and pA3q.

Proof. For pA1q: by definition 5, ľ is total. Thus, ľ satisfies pA1q.

For pA2q: xJ,Ky P ľ‹
B Ď ľ. By definition 5, ľ satisfies pC1q, and so xK,Jy R ľ. Hence,

J ą K.

For pA3q: for each p P X , xp,Ky P ľ‹
B Ď ľ.

The following theorem shows that (SA) is both sufficient and necessary for an ordering

in K to be c-representable.

Theorem 2.1. Let X be a finite Boolean algebra, let B Ď X be a belief set, and let K be the

set of comparative confidence orderings constructed from B in the manner of C. Then for

each ľ P K, ľ satisfies pSAq if and only if ľ is c-representable.

Proof. By theorem 1.3, ľ satisfies pA1q, pA2q, pA3q, and pSAq if and only if it is c-representable.

By lemma 1, each ľ P K satisfies pA1q, pA2q, and pA3q. Therefore, each ľ P K satisfies pSAq

if and only if it is c-representable.

The remaining theorems connect the c-representability of orderings in K to the b-

representability of the belief set from which K was constructed. The connection relies on a

new notion: that of a belief set induced by a comparative confidence ordering.

Definition 6 (Induced Belief Set). Let X be a finite Boolean algebra, and let ľ Ď X ˆX be

a comparative confidence ordering. Let Bľ be the belief set which consists of all and only the

propositions p such that p ą  p. Call Bľ the belief set induced by ľ.
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The following theorem connects comparative confidence orderings to the belief sets they

induce. More specifically, if an ordering induces a belief set, then any probability functions

that c-represent the former must b-represent the latter.

Theorem 2.2. Let ľ Ď X ˆ X be a comparative confidence ordering that induces the belief

set Bľ. Let Pr be a probability function that c-represents ľ. Then Pr b-represents Bľ.

Proof. If Prppq ą 1
2

then 2 ¨ Prppq ą 1 “ Prppq ` Prp pq, and so Prppq ą Prp pq. By

definition 4, p ľ  p. Also by definition 4,  p ń p: for if  p ľ p, then Prp pq ě Prppq.

Therefore, p ą  p. So by definition 6, p P Bľ.

If Prppq ă 1
2

then 2 ¨ Prppq ă 1 “ Prppq ` Prp pq, and so Prppq ă Prp pq. By

definition 4,  p ľ p, so p č  p. Definition 6 implies that p R Bľ.

Therefore, by definition 2, Pr b-represents Bľ.

The next theorem shows that if B is used to construct a set K of comparative confidence

orderings in the manner of C, then each comparative confidence ordering induces a belief set

that is ‘sufficiently similar’ to B.10

Theorem 2.3. Let X be a finite Boolean algebra, let B Ď X be a belief set, and let K be

the set of comparative confidence orderings constructed from B in the manner of C. Suppose

that some ľ P K induces the belief set Bľ. Then the following two conditions hold:

(i) Bľ Ď B, and

(ii) if B Ę Bľ, then for every p P BzBľ,  p P BzBľ.

Proof. For (i): let p P Bľ. By definition 6, p ą  p, and so x p, py R ľ. It follows that p P B,

for if p R B, then x p, py P D2. But then x p, py P ľ, which is a contradiction.

10In fact, each ordering in K induces the very same belief set.
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For (ii): suppose that B Ę Bľ, and let p P BzBľ. By definition 6, p P Bľ if and only

if p ą  p. Since p R Bľ, either xp, py R ľ or x p, py P ľ. The former is impossible: since

p P B, it follows that xp, py P D1, and thus, xp, py P ľ. So x p, py P ľ. Now, if  p R B,

then ľ does not satisfy pC2q. Therefore,  p P B.

By definition 6,  p P Bľ if and only if  p ą p. As was already shown, xp, py P ľ.

Therefore  p č p, and so  p R Bľ.

