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The Hubble Telescope should make it possible to separate the 
redshift of light from any cosmological object into that 
redshift due to the gravitational potential difference between 
the emission and reception points and that portion due the 
distance between these points by comparing the redshifts 
measured on the Earth’s surface to redshifts measured by the 
Hubble Telescope. This would allow a remapping of the 
cosmological objects and an increased understanding of 
gravitational conditions of these objects. 
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Introduction 
n 1911 Einstein used time dilation in the Special Theory of 
Relativity to predict that the atomic spectral lines should be 
shifted towards the red end of the color spectrum [1]. This 

prediction has since been verified by experiment using both solar and 
terrestrial gravitational potential differences [2-5]. Hubble measured 
the redshift of numerous stars and galaxies and noted that these 
displayed an almost direct relationship between the redshift and the 
cosmological distance of the radiating object from the Earth [6]. 
These experimental findings were later supported by solutions to 
Einstein’s General Relativistic field equations, such as the Robertson-
Walker solution [7]. However, these experimental and theoretical 
considerations provide no way to sort out how much of the 
cosmological object’s redshift is due to the gravitational potential 
difference between the emitting object and the Earth and how much is 
due solely to the distance between them. 

There exists a new theory, called the Dynamic Theory [8-14], 
which predicts significant differences between the redshifts that are 
measured on the Earth’s surface and those that should be measured by 
the Hubble Telescope in its orbit. Further, the manner of the 
prediction is such that comparison of the redshifts measured at the 
Earth’s surface and by the Hubble Telescope sets up two equations in 
the two unknowns; the cosmological distance to the object and its 
gravitational potential.  

To display how the new predictions differ from the old let’s first 
look at the old predictions. Einstein’s gravitational potential 
difference redshift is given by 
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where the subscripts e and r denote the emitting and receiving 
gravitational potentials. The redshift due to the cosmological distance 
is the linear relation 
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where H is Hubble’s constant and L is the cosmological distance 
between the emitting object and the Earth. By adding these two 
redshift predictions we find 
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which shows that the only difference this prediction would have 
between measurements at the Earth’s surface and by the Hubble 
Telescope would come from the change in the difference in the 
gravitational potential of reception due to the orbital height of the 
telescope. However, because of the small size of the Earth in 
comparison to the cosmological objects this difference would be 
negligible. For example, for the Sun this effect is some 10–5 percent. 
For objects larger than the Sun the difference is even less. 

The Dynamic Theory is based upon the laws of classical 
thermodynamics and it has been shown that these fundamental laws 
require Einstein’s postulate of the constancy of the speed of light [13]. 
Given this result it is no surprise that Einstein’s special theory of 
relativity quickly follows. What is less obvious, but also required, is 
that these basic laws provide a description of physical phenomena in 
five dimensions of space, time and mass [14]. We shall now provide a 
brief outline of the theoretical background leading to the redshifts 
prediction within this new theory starting be stating the adopted laws. 
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First Law (Conservation of Energy) 
The concept of conservation of energy is fundamental to all branches 
of physics and is the beginning of thermodynamics and mechanics 
[8,10,12,13]. In terms of generalized coordinates or independent 
variables, the notion of work, or mechanical energy, is considered 
linear forms of the type 

  d 1 n i1 n
iW = ( ,..., , ,..., )    (i = 1,2,...,n),q q dqu uF  

where the forces Fi may be functions of the velocities (dqi/dt = ui) as 
well as the coordinates qi and the summation convention is used. 

A system may acquire energy by other means in addition to the 
work terms; such energy acquisition is denoted Ed . The system 
energy, which represents the energy possessed by the system, is 
considered to be 

 1 n 1 nU( ,..., , ,..., ).q q u u  

With these concepts, then the First Law, which is the generalized 
Law of Conservation of Energy, has the form 

 ).,...,1( nidqFdUWddUEd i
i =−=−=  

 In the First Law the dimensionality is n + 1 and is determined by the 
system considered.  

Second Law 
The statement of the Second Law is made using the axiomatic 
statement provided by the Greek mathematician Carathéodory [15] 
who presented an axiomatic development of the Second Law of 
thermodynamics that may be applied to a system of any number of 
variables. The Second Law may then be stated as follows: 
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In the neighborhood (however close) of any equilibrium 
state of a system of any number of dynamic coordinates, 
there exist states that cannot be reached by reversible E—
conservative ( 0=Ed ) processes or motions. 

