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Abstract

People often detect structure and patterns in data that is ran-
dom. This difficulty in accurately evaluating randomness man-
ifests itself in mistaken beliefs that a fair coin has a bias to-
wards heads or tails, detection of causal relationships between
variables that randomly co-occur, or observation of illusory
correlations between continuous variables. A computational
analysis of an optimal reasoner’s performance on these three
tasks suggests that this difficulty does not arise simply because
people have an irrational disposition to see meaning in ran-
domness, but because the underlying inference problem is in-
trinsically hard– for both statistical inference and human in-
tuition. This analysis suggests that randomly produced data
is inherently ambiguous, because data which is randomly pro-
duced can often also be produced by a systematic process. An
experiment is reported which provides evidence that inferences
about randomness are inherently difficult.

Keywords: randomness; illusory correlation; judgment bi-
ases; rational analysis; Bayesian inference;

Does winning three out of four games mean the Red Sox
will usually win against the Yankees, or does it just reflect
the ups and downs of the sport? Does taking vitamins reduce
the chances you will get sick, or have you noticed that health
doesn’t seem to depend on supplements? Is there a relation-
ship between how healthy people are and how much they ex-
ercise? People have a remarkable capacity to detect patterns,
and both children and adults are often preoccupied with find-
ing the statistical regularity, causal structure, and predictive
relationships that exist in the world. The alternative to find-
ing structure in the environment is to realize that it is unsys-
tematic: certain events and patterns occur in the absence of
systematic forces and the processes that generate them are
random. Discriminating between events that occur at random
and observations that provide evidence for underlying struc-
ture is important in learning about the actual structure of the
world.

Despite the value of this capacity, there is a range of em-
pirical evidence pointing at the errors that people make in
discerning the presence of random rather than systematic pro-
cesses. Given random samples of equally likely events, peo-
ple erroneously detect statistical regularity and infer that one
event is more likely than another, which can lead to maladap-
tive decision-making. People often infer causal relationships
between randomly co-occurring variables, which leads to er-
rors in clinical diagnosis (Chapman & Chapman, 1967) and
the perpetuation of stereotypes (Hamilton, 1981). The ten-
dency to detect correlations in the random variation of con-
tinuous variables can result in persistent false beliefs, such
as an association between arthritis pain and the weather (Re-
delmeier & Tversky, 1996).

Why do people have such difficulty in correctly assessing
whether data is random, or reflects structure? One proposal
(Kahneman & Tversky, 1972) is that people’s judgments are
not guided by detailed knowledge of probability, but by a
heuristic to judge data as random if is intuitively represen-
tative of a random sample. This proposal (and the accompa-
nying empirical research) is often interpreted as evidence that
people’s ability to reason about chance is inherently biased
and inaccurate.

In this paper we argue that errors in detecting random-
ness are not necessarily evidence that people simply reason
poorly about chance. We present a rational analysis of the
inference problem people face in judging whether data pro-
vides evidence for a random or systematic process, and show
why detecting randomness might be intrinsically difficult. We
then extend the analysis to demonstrate that this difficulty is
faced in identifying randomness in coin flips, contingency
data, and the joint values of continuous variables. Across
these inference tasks, the data that is likely under (and pro-
duced by) a random process is often data that is also likely
under (and could have been produced by) a systematic pro-
cess. This means that randomly produced data is inherently
ambiguous as to its source, and only provides weak evidence
for a random process. We empirically test this formal analysis
through an experiment on detecting randomness and regular-
ity in sequences of coin flips, which supports the conclusion
that judging randomness is in fact inherently difficult in the
way our analysis predicts.

A formal analysis of judging randomness
The problem of detecting randomness can be analyzed in
terms of using observed data d to evaluate two hypotheses:
h0, the hypothesis that the data was produced by a random
process, and h1, the hypothesis that the data was produced by
some systematic process. A rational solution to this problem
is to use Bayes’ rule to combine prior beliefs about these hy-
potheses with the evidence the data provides for each. Bayes’
rule states that the logarithm of the posterior odds in favour
of h1 after seeing d is

log
P(h1|d)
P(h0|d)

= log
P(d|h1)
P(d|h0)

+ log
P(h1)
P(h0)

being the sum of the logarithms of the likelihood ratio and the
prior odds. The log likelihood ratio (LLR) is what we take as
a measure of the evidence that d provides in favour of h1 (or
against h0), as its value determines the way in which beliefs
are changed by the data.