Thus,  p P BzBľ.

The set Bľ is ‘sufficiently similar’ to B in the sense that if they differ on p, they differ

on  p too. That is, the only propositions on which Bľ and B differ are pairs of propositions

and those propositions’ negations.

At long last, here is the sufficient condition for b-representability.

Theorem 2.4 (Sufficient Condition for B-Representability). Let X be a finite Boolean al-

gebra, let B Ď X be a belief set, and let K be the set of comparative confidence orderings

constructed from B in the manner of C. Suppose that some ľ P K satisfies pSAq. Then B is

b-representable.

Proof. By theorem 2.1, ľ is c-representable by some probability function Pr. Let Bľ be the

belief set induced by ľ. By theorem 2.2, Pr b-represents Bľ.

By theorem 2.3, Bľ Ď B. Since BľzB “ H, condition (i) of theorem 1.2 holds trivially.

In addition, if p P BzBľ, then B Ę Bľ. So by theorem 2.3, for every p P BzBľ,  p P BzBľ.

Thus, for every p P BzBľ,  p R Bľ, and so condition (ii) of theorem 1.2 also holds. It

therefore follows from theorem 1.2 that since Pr b-represents Bľ, Pr b-represents B as well.

The sufficient condition says that if the set of comparative confidence orderings con-

structed from B in the manner of C includes at least one ordering that satisfies Scott’s axiom,
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then B is b-representable.11

3 The Sufficient Condition as a Constraint on Rationality

Recall that according to Easwaran, a good sufficient condition for b-representability

should provide a plausible constraint on rationality: it should be the sort of constraint that

a rational agent satisfies. In fact, the sufficient condition in theorem 2.4 may fit the bill.

That condition can be divided into two parts—(SA) and the C construction—which together

amount to a plausible rationality constraint.

First, consider the relationship between (SA) and comparative confidence orderings

which rational agents can have, a relationship which was discussed briefly in Section 1.2.

Suppose that agent A is at least as confident in x1 as in y1, at least as confident in x2 as in

y2, and . . . and at least as confident in xn´1 as yn´1. In other words, A satisfies condition

(ii) of (SA). Suppose, furthermore, that A is strictly more confident in xn than in yn. That

is, A violates condition (iii) of (SA). Then for A to be rational, it had better not be true

that A knows that collectively, the xi are just as accurate as the yi; it better not be true that

(i) of (SA) holds. In other words, the collection of xis had better be strictly more accurate

than the collection of yis in at least some situations. For if not, then intuitively, A is strictly

more confident in the collection of xis than the collection of yis,
12 despite the fact that A

knows the two collections contain the same number of truths. So it seems like an agent’s

comparative confidence ordering should always satisfy (SA), if she is to be rational.13

11There is also a necessary condition for b-representability that is closely related to—though distinct
from—the sufficient condition of theorem 2.4.

12It is not hard to precisely define the intuitive notion of being ‘more confident’ in one set of propositions
than in another. Say that A is more confident in the collection of xis of X than the collection of yis of Y
just in case xi ľ yi for each i P r1, ns, and for some j P r1, ns, xj ą yj .

13James Hawthorne gives some reasons for thinking that a rational agent should have a comparative
confidence ordering that either satisfies, or is extendible to, a condition he calls (X) [2, pp. 60-61]. Roughly
put, an agent’s total comparative confidence ordering satisfies (X) just in case there is some way to partition
the space of possibilities into equally plausible states such that the agent has very little confidence in any
one of them. It can be shown that given a couple plausible conditions, (X) implies (SA). Thus, to the extent
that (X) amounts to a necessary condition for rationality, (SA) does too.
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A concrete example should help make the point clear. Suppose Emily the policewoman

is chasing Dick the thief. Dick, who is a block ahead of her, turns a corner. When Emily

reaches the corner, she turns, runs to the end of the block, and sees three directions in which

Dick could have run: left, right, or straight. She is more confident that Dick went left

than that he went straight.14 So intuitively, she should be more confident in left_right

than in straight_ right.