Results of the Second Law 
The Second Law requires that an integrating denominator must exist 
for the First Law and that this integrating factor must be a function of 
velocity only for mechanical systems. Using the integrating 
denominator the expression for the First Law may be written  

 

 d E 
(u) 

  =   f( ) d . φ 
σ σ 

 
Since f(σ)dσ is an exact differential, the quantity )(/1 uφ  is an 
integrating denominator for Ed . 

The universal character of )(uφ  makes it possible to define an 
absolute speed in the same manner as is done in thermodynamics 
when defining the absolute temperature. The definition of the absolute 
speed requires constant speed motions be considered. All Galilean 
frames of reference will display this process as one of constant speed. 
Further, if all reference frames are to be of equal status then observers 
in all Galilean reference frames must share the 0=Ed  constant speed 
motion equivalently. Furthermore, each observer will have the same 
value for the absolute speed or else one of the frames will enjoy a 
privileged nature. Then the absolute speed is unique for all Galilean 
frames of reference. There is one such speed already known and that 
speed is the speed of light, c. Therefore, the absolute speed must be 
the speed of light and the same for all Galilean observers. This is 
Einstein’s postulate. Thus, the first two laws require Einstein’s 
postulate concerning the speed of light. 
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Since σ is an actual function of u and q, the right-hand member is 
an exact differential, which may be denoted by dS; and where S is the 
mechanical entropy of the system. 

 
dS  =   

E
(u)

d
φ  

Geometry 
With the above laws and the definition of the entropy an expression 
for the generalized Clausius’ inequality may be written and used to 
specify the stability condition  

 i
iU -  - S > 0 .qFδ φδ∆  

which leads to the quadratic form  
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The element of arc length may be parameterized using the local time 
as cdtds = . However, Clausius’ Inequality does not lead to a single 
variational principal on time rather it leads to two variational 
principals, one requiring the minimization of Free Energy and one 
requiring the maximization of the entropy for isolated systems for 
which 0=Ed . The differential of the entropy is on the right hand 
side of this quadratic form so that the form must be solved for the 
differential expression of entropy in order to use the entropy 
variational principal. When this is done we find that 
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This shows the requirement for two metric spaces coupled by a gauge 
function, f. Since the Second Law requires that the entropy is a total 
derivative one may suspect that the entropy space will be an 
integrable space and this is indeed the case when the Second Law is 
applied to the metric coefficients. In addition, one finds that the 
second space, which we might call an energy space because of the tie 
to the First Law, must be a Weyl space. Therefore, we find that the 
gauge function acts as a geometrical integrating factor coupling the 
non-integrable Energy space to the integrable entropy space. 

The appearance of Weyl character of the Energy space allows the 
use of London’s work that shows that null trajectories in a Weyl space 
must be described by the equations of quantum mechanics [16]. In the 
Dynamic Theory, the necessity of considering null trajectories comes 
in a very natural way. For instance, in thermodynamics the desire to 
consider stable states would cause one to look for isentropic states. 
This is of course a null trajectory in the entropy space, however, for 
non-zero gauge functions this condition is also a null trajectory in the 
energy, Weyl, space. By the Second Law the differential change of 
entropy can never be negative for an isolated system so that 00 ≥dq . 
Therefore, the entropy metric is positive definite. For negative gauge 
functions the energy space will be negative definite and, therefore, 
complex. There are an infinite number of null trajectories for a 
complex space and these are given by the quantum states. 

This may be more easily seen by considering the displacement of 
the element of arc length in the energy space that must take on the 
Weyl displacement form of  

 k

kd(d )  =   (d )dqε εφ  

where the kφ  are the gauge potentials and are the logarithmic 
derivative of the square root of the gauge function. Then the 
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isentropic condition that the integral of Equation (10) require that 

0)()( εε dd =  and, therefore, so that  

 
∫ j

jdqe   =   1φ
 

and 

 ∫ j

jdq   =  2 iN  .φ π  
This is the quantum condition that London used to derive 
Schrödinger’s equations of quantum mechanics. Here the quantum 
condition is required by the isentropic state specification. 