The difficulty inherent in evaluating randomness
Deciding whether data were generated by a random process
is rendered inherently difficult because of the relationship be-
tween h0 and h1. The issue is that randomness is a special
case of structure – namely, the case where no structure ex-
ists. An illustration of this relationship appears in Figure 1(a).
Considering all possible data sets d in a particular domain, the
hypothesis of randomness, h0, assigns high probability only
to the particular data sets with little or no structure. In con-
trast, the hypothesis of structure, h1, assigns probability to the
wide range of data sets containing any structure whatsoever.

This scenario can be illustrated in judging the randomness
of sequences of coin flips. Sequences of coin flips with ap-
proximately equal numbers of heads and tails are likely to be
generated by flipping a fair coin (P(heads) = 0.5), but they
are also moderately likely to have come from a coin with a
bias (if P(heads) is still close to 0.5, for example, 0.4 or 0.6).
A fair coin is just a special case of a biased coin – a coin
with zero bias. Formally, the hypothesis that a fair coin (h0:
P(heads) = 0.5) generated a sequence is nested within the hy-
pothesis that a biased coin (h1: P(heads) ∼ Uni f orm(0,1))
generated the sequence.

What are the consequences of this nested relationship be-
tween the hypotheses of randomness and structure, for infer-
ences about random processes? The inferences drawn from
data depend on the evidence that randomly and systematically
generated data sets provide for one hypothesis over another–
in our analysis, this evidence is the log likelihood ratio of a
particular data set d. The LLR (log P(d|h1)

P(d|h0) ) can be computed
for each data set d, and the probability of d (for example,
under a random process) influences how likely it is that that
particular LLR will be observed in randomly generated data.
The overall distribution of the LLRs of randomly generated
data is derived by computing the LLR for every data set and
taking into account how likely each data set is under a ran-
dom process. This derivation gives the distribution of LLRs
of randomly generated data (when h0 is true), and the distri-
bution of LLRs for systematically generated data (when h1 is
true), shown in Figure 1(c). Positive LLR values indicate that
the data provides more evidence for h1, and negative values
show that the data provide more evidence for h0. The greater
the magnitude, the more evidence the data provides for one
hypothesis over the other.

It is readily apparent that nested hypotheses produce asym-
metric distributions of evidence, with most of the evidence for
the nested hypothesis of randomness (h0) being weak (nega-
tive but small LLRs), while the evidence for the alternative
hypothesis of structure (h1) is stronger (a wide range of posi-
tive LLR values). This follows from the nested nature of the
inference: since h1 assigns some probability to all the data
sets for which P(d|h0) is large, there is a limit on the mag-
nitude of the LLR in favour of h0. In contrast, because h1
assigns probability to datasets that are very improbable un-
der h0 it is possible to obtain a very large LLR in favour of
h1. Returning to judgments about coin flips, observing a se-
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Figure 1: Comparison of nested and symmetric hypotheses:
probability distributions over data (a,b), the distribution of the
LLR (c,d), and ROC curves (e,f)

quence with a very uneven number of heads and tails pro-
vides very strong evidence for a biased coin, but observing
a sequence with a slightly uneven number of heads and tails
is more ambiguous, because it could be produced by a sys-
tematic process (e.g. one with P(heads) = 0.6). Even if this
kind of sequence was randomly produced, it is not strongly
diagnostic of a random process.

Making inferences about nested hypotheses is very differ-
ent from the inference tasks typically considered in psychol-
ogy (such as in signal detection theory). Figure 1(b) shows a
more typical scenario, discriminating between two symmet-
ric hypotheses, represented by normal distributions over the
potential data sets, which partially overlap. As seen in Figure
1(d), symmetric hypotheses produce symmetric distributions
of evidence: strong evidence can be obtained for either hy-
pothesis and these distributions are reasonably distinct.

The relative difficulty of judgments about nested versus
symmetric hypotheses is well-demonstrated in the receiver
operating characteristic (ROC) curves in Figure 1(e) and (f).
Taking the LLR as the “signal” for deciding between the
two competing hypotheses, and using an exhaustive range of
thresholds, the ROC curves plot the probability of correctly
inferring h1 when h1 is true (detecting structure when a sys-
tematic process is present), P(Hit), against the probability of
inferring h1 when the data was generated under h0 (detect-
ing structure in randomly produced data), P(False Alarm).
The curves demonstrate that a reasoner’s sensitivity to the
true source of the data is inherently lower for nested than
for symmetric hypotheses, and producing a high hit rate re-
quires producing a disproportionate number of false alarms.
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Figure 2: Distributions of the LLR (a,b) and ROC curves (c,d)
for nested and symmetric hypotheses concerning coin flips.