(SA) gets this intuition correct. Let X be the Boolean algebra consisting of three atoms:

left, right, and straight. Let X “ xleft, straight_righty and let Y “ xstraight,

left_righty. Since X and Y have the same number of truths in each atom of X ,15 condition

(i) of (SA) is satisfied. Since Emily’s doxastic state is such that left ľ straight, condition

(ii) is satisfied too. Therefore, given (SA), left_right ľ straight_right; this is just

condition (iii).

Moreover, it is possible to show that for each way Emily could violate (SA), her doxastic

state is intuitively irrational. This is done by listing all the different ways of satisfying the

antecedent of (SA) while violating the consequent. For each, the violation of (SA) looks as

irrational as if Emily’s comparative confidence ordering implied both left ľ straight

and straight_ right ą left_ right.16

Second, consider the types of comparative confidence orderings which the C construction

generates. That construction allows A to have almost any comparative confidence ordering,

given her belief set, that satisfies a fairly permissive cluster of restrictions. In virtue of D1, it

requires that A be at least as confident in her beliefs as in those beliefs’ negations. In virtue

of D2, it requires that A be no more confident in the beliefs she does not have than in the

negations of those non-beliefs. In virtue of D3, it requires that A be at least as confident

14Dick is out of sight, and he is not fast enough to run two blocks in the time it takes Emily to run one.
15Regardless of which atom is taken to be actual, the number of truths in U and the number of truths in

V are both one. For example, if left is taken to be actual, then exactly one proposition in U is true (the
proposition left) and exactly one proposition in V is true (the proposition left_ right).

16This is not to suggest that (SA) is the only rationality constraint that gets these intuitions right. Rather,
this is just to illustrate why (SA) seems like a plausible rationality constraint. There could certainly be
others.
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in every proposition as in K. In virtue of pC1q and pC2q, it requires that A be strictly more

confident in her beliefs than in their negations, whenever the negations are not in A’s belief

set. All of these restrictions seem reasonable. Rational agents should satisfy them.17

With all that as background, the sufficient condition in theorem 2.4 seems like a ratio-

nality constraint. For if A’s belief set is rational, then it had better not be the case that for

every ordering to which A’s belief set could give rise (that is consistent with the C construc-

tion), A is strictly more confident in one of two equally accurate collections of propositions.

That is just another way of saying that A’s belief set had better give rise to a comparative

confidence ordering that obeys the rather minimal restrictions of the C construction, while

also satisfying (SA).

4 Conclusion

Theorem 2.4 states a sufficient condition for b-representability, and there are reasons

for thinking that this condition provides a plausible constraint on rationality. Moreover, by

satisfying that rationality constraint, an agent’s belief set conforms to many of the constraints

on rationality that credences impose (since by theorem 2.4, there exists a probability function

that b-represents the belief set). This does not prove, of course, that credences are just

mathematical representations of agential belief. But it is suggestive.

Acknowledgements: thanks to Kevin Dorst, Kenny Easwaran, James Hawthorne, and

especially Branden Fitelson for helpful comments.

17This is not to say that A’s comparative confidence ordering must be total, to be rational. It is only to say
that A’s comparative confidence ordering must be extendible to a total ordering without violating pC1q and
pC2q. See [2, p. 59] for an explanation of why partial comparative confidence orderings should be extendible
to total orderings in this way, if the agent in question is to be rational.
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[2] Hawthorne, J. (2009). The Lockean Thesis and the Logic of Belief. In F. Huber & C.

Schmidt-Petri (Eds.), Degrees of Belief (pp. 49-74). Synthese Library: Springer.

[3] Scott, D. (1964). Measurement Structures and Linear Inequalities. Journal of Mathemat-

ical Psychology, 1, 233-247.

16


