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Recent work in the domain of the validation of complex computational models reveals that 

modelers of complex systems, particularly modelers of the earth’s climate, face a deeply 

entrenched form of confirmation holism. Confirmation holism, as it is traditionally understood, is 

the thesis that a single hypothesis cannot be tested in isolation, but that such tests always depend 

on other theories or hypothesis. It is always this collection of theories and hypotheses as a whole, 

says the thesis, that confront the tribunal of experience. But in contrast to the way the problem of 

confirmation holism is typically understood in the philosophy of science, the problems faced by 

climate scientists are not merely logical problems, and nor are they confined to the role of 

anything that can suitably be called auxiliary hypotheses. Rather, they are deep and entrenched 

problems that confront the scientist who works with models whose component parts interact in 

such a complex manner, and have such a complex history, that the scientist is unable to evaluate 

the worth of the parts in isolation. 

In what follows, we want to argue for two central claims about complex computational 

models—with a particular emphasis on models of the earth’s climate. The first claim is about 

holism. We will argue that recent efforts in the sphere of climate model inter-comparison reveal 

that modern, state-of-art climate models are what we call “analytically impenetrable.” We will 

have to spell out this notion with more care in the sequel, but the intuitive idea is that, as a 

practical matter, it has become impossible for climate scientists to attribute1 the various sources 

of relative successes and failures to particular modeling assumptions. 

The second claim is about entrenchment. In particular, we argue that entrenchment can be 

identified as one of the principal causes of holism. Here, we want to argue that climate models 

are, in interesting ways, products of their specific histories. Climate models are developed and 

                                                            

1 The word “attribution” also occurs in the prominent phrase “attribution of climate change” 
which stands for the question whether observed climatic change is caused by humans. We do not 
use the word in this way in this paper. 
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adapted to specific sets of circumstances, and under specific sets of constraints, and their 

histories leave indelible and sometimes inscrutable imprints on these models. 

The validation of complex computation models is the central issue of the epistemology of 

computer simulation. The computer science literature often distinguishes between verification 

and validation as two aspects of the evaluation of simulation. We will speak somewhat more 

coarsely and treat validation and evaluation as the same. How do we know when a complex 

computer model is good enough, or reliable enough, for a task for which we hope to depend on 

it?  The issue of the validation of simulations is a particularly interesting one for the 

epistemology of science, because issues of validation take center stage in simulation in a way in 

which they rarely do in other modalities in the sciences.   It brings to light features of the 

epistemology that might be absent, but more likely simply hidden, in other modeling and 

theoretical practices. 

To a first approximation, we can think of the validation of a model in the following way:  a 

model is validated when we are convinced that there is an appropriate fit2 between the dynamics 

of the model, on the one hand, and the dynamics of the real world system to be modeled, on the 

other.  To be sure, such a conception of the validation of simulation models is somewhat 

simplified.   In particular, simulations are often used to generate predictions about phenomena in 

domains where data are sparse.   Hence, while appropriate fit is of course what we want in a 

model, we want more than fit with those features of the real world system that are immediately 

observationally accessible to use.   That a model is valid, therefore, is rarely established solely by 

comparing it to the world.  As we have argued elsewhere (Winsberg, 1999, 2001, Lenhard, 

forthcoming), the sanctioning of simulation models depends on a number of features in addition 

to fidelity of the simulation’s output to known real-world data.  It also depends on fidelity to 

theory, to accepted computation method, and a host of other factors.    In this paper, however, we 

want to set these complications aside, and focus, in particular, on the role of comparison with 

data in the validation of simulations.  We also want to focus, in this paper, on a particular facet of 

validation.  We want, in particular, to think about situations in which models fail to be 

                                                            

2 “Appropriate” in the sense that, for the intended purpose of the model, the model is close 
enough to the world in the intended respects and to the intended degree of accuracy. 
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adequately validated—at situations, in other words, where the behavior of the model is known 

not to be close enough to the behavior of the world for its intended purpose. 