False alarms are exactly the phenomenon that is interpreted
as irrational– identifying structure in random data– but un-
der this analysis false alarms are in fact an unavoidable cost
imposed by the weak distribution of evidence for h0.

This schematic analysis shows that the challenge of detect-
ing randomness may be a direct consequence of its status as a
nested hypothesis. In the following sections we show that the
key points of this analysis hold in three settings where people
erroneously detect structure in randomness: coin flips, con-
tingency data, and two-dimensional continuous variables.

Bias in sequences of coin flips
People often have difficulty in judging whether sequences
of coin flips are random (heads and tails are equally likely)
or whether they exhibit some bias and statistical regular-
ity. The inference task people face can be characterized as
using an observed sequence of coin flips, d, to decide be-
tween the nested hypotheses h0, that the coin is fair and
d ∼ Binomial(n = 10,0.5), and h1, that the coin is biased and
d ∼ Binomial(n = 10, p) with p ∼ Uniform(0,1). This task
can be compared to the (symmetric) judgment of deciding
whether a coin is biased towards tails (h0: P(heads) = 0.3) or
biased towards heads (h1: P(heads) = 0.7).

The distribution of LLRs for h0 and h1 for both the nested
and symmetric cases are shown in Figure 2 (a) and (b). These
distributions were obtained by generating 5000 sequences of
10 coin flips under h0 and 5000 sequences of coin flips under
h1, computing the LLR for each sequence, and plotting these
as a histogram. The results conform to the schematic analysis
given above, with a skewed distribution of the LLR for the
nested case. The ROC curves shown in Figure 2 (c) and (d)
show that the nested case is more difficult, and has a very high
false alarm rate.

Causal relationships in contingency data
A basic learning problem children and adults face is infer-
ring the causal structure of the world, often in the form of

judging whether one variable exerts a causal influence on an-
other, raising the probability of its occurrence. Our formal-
ization of the causal inference problem follows previous work
on Bayesian models of causal induction (Griffiths & Tenen-
baum, 2005). We assume that a person evaluates the rela-
tionship between two binary variables, a prospective cause
C and an effect E, where C and E take on values of 1 and
0, indicating their presence and absence. If a causal rela-
tionship exists between C and E, then the probability that
E = 1 is given by a “noisy-OR” distribution (stated below),
while if there is no causal relationship the effect occurs with
some base rate p0. This gives us two hypotheses: h0 is that
there is no causal relationship, and P(E = 1|C) = p0 with
p0 ∼Uniform(0,1), while h1 is that there is a causal relation-
ship, with P(E = 1|C) being p0 +(p1− p0 p1)C, with p0 ∼
Uniform(0,1), p1∼Uniform(0,1). It is clear that h0 is nested
within h1, as the absence of a causal relationship is equiva-
lent to the cause producing the effect with a probability of 0,
compared to a probability of p1 (where p1 ∼Uni f orm(0,1))
in the presence of a causal relationship.

The nested inference about whether there is a causal re-
lationship can be contrasted to the symmetric judgment of
whether a variable raises or lowers the probability of an ef-
fect: whether the variable is causally generative or causally
preventative. The model for a preventative cause uses a noisy-
AND-NOT parameterization (see Griffiths & Tenenbaum,
2005), giving us two hypotheses: h0 is that there is a gen-
erative causal relationship, P(E = 1|C) = p0 +(p1− p0 p1)C,
with p0 ∼ Uniform(0,1), p1 ∼ Uniform(0,1), and h1 is that
there is a preventative causal relationship: P(E = 1|C) =
p0(1− p1)C, with p0 ∼ Uniform(0,1), p1 ∼ Uniform(0,1).

Each sample drawn under a hypothesis was a 2× 2 con-
tingency table containing 10 individual cause-effect observa-
tions. For each sample, the values of p0 and p1 were drawn
from a uniform distribution on (0,1). Five observations were
fixed to have the cause present, and five were fixed to have
the cause absent, while the value of the effect was sampled
from the probability distribution defined on E by the relevant
hypothesis. A total of 5000 samples were drawn for each hy-
pothesis. Figure 3 shows the distribution of the LLR and the
ROC curves for the nested and symmetric hypotheses, bear-
ing out the schematic analysis presented earlier.