When one first begins to study the thermodynamics of steam 
systems one writes the First Law as 

.3,2,1, =−+= αααdxFPdvdUEd   The right hand side of this 
statement of the First Law contains five unknown variables. The 
accepted method of reducing the number of unknowns is to, first, 
state that the mass density can always be written as a function of 
space and time thereby reducing the number of additional 
independent equations needed to four. These four equations are 
pointed out to be an equation of state and the three mechanical laws 
of motion from Newtonian physics. 

The procedure outlined above for obtaining the equations of the 
metrics may also be used in five dimensions and then the dependence 
or independence of the mass density upon space and time may be 
determined as the predicted phenomena agree or disagree with 
experience. This leads one to a five dimensional entropy metric of 
space-time-mass. Here also one finds the appearance of the two 
spaces coupled by a gauge function for an isolated system. In this 
case the gauge function is a function of the same five variables. 

The Dynamic Theory makes its prediction of redshifts starting 
from this five-dimensional geometry of space-time-mass in which the 
gauge function produces the fields. This gauge function is a function 
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of space, time, and mass and it determines the unit of action in the 
atomic states as may be seen from the Quantum Poisson brackets 
when covariant differentiation is used, or 

 [ ] Ψ
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 + gi  =  P,x s
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where the vector curvature would appear in the Christoffel symbols 
inside the brackets while the gauge function is a multiplicative factor 
in the gkl. Then when the vector curvature is negligible the Quantum 
Poisson brackets become [ ] ΨΨ δ jkkj fi  =  p,x h  where it may be seen 
that the unit of action is Dirac δ  times the gauge function. It may be 
shown [12] by using the gauge field equations that the functional 
form of the gauge function must be 
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By requiring the photon energy to be conserved we have 

rree vhfvhf =  which produces the redshift expression  
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By expanding the right-hand side as a power series and comparing the 
first order approximation to the classical expression in Eqn. (1) the 
constants k, a, and b may be evaluated. By setting 0=et  and 

cLtr /=  we find our redshift expression becomes 
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where M/R is the gravitational potential at either the point of emission 
or the point of reception and the subscript e stands for emission while 
the subscript r stands for reception. The R and M without subscripts 
are the values of the radius and mass of the Earth respectively. 
Because of the distances involved the approximation R<<λ  may be 
used for both the emitter and the receiver. Then the approximation of 
Eqn (2) becomes  

 

































≅

R

M
R

M

c

HL
 + 

R

M - 
R

M

c

G
-    1)+ln(z r

r

e

e

r

r

2
 (3) 

so that on the Earth’s surface we would have the approximation 
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while, if we were to obtain experimental redshifts using the Hubble 
Telescope while in orbit at an orbital height of h we would have  

 ( ) ( ) ( )2ln( 1) .e

e

MG M HL R
HT R cR h R hc

z + +
 + ≅ − − +   (5) 

Equation (4) and (5) represent two equations in the two unknowns, 
L and Me/Re. The solution of these equations is given by the equations  

 ( ) ( ) ( ) ( )2
ln 1 ln 1e c

HT EShG
e

M
R h z R z

R
≅ + + − +    (6) 

and  

 ( ) ( )( ){ }2ln 1 ln 1 1 .c GMR
ES HTH h c R

L z z≅ + − + + +  (7) 

One may then see how comparing the redshifts obtained from the 
Earth’s surface with those taken at a height above it will allow the 
determination of distance to, and the gravitational potential of, a 
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cosmological object. The ability to obtain solutions from the two 
equations for redshifts at different receiving gravitational potentials  
does not exist in other predictions of redshifts. It is because of the 
appearance of the ratio of gravitational potentials in Eqn (2) that 
allows the Dynamic Theory to make the distance and potential 
predictions. For objects with a large gravitational potential compared 
to that of the Earth the major change in ln(z + 1) comes from the ratio 
of h to R + h. For an orbit height of 380 miles this ratio is 0.0876. This 
means that the expected change in the measured redshift from the 
Earth’s surface to the Hubble Telescope orbit is of the order of a few 
percent. A student survey of books reporting redshifts in the optical 
range puts the experimental error between a few percent and near 30 
percent. Therefore, care needs to be taken or frequencies sought 
which have less experimental error. 
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