This, after all, is the state of affairs known to obtain with regard to most global climate 

models.  There exist several of such models run by research centers worldwide. Each has its 

specific strengths and weaknesses in certain respects. The series of assessment reports of the 

Intergovernmental Panel on climate change (IPCC) documents how adequacy of the overall 

picture is thought to be produced by a synopsis of a plurality of models. In such cases, the issue 

of model validation is, in effect, the issue of model improvement.  To put the central question 

succinctly:  when a complex models fails to be adequate, is it possible to identify the various 

components of the model that contribute to its relative successes and failures? 

It is precisely in these contexts, however, in which a serious form of confirmational holism 

rears its ugly head. On the common understanding of this thesis, a result of the so-called Quine-

Duhem problem, it is thought to have two features.    First, the problem of confirmational holism 

is typically associated with the idea of auxiliary hypotheses having to do with observation.  

Suppose, for example, that we have the hypothesis that all metal rods expand when heated.   An 

alleged falsification of this hypothesis comes from the observation of rod being heated and not 

expanding.   Confirmational holism comes from the realization that such an observation’s 

credibility depends on a sound understanding, grounded in certain theories or hypotheses, of 

thermometers and measuring instruments.   Any seeming conflict between our original 

hypothesis and our data could either be the fault of the original hypothesis, or it could be the 

fault of these auxiliary hypotheses—hypotheses associated with measuring instruments.   

Second, the problem of confirmational holism is often thought to be a logical problem.  In other 

words, on a common understanding of the Quine-Duhem problem, and of confirmational holism, 

what we are supposed to conclude is that logic alone never dictates whether a single hypothesis 

or theory is confirmed or falsified by a collection of data.  But it is usually supposed that good 

judgment (what Duhem called “bon sense”) can decide between such rival possibilities.  This is 

often supposed on the basis of the belief that auxiliary hypotheses that are used in observation 

can be  independently tested.  It is usually supposed, in other words, that the Quine-Duhem 

problem is a philosophical problem without actual practical implications for the working 

scientist. 



  4

But unlike in the conventional picture of how Quine-Duhem is supposed to operate, the 

holism that arises in climate modelling is wholly independent of whatever hypotheses or theories 

sanction the reliability of the observational base upon which validation occurs. Even in situations 

in which the reliability of the data against which simulation output is being compared are not in 

doubt—that is, even if we imagine a situation where, for example, the data concerning historical 

record of ice-ages against which the simulation’s output will be compared are not open to 

question—where there is no concern about the reliability of the auxiliary hypothesis used to 

generate these data— there is still a serious problem of confirmational holism. 

 

Climate simulation 

Suppose, for example, that we have a computer simulation of the climate whose simulated 

dynamics can be compared to its real world counterpart—our planet’s climate— in at least 

important respects.  An iconic example of this kind of comparison is the purported fit between 

the history of the global mean temperature and the output of various global climate models, 

applied to the past.   Everyone has seen this image, cf. image 1. 

[locate image 1 here] 

Of course, the “real world” side of the comparison—the historical mean temperature—is 

itself a re-construction out of a vast array of different sources.   It is, to use a bit of technical 

terminology coined by Woodward and Bogen, a “phenomenon”—a highly massaged and 

negotiated description of the behavior of the world that is inferred from a variety of sources 

(Bogen and Woodward, 1988).   A corresponding vast array of theoretical and instrumental 

resources stand behind the line on the graph that is labeled “real world climate.”   And of course, 

whether agreement or disagreement between model and world count as evidence for or against 

the model depends entirely on the credibility of the data conferred by those resources.  As we 

noted earlier, the Quine-Duhem problem, and the problem of confirmation holism, is typically 

thought to be about these very theoretical resources that stand behind the inferences to these 

“phenomena.”  But we shall not be concerned with those issues here—we are more concerned 

with issues related to the relationships between the models themselves, on the one hand, and the 

fully reconstructed “phenomena,” whatever they turn out to be, on the other.  
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When it comes to climate models, one cannot overemphasize the degree to which the 

credibility and assumed reliability of the models comes precisely from the good fit between the 

output of these models and this reconstructed historical record.  Image 2 displays a case of such 

output as reported in IPCC’s Third Assessment Report (2001). 