Correlation between continuous variables
Detecting correlations between continuous variables is an-
other important problem, whose solution allows people to act
adaptively in the world. Despite this, there is ample empir-
ical evidence that people detect positive and negative cor-
relations between variables with no actual relationship (Re-
delmeier & Tversky, 1996) . For bivariate data, (x1,x2), the
problem people have to solve can be formalized as decid-
ing between h0: there is no correlation and the variables are
randomly related, and h1: there is some correlation between
the variables. Formally, we can capture the difference be-
tween these hypotheses by assuming that under h0 the val-
ues of x1 and x2 are drawn independently from Gaussian dis-
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Figure 3: Distributions of the LLR (a,b) and ROC curves (c,d)
for nested and symmetric hypotheses of causal relationship.

−10 −5 0 5 10

Nested

P
( 

LL
R

 | 
h)

Log likelihood ratio (LLR)

(a)

−10 −5 0 5 10

Symmetric

Log likelihood ratio (LLR)

(b)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
( 

H
it 

on
 h

1 )

P( False alarm on h
0
 )

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(d)

P( False Alarm on h
0
 )

h
0
 true

h
1
 true

Figure 4: Distributions of the LLR (a,b) and ROC curves (c,d)
for nested and symmetric hypotheses concerning correlations.

tributions with unknown means µ ∼ N(0, σ2

k ) and variances
σ2 ∼ Inv-χ2(k,σ2), while under h1 they are drawn from a
multivariate Gaussian with mean µ∼ N(0, Σ

k ) and covariance
matrix sigma Σ ∼ Inv-Wishart(kΣ0,k), where Σ0 is the iden-
tity matrix, and k = 3 for h0 and h1. This allows x1 and x2
to be independent (have a correlation of 0) under h0, but be
correlated (have a correlation between -1 and 1) under h1.

A symmetric analogue of this nested problem is judging
whether there is a positive or negative correlation between
x1 and x2. Here the hypotheses are h0, that there is a negative
correlation, and h1, that there is a positive correlation. Both of
these hypotheses are represented with the same distributions
and parameter values as h1 above, except that the parameters
Σ0 and k are adjusted to represent positively and negatively
correlated data. Under h0, Σ0 =

(
1 −0.5
−0.5 1

)
, while under

h1, Σ0 =
(

1 0.5
0.5 1

)
. We take k = 10 in both cases, represent-

ing a reasonably strong belief in the appropriate correlation.
For both the nested and symmetric cases, 5000 samples were
generated under each hypothesis, with each sample consisting
of 10 bivariate observations. The plots for the distribution of

LLRs and the corresponding ROC curves are shown in Figure
4, and again bear out the original analysis.

Summary
For three domains in which people erroneously detect struc-
ture in randomness, a rational analysis identifies that the hy-
pothesis of randomness is nested within the hypothesis of
structure, causing the evidence for randomness (as measured
by the distribution of LLRs) to be inherently weak. ROC
curves constructed using the distribution of LLRs for ran-
domly and systematically generated data (whether coin flips,
contingency data, or 2-D data points) demonstrate that this
weak evidence makes discriminating these processes inher-
ently difficult– to obtain a high proportion of hits on h1, a rea-
soner will incur a high proportion of false alarms on h0 (detect
structure in randomly produced data). The rational analysis
shows that data from symmetric hypotheses have more diag-
nostic distributions of evidence, which facilitates more accu-
rate judgment. We now present an experiment on people’s
judgments about the processes which generate sequences of
coin flips. The experiment compares judgments about nested
and symmetric hypotheses to test whether people’s difficulty
in detecting random processes does in fact arise from the rel-
atively weak evidence provided by random data.

Experiment: Testing the model predictions
The experiment involved one of two judgment tasks about
coin flips: deciding whether a coin was random or biased,
and deciding whether a coin had a bias towards heads or tails.
People’s judgments were investigated for the sequences of-
ten observed in judging randomness versus bias (nested con-
dition), and the sequences often observed in judging a bias
towards heads versus tails (symmetric condition). In the crit-
ical matched condition, people judged whether a bias was to
heads or tails, but for sequences whose distribution of evi-
dence was chosen to match that of the nested condition.