[locate image 2 here] 

A variety of political, economic, and policy scenarios is part of this complex picture (d). 

Graphics (a)-(c) display a variety of scenarios that determine the boundary conditions of the 

simulations. Climate scientists, themselves, of course, are not in the business of making political 

and economic forecasts.   What they do, instead, is to make a variety of simulation-based 

predictions of global temperature using a variety of particular assumptions about future 

greenhouse gas emissions.  This accounts for part of the uncertainty in the predictions. There is 

still, however, another kind of uncertainty lurking in the background of part (d).  Even for one 

particular scenario—one set of assumptions about economics, politics and policy (in short, about 

emissions)—a range of possible values is reported, not a single predicted temperature.   This 

range stems from a plurality of individual models that can be run given one particular 

political/economic scenario. Each of these models gives a different forecast and the collection of 

forecasts gives the range reported here.   The entire process is much like that of “collecting all 

the opinions of valuable witnesses”.   First you canvass political/economic/policy experts about 

what to expect in terms of emissions, and then you canvass a second panel of expert—the 

models—about what kind of climate change to expect in response. The first kind of plurality is 

generally appreciated by science and the public; at the same time it is acknowledged to be 

irreducible – there are simply no trustworthy oracles to consult about emissions. However, the 

second kind of plurality is the more important and at the same time more hidden one.  And it is 

precisely this aspect of the uncertainty that climate scientists would like, in principle, to reduce.   

The earth’s climate can be thought of as system consisting of a variety of subsystems: the 

atmosphere, oceans, ice cover, etc. The overall climate dynamics is brought about by the 

interaction of all these subsystems.  Climate models, in turn, are correspondingly modular.  

There are model modules for the oceans, ice cover, cloud formation, rain dynamics, etc.  And so 

one way to think about climate model improvement is in terms of the contributions to model 
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output that come from these various modules. However, the approach to improve each module 

separately has to face serious and even insurmountable problems. 

Some words about modularity and climate models. The historical origins of climate 

analysis are rooted in models of the circulation of the atmosphere – general circulation models 

(GCMs) that have been developed since the mid 1950ies. The theoretical core of these models is 

built by the so-called fundamental equations, a system of partial differential equations from the 

physics of motion and thermodynamics. With the growing interest in climate change in the 

1980ies, a process of substantial growth of these models was starting, because more and more 

facets of the climate system had to be included while aiming at a comprehensive picture. The 

growth both included the resolution of more sub-processes, like the dynamics of aerosols in the 

atmosphere, and also the addition of sub-processes in parameterized form. In short, there exists a 

large variety of paths of growth and the different climate models followed different paths during 

their development. 

 

Modularity and Pluralism 

One aspect of the development of more comprehensive models is of particular importance. 

A multitude of sub-models had to be included into the atmospheric GCMs that had little to do 

with the theoretical physical basis of the atmospheric circulation, e.g. ice cover, circulation of the 

oceans, or land use. The coupling of atmospheric and oceanic circulation models is recognized as 

one of the milestones of climate modeling because both components had their independent 

modeling history, including the independent calibration of model performance. Putting them 

together was a difficult task because the performance of the two sub-models now interfered one 

with the other. Today, atmospheric GCMs have lost there central place; coupled models entertain 

a deliberatively modular architecture and comprise a number of highly interactive sub-models 

(cf. Küppers and Lenhard 2006). The results of these modules are not gathered independently 

and after that get synthesized, rather data are permanently exchanged between all modules during 

the runtime of the simulation. Thus the overall dynamics of one global climate model is the 

complex result of the interaction of the modules—not the interaction of the results of the 

modules. 
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Against this background of the modularity of climate models we want to describe the 

problem of validation, i.e. the question of how well a model simulates the actual climate 

dynamics. One particular model can of course be compared with certain aspects of the observed 

climate history. The most prominent one is the global mean temperature. The model can simulate 

its course over past times and the output can be compared with the reconstruction of climate 

(temperature) history. Paul Edwards (2001) has pointed out that this reconstruction cannot be 

derived from data directly but depends on models in various ways. However, as has been said, 

we simplify matters, neglect the issue of conformational holism in the traditional sense and 

assume that this reconstruction is straightforward.  

But GCMs can also be checked against more local and recent patterns, such as the intensity 

of tropical winds, precipitation patterns, etc.   Relatively speaking, these comparisons are a 

straightforward validation strategy that can assess systematic errors of the simulation model and 

enables stepwise improvement. This strategy is well established in simulation modeling practice. 

A central problem arises, however, as the complexity, multi-dimensionality and modularity 

of the models grow. An achievement with respect to one metric of model comparison, produced 

by complicating the model with a new feature, say a tropical precipitation adjustment, or by 

substitution one module with another, may not lead to amelioration with respect to another 

metric or may even make comparisons on that metric impossible or meaningless.  Changing the 

model in such and such a way may improve prediction of tropical winds, but it may 

simultaneously degrade prediction of precipitation patterns, or even make it now impossible to 

compare model output with regard to cloud cover.   

There are, furthermore, many possible avenues to pursue for improving model 

performance. Each modeling group follows their own path.   In the end, there is a variety of 

GCMs on the market: major climate research institutions tend to have one or even several of 

their ‘own’ GCMs.   And each one has its characteristic successes and failures.  Adopting a John-

Stuart-Mill-kind of view, this plurality can be seen as a virtue to foster competition and to end up 

with even better results even if unanimity is not attained.  

Wendy Parker, in her recent paper “Understanding Pluralism in Climate Modeling”, 

presents us with an illuminating discussion of model pluralism along these lines. She 

acknowledges that the up-to-date complex climate models cannot be compared in a 
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straightforward manner: “they represent physical processes acting in climate system in mutually 

incompatible ways and produce different simulations of climate.”(350) That means, according to 

Parker, that modellers have different opinions of how to represent the relevant physical 

processes. Furthermore, she rightly remarks, there are insufficient data to be able to resolve the 

plurality using criteria of empirical adequacy.  Here, we would simply like to direct attention 

towards an additional cause of the observed plurality.  

On Parker’s analysis,  mutually conflicting assumptions lead to what she calls an “ontic 

competitive pluralism” (362)  This account at least implicitly suggests that we can accurately 

identify the causes of the various differences in models outputs in terms of the differences in the 

assumptions the model authors make about physical processes. It is precisely this, however, that 

we  want to deny.  We think this view oversimplifies matters and we will argue that 

incompatibility is brought about by the very process of complex computational modelling. Our 

claim about conformational holism is in effect a scepticism about whether the researchers are  

really able to identify these cause.   And thus,  we are suggesting there are simulation-specific 

reasons, reasons having to do with the ways in which computation models are actually 

implemented, as opposed to reasons having simply to with basic climate science, for model 

pluralism... Thus confirmational holism is making the multi-model approach unavoidable and is 

brought about more by the exigencies of dealing with complex simulation models than by 

rational, though conflicting, choices of researchers.  

 

Analytical understanding impossible 

The complex internal composition and massive modularity of climate models is principal 

source of the problem.  Climate models are made up of a variety of modules and submodels.  

There is a module for the general circulation of the atmosphere, a module for cloud formation, 

for the dynamics of sea and land ice, for effects of vegetation and many more. In addition, each 

of them includes a mixture of principled science and parameterizations. And it is the interaction 

of these components that brings about the overall observable dynamics in simulation runs.  