Procedure and Design
For the nested condition, 50,000 sequences of 40 coin flips
were generated from a fair coin, and 50,000 sequences of 40
coin flips were generated from a coin with a bias, follow-
ing the sampling procedure for coin flips outlined earlier. All
100,000 samples were pooled and arranged in order of in-
creasing LLR. Starting at the first percentile, sequences were
selected at every 2nd percentile (1st, 3rd, 5th, ... , 99th per-
centile), for a total of 50 sequences which covered the range
of LLR values. These 50 sequences of coin flips were pre-
sented for judgments about randomness versus bias in the
nested condition. Another 50 sequences were selected sim-
ilarly for the symmetric condition: by combining 50,000 se-
quences from a ’coin’ with P(heads) = 0.3 and 50,000 from
a coin with P(heads) = 0.7, ordering by increasing LLR, and
selecting from every 2nd percentile. For the matched con-
dition, 50 sequences were selected from the 100,000 in the
symmetric pool, but such that their LLRs were as close as
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Figure 5: Judgment accuracy across conditions

possible to the LLRs used in the nested condition. When mul-
tiple sequences had the same LLR (as was often common), a
sequence was randomly selected.

Participants were 120 undergraduate students: 40 in each
of the three conditions. Participants in the nested condition
were instructed that they would see sequences of 40 coin flips
that each came from either: (1) a fair coin, or, (2) a coin bi-
ased to show heads with some probability other than 50%,
and would have to decide which coin had produced the se-
quence. In the symmetric and matched condition they were
instructed to discriminate between: (1) a coin that came up
heads 30% of the time, and (2) a coin that came up heads
70% of the time. Participants were given 16 practice trials,
followed by the actual experiment of 50 trials. Responses
were made by pressing one of two buttons, with the button-
response pairing randomly chosen for each participant.

Results
People’s judgment accuracy in each of the three conditions
is shown in Figure 5. An accuracy score was constructed
for each participant as the proportion of correct inferences
out of 50, with an inference scored as correct if the partic-
ipant chose the hypothesis assigned higher posterior proba-
bility under the rational analysis (assuming equal priors on
h0 and h1). Accuracy in the symmetric condition was sig-
nificantly better than in the nested condition, replicating the
finding that people are relatively inaccurate in their judgments
of randomness, (t(39) = 6.9, p < 0.001). However, when
the distribution of evidence (the LLRs of the sequences pre-
sented) was equated in both tasks (judging randomness and
judging direction of bias), people’s accuracy was equivalent.
Accuracy in the nested and matched conditions did not dif-
fer significantly (t(39) = 1.6, p = 0.12), although accuracy in
the matched condition was impaired relative to the symmetric
(t(39) = 8.6, p < 0.001).

Despite the finding that people appear to simply be poorer
at evaluating randomness than performing related judgments
about structure, once the pattern of evidence is equated in
these two tasks, people’s accuracy is exactly the same. This
provides strong evidence that discriminating the nested hy-
potheses of randomness and structure is only difficult be-
cause of the uninformative distribution of evidence that is
produced– equating the evidence available in an intuitively
’easy’ task leads to similarly impaired performance.

For each of the 50 sequences, Figure 6 shows the posterior
probability that the rational analysis assigns to h1, and the
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Figure 6: Human and model probability of choosing h1.
Mean reaction time from human data and model predictions.

proportion of participants who selected h1. People’s mean
judgments closely track the probabilities assigned by the ra-
tional analysis: the correlations for the symmetric, nested, and
matched conditions are, respectively, 0.99, 0.94, and 0.92.
These strong correlations indicate that people’s judgments are
very sensitive to the magnitude of evidence that a sequence
provides for a judgment (as measured by the LLR), and that
people’s failure to choose the correct hypothesis corresponds
to the inherent uncertainty an optimal reasoner faces.

A similar pattern of difficulty was found in the reaction
time data: people took longer to make judgments in the nested
(t(39) = 2.5, p < 0.02) and matched (t(39) = 2.7, p < 0.01)
than the symmetric condition, although reaction times for
these two conditions did not differ (t(39) = 0.33, p = 0.74).
All reaction time analyses were carried out on data that was
scaled for outliers (reaction times greater than 10 seconds
were replaced by a value of 10 s). A particularly interest-
ing feature of the reaction time data was the clear linear re-
lationship between the time people needed to make a judg-
ment about a sequence and the magnitude of the evidence
that sequence provided, as represented by the LLR. The cor-
relations between the time to make an inference from a se-
quence and the absolute value of the LLR of the sequence
were -0.82 (symmetric), -0.84 (nested), and -0.75 (matched).
The smaller the magnitude of the LLR, the longer the time
to make a judgment, the larger the LLR, the quicker an in-
ference was made. Figure 5 shows the mean reaction times.
Reaction time was regressed onto the absolute value of the
LLR using a linear function, so that Figure 5 shows the close
match between people’s actual reaction times (solid line) and
the regression’s prediction for how long people should take–
a prediction based directly on the magnitude of the evidence



a sequence provides (the LLR). The sequences which provide
only weak evidence (as measured by the LLR in the proposed
rational analysis) are the sequences that people find inher-
ently difficult to evaluate.