Putting the modules together, moreover, is no easy task.   Typically, the specific form of 

the model that integrates these submodels is crafted over a long process of piecemeal mutual 

adjustments of the parameters, changes in parameterization schemes, and algorithmic 
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implementations of the different components. The course of development of these models is 

close to organic—it would not be a stretch to liken to their development to an evolutionary 

process. Like in evolution, function is optimized to the particular circumstances, the particular 

data sets available for comparison, and particular criteria of evaluation, under which optimization 

occurs. 

We argue that the best way to understand the historical nature of GCM optimization is in 

terms of a concept introduced by William Wimsatt in his recent book: that of “generative 

entrenchment”.  Wimsatt’s discussion of this concept arises in the context of understanding how 

techniques from adaptive design function as “a way of increasing the reliability of structures 

built with unreliable components” (Wimsatt 2007, 133) According to Wimsatt: “Adaptive design 

is a layered organization of kludged adaptations acquired sequentially and assembled on the 

fly…” (2007, 133)  

The term “kludge” or “kluge” initially stems from programmers’ colloquial language and 

is an extremely useful one here.  Andy Clark stresses the important role played by kluges in 

complex modular computer modelling in general. A Kluge is “an inelegant, ‘botched together’ 

piece of program; something functional but somehow messy and unsatisfying”, it is—Clark here 

quotes Sloman: “a piece of program or machinery which works up to a point but is very 

complex, unprincipled in its design, ill-understood, hard to prove complete or sound and 

therefore having unknown limitations, and hard to maintain or extend”. (Clark 1987, 278) 

Kluges have been incorporated into the body of philosophy of science by scholars like 

Clark and Wimsatt who are inspired both by computer modelling and evolutionary theory. The 

important point in our present context is that kluges typically function only in the context of a 

whole system, i.e. for the performance of an entire GCM simulation, whereas they have no 

meaning in relation to the submodels and modules considered in isolation, or, perhaps more 

importantly, in relation to that module’s potential employment in some other GCM.  “What is a 

kludge considered as an item designed to fulfill a certain role in a large system, may be no 

kludge at all when viewed as an item designed to fulfill a somewhat different role in a smaller 

system.“(1987, 279) 

Suppose, in other words that I want to improve the predictive accuracy of my GCM by 

coupling a sub-model of ice cover to my existing model.   I may begin with some principled 
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assumption about the physics of ice formation and melting.  But what is typical in climate 

modeling is that by the end of the day, I will incorporate features into the sub-model, or into the 

interface of the sub-model and the rest of the GCM, that are “complex, unprincipled in [their] 

design, ill-understood, hard to prove complete or sound and therefore having unknown 

limitations”.  The modules of GCMs, in short, inevitably become “kludged,” and the fact that 

they increase the accuracy of one GCM is no guarantee whatsoever that would work as well or at 

all in another. 

The notion, therefore, of generative entrenchment is particularly useful way of 

understanding the epistemological situation in which climate models often find themselves. 

Wimsatt explains it as follows: “A deeply generatively entrenched feature of a structure is one 

that has many other things depending on it because it has played a role in generating 

them.”(2007, 133)  

The multitude of possible parameterization schemes and choices of parameters and their 

balanced interaction in modular models are classic examples of kludged adaptations that are tied, 

in a fundamental way, to modeling features that have become generatively entrenched.  Such 

features contribute to the difficulties of gaining what we call analytic understanding of complex 

simulation models—an understanding of which sub-components of a simulation are responsible 

for its various successes and failures--because during the modeling process, the kernel of code, 

the choice and adjustment of parameterizations, and the peculiarities of controlling the 

interaction of modules typically get adapted to generatively entrenched features of the particular 

GCM for which they have been crafted. 

The point, in sum, is that comprehensive climate models—from the first atmospheric 

GCMs up to the coupled versions of Earth System Models—have grown organically over several 

decades of development.  And the growth has been a process of give and take between 

theoretical motivation and practical exigency. Whether a new module adds to or subtracts from 

the overall reliability of the model may have more to do with some generatively entrenched 

features of the model than it does with that module’s generic “goodness of fit”, considered in 

isolation.  When a vegetation module is added to a GCM and adds to the GCM’s reliability, how 

much of this should we attribute to the general features of the module itself, as it might be 

abstractly characterized, and how much should be attributed to very locally tailored attributes of 
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the module—the kludges—that have been used to fit and adapt the module to the generatively 

entrenched features of the GCM?  Features, which, presumably, will not necessarily play a role 

in competing climate models. 

Back to the validation of GCMs: If our claim about holism and entrenchment is correct 

they should visibly shape the way GCMs are validated.  It is possible, of course, to test the 

performance of these models under a variety of conditions.   And different models perform better 

under certain conditions than others.   But if model A performs better at making predictions on 

condition A, and model B performs better under condition B, then optimistically, one might hope 

that a hybrid model—one that contained some features of model A and some features of 

model—would perform well under both set of conditions.    But what would such a hybrid model 

look like?    

Ideally, to answer that question, one would like to attribute the success of each of the 

models A and B to the success of particular ones of their submodels—or components.   One 

might hope to believe, for example, that a GCM that is particularly good at prediction of 

precipitation is one that has, in some suitably generalizable sense, a particularly good rain 

module.   We call success in such an endeavor, the process of teasing apart the sources of success 

and failure of a simulation, “analytical understanding” of a global model.   We would say that 

one has such understanding precisely when one is able to indentify the extent to which each of 

the submodels of a global model is contributing to its various successes and failures. 

Unfortunately, analytic understanding is hard or even impossible to achieve.  The 

complexity of interaction between the submodels in GCMs, and the degree to which these 

submodels are adapted, via kludges, to generatively entrenched features of the GCM, is so severe 

that it becomes impossible to independently assess the merits or shortcomings of each submodel. 

One cannot trace back the effects of assumptions because the tracks get covered during the 

klugeing together of complex interactions.. That complex climate models are sometimes 

characterized as “balance of approximations” (Lambert and Boer 2001, cited in Parker 2006,  

359) is in line with our analysis. The ideal of analytic understanding is profoundly impeded by 

what appears to be a particularly vicious form of confirmational holism. A closer look at model 

validation as it is actually done in climate science and especially in the so-called model 

intercomparison projects will support these conclusions. 
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Validation of climate models 

With the growing prominence of climate issues in the public, there has been a great deal of 

pressure coming from the policy arena to make the process of model validation more rational, 

and more open to public scrutiny.  In particular, policy makers are keen to get from their climate 

scientists not only prediction, but predictions that are accompanied by quantitative assessments 

of margins of error and of uncertainty (QMU).  As a result of these pressures, specific model 

comparison projects have been launched. Because prediction uncertainty has been linked to 

model plurality, (nothing highlights uncertainty more than a plurality of predictions), the 

community has had to find ways to deal with validation that take into account the existing 

plurality of models—and the plurality of predictions that emerge from these models. 

  A key site where these sorts of activities have taken place is the Lawrence Livermore 

National Laboratory. There, the “Program for Climate Model Diagnosis and Intercomparison” 

(PCMDI) has been set up in 1989, with the goal of using model intercomparison as a method of 

supplementing existing modes of validation. 

 The official PCMDI website states: “The PCMDI mission is to develop improved methods 

and tools for the diagnosis and intercomparison of general circulation models (GCMs) that 

simulate the global climate. The need for innovative analysis of GCM climate simulations is 

apparent, as increasingly more complex models are developed, while the disagreements among 

these simulations and relative to climate observations remain significant and poorly understood. 

The nature and causes of these disagreements must be accounted for in a systematic fashion in 

order to confidently use GCMs for simulation of putative global climate change.” (PCMDI 2008, 

our emphasis) 

In other words, the goal of intercomparison is to uncover significant differences between 

models, and to analyze those difference in such a way as to understand the sources of those 

differences.  The hope is that this could lead to model improvement on the basis of such 

improved understanding.  Prima Facie, this expressed hope stands in tension with our claim that 

entrenchment and holism preclude analytical understanding. So let us view at some examples in 

a bit more detail. Among the intercomparison projects that have been launched at Livermore are 
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the Atmospheric Intercomparison Project (AMIP), its follower, the Coupled Model 

Intercomparison Project (CMIP) and the Aqua-Planet Experiment Project (APE). 

 

AMIP 

The AMIP project was launched in 1989, the same year as PCMDI, as a worldwide 

undertaking under the auspices of the World Climate Research Programme. It “undertook the 

systematic validation, diagnosis and intercomparison of the performance of atmospheric general 

circulation models. For this purpose all models were required to simulate the evolution of the 

climate during the decade 1979-1988, subject to the observed monthly-average temperature and 

sea ice and a common prescribed atmospheric CO2 concentration and solar constant.” (Gates et 

al. 1998) 

The simulations were run with certain prescribed boundary conditions – standard scenarios 

- to make the performances of different simulation models comparable. The simulation output 

(whose volume can be measured in terabytes), including the calculation of certain diagnostic 

measures of performance for all contributing models, were then made available in a standard 

format by the Livermore Lab. AMIP was quickly accepted as a project of the global climate 

science community and “virtually the entire international atmospheric modeling community (…) 

contributed the required standard output …” (Gates et al. 1998) The computational phase ran for 

several years until  the data were completed in 1993. After that, a couple of diagnostic 

subprojects began use these data for validation purposes.  Optimism ran high: 

“AMIP offers an unprecedented opportunity for the comprehensive evaluation and 

validation of current atmospheric models, and is expected to provide valuable information for 

model improvement.” (Gates 1992) 

It came out, for instance, that “a large-scale error common to all current atmospheric 

GCMs is colder than observed air in the lower troposphere in the tropics and in the upper 

troposphere in higher latitudes.” (Gates 1992) However, results of this kind were thought to be 

only the first preliminary step. Based on the observed differences in model performance, the 

important thing was to make inferences about the performances of the various sub-components 

of the models and to attribute the diagnosed strengths and weaknesses of the different models.  
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This, however, turned out to be much more difficult than initially expected. The process of 

intercomparison took several years and helped to locate and diagnose differences in performance 

– that was surely a success (and a huge organisational effort). In discussing the “present status” 

of AMIP in (1992), Gates noted that “while much important information on the model's 

individual and collective performance will be provided by these statistics, insight into the 

models' portrayal of specific physical mechanisms requires a deeper and more revealing 

diagnosis of the results.” The question of attribution, however, of which particular mechanisms 

implemented in the models—for instance particular parameter choices or parameterization 

schemes--where responsible for performance remained largely unsolved – even in later years.  

Nevertheless, attribution remained a core goal of AMIP,  and the more optimistic stance 

remained common that intercomparison was the right way to proceed: “In such endeavors, 

attempts to attribute differences among the simulations to specific model properties require, as a 

minimum prerequisite, the accurate and comprehensive documentation of these features.” 

(Phillips 1996, PCMDI report No. 24) 

While documentation proceeded, difficulties with attribution, and with what we have 

called analytic understanding of the models persisted. In their voluminous 1998 review of 

AMIP, Gates et al. conceded that there where still errors revealed by the intercomparison.  Some 

had been reduced during the last years, but many remained nearly the same. The goal of using 

intercomparison to understand the nature of these errors remained a goal, but it was postponed 

until the next project. They wrote programmatically: 

“In order to understand better the nature of these errors and to accelerate the rate of model 

improvement, an expanded and continuing project (AMIP II) is being undertaken in which 

analysis and intercomparison will address a wider range of variables and processes, using an 

improved diagnostic and experimental infrastructure.” 

To summarize the AMIP project, it had two goals: 

• First, comparison: make available a technical platform at the Livermore Lab, based on 

standardized data of model performance so that models’ performance could be compared.  

• Second, attribution: conduct an analysis that could attribute differences in performance to 

differences in the model components and mechanisms.  
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While the first goal was a success, the second was a failure.    Our diagnosis of this failure 

is that it is best understood as a form of confirmational holism arising from the need modelers 

face to adapt their efforts, often with kludges, to generatively entrenched features of GCMs. 

 

CMIP 

The conclusions we draw from our study of AMIP persist as we shift our focus to its more 

recent sibling: CMIP, the “Coupled Model Intercomparison Project” (CMIP), another one of 

PCMDI’s intercomparison projects. It followed similar lines as the AMIP, but used the up-to-

date flagships of simulation modelling, and used coupled atmosphere-ocean models. Phase III of 

this project provided the data to be shown in the newly released Fourth Assessment Report of the 

IPCC (AR4, 2007). The project description stressed the organizational and networking aspect for 

the climate science community.  One of the central original goals–deepened understanding of 

simulation mechanisms via attribution– disappeared nearly entirely from the proposals.  What 

this seems to indicate is that the climate science community has began to tacitly accept a kind of 

holism about complex simulations that renders analytic understanding of these models out of 

reach. We admit that there is no complete proof for this claim.  It is of course possible that time 

and effort had not been sufficient yet to reach the kind of understanding that we are suggesting is 

practically impossible.   But we find this unlikely,  hence we hold that the conclusions of CMIP 3 

reflect a kind of disillusion on the part of climate scientists with regard to attribution, and, in 

short, believe that acceptance of a very deep kind of confirmation holism is inevitable. 

 

APE 

A third intercomparison project reflects the disillusion and tries to maintain the goal of 

understanding/attribution by reducing complexity. The “Aqua-Planet Experiment Project” (APE) 

arose out of the problems the researchers had run into with AMIP (cf. Neale and Hoskins 2000a). 

The APE proposal tries to solve that problem by radically simplifying the boundary conditions: 

the whole simulated planet—“aqua-planet”—now is covered by water. “In this way, the model’s 

physical interactions are retained whilst the complexity associated with many surface 
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inhomogeneities are discarded.” (Neale and Hoskins 2000b, 108) It is the basic approach of APE 

to keep the parameterization schemes and simplify solely the boundary conditions. The updated 

documentation of APE formulates quite cautious. Again, the authors stress the value of obtaining 

a benchmark for comparison whereas the more important goal – the understanding of the causes 

of differences in model performance, in short: attribution – is postponed to a later stage (see APE 

2008). 

 

Conclusions 

The original goal of these projects had been to diagnose strengths and weaknesses of 

different climate simulation models on the market.  But it was precisely in this context that the 

concrete problem of confirmation holism emerged. The overall performance of the various 

models could be compared, but the model comparison projects had hoped to do more.  They had 

hoped to be able to identify which, among the various modules, submodels and parameterization 

schemes that were being employed by the various complete models, were responsible for the 

various aspects of the successes and failures of the complete models.  But this proved not to be  

feasible.  It was impossible to re-trace differences and to single out the culprit of a particular 

property in terms of modeling assumptions, module inclusion or exclusion, or algorithm 

implementations. The complex interaction of simulation modules, including kluged adaptations, 

during which the climate dynamics evolves, covered the tracks. This is an important reason, so 

we argued, why observed differences in model behavior between various models could not be 

successfully attributed to flaws or successes of the various sub models.  It is well-known, for 

example, which GCMs are good in reproducing wind patterns, but it is not possible to locate the 

cause for this in code. And hence the researchers were not able to improve part of their models 

by the knowledge gained through comparison with other models.  

We can now bring together two of the central claims of this paper:  The first claim is that 

climate modelers confront a particularly intractable form of confirmation holism—their complex 

and highly modular models of the earth’s climate are analytically impenetrable.  The second 

claim is about entrenchment as a putative cause for this holism:  the various ways in which 

particular climate models succeed and fail, the ways in which they exceed and lag their peers in 
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performing the predictive