Discussion
The empirical finding that people are bad at detecting ran-
domness in data (instead finding meaning and structure) is
traditionally explained as a bias. A closer analysis of this in-
ference problem from the perspective of Bayesian inference
over hypotheses suggests that the bias does not emerge from
some special relationship between cognition and randomness,
but from the likelihood of observed data under the compet-
ing nested hypotheses of randomness and structure. Across
all of the tasks analyzed, a core feature of the relationship
between these hypotheses is that random data is often ex-
plained very well (assigned high probability) under the alter-
native hypothesis of structure, making the detection of ran-
domness an inherently difficult problem. The reported exper-
iment showed that this theoretical argument has significant
psychological implications: people’s accuracy and reaction
time was directly related to a rational statistical measure of
evidence, the LLR. Moreover, the inaccuracy and bias exhib-
ited in randomness judgments did not seem to be due to some
intuitive property of randomness, but to the low informative-
ness of the LLRs of random data: equating an intuitively easy
task on this distribution made judgments about structure just
as difficult.

The finding that people persistently detect structure and
meaning in randomly generated data- across a range of tasks
and domains- has frequently been taken as evidence that peo-
ple’s capacity to reason about chance and probability is fun-
damentally flawed. The rational analysis and supporting ex-
periment presented in this paper suggest that errors in judg-
ing randomness shouldn’t necessarily be taken as evidence
for the broad theoretical conclusion that people are in general
bad at reasoning about chance. A closer look at the computa-
tional problem people face suggests that judgments about ran-
domness are inherently difficult, even with optimal statistical
knowledge and extensive computational resources, and errors
in judging randomness may reflect the difficulty of the prob-
lem rather than misleading intuitions about chance events.

This strategy of using a rational computational analysis to
more precisely examine the inference problems people have
to solve also sets up several useful directions for future re-
search. The close empirical relationship between LLRs and
people’s judgments suggests that it may be valuable to think
further on how analyzing LLRs can give insight into people’s
inferences and behaviour. Research on illusory correlation
(Redelmeier & Tversky, 1996; Jennings, Amabile, & Ross,
1982) proposes that people erroneously detect structure by se-
lectively attending to the subset of available data which pro-
vides evidence for structure and ignoring the data that pro-
vides evidence for randomness. We propose that if storage
and processing limitations are imposed on a human reasoner,

it might be adaptive to selectively attend to highly informa-
tive data with large LLRs (which we suggest is often evidence
for structure) at the expense of weakly informative data with
small LLRs (which may often be evidence for randomness).
The magnitude of evidence that data provides about the state
of the world (about the hypotheses under consideration) may
be important in understanding biases in people’s selective at-
tention and memory.

In addition to demonstrating that judging randomness is
difficult, the rational analysis presented here provides a con-
text within which we can formally characterize the strategies
people use to negotiate this difficulty. An analysis of the dis-
tribution of LLRs under h1 demonstrated that a significant
proportion of data produced by a systematic process in fact
provided evidence for h0 rather than h1 (had negative LLRs).
If a reasoner’s first priority is discovering structure, then the
optimal strategy is to set a generous threshold (e.g. a negative
LLR) for inferences in favour of h1. This strategy adaptively
accepts the cost of a high false alarm rate to increase the de-
tection of structure, but in a given individual situation will
have the surface appearance of an irrational phenomenon.

The rational analysis in this paper aimed to demonstrate
the extent to which people’s judgments are guided by sophis-
ticated statistical reasoning rather than biases, but it can still
serve the function of identifying limitations in human cog-
nition. The concept of nested hypotheses characterizes the
inference tasks in which people face an inherent challenge in
correctly diagnosing randomness, and will often erroneously
detect structure. This paper demonstrates that this challenge
is regularly faced in a broad range of ubiquitous and practi-
cally important judgment tasks: detecting statistical regular-
ity, discovering causal structure, and identifying correlations.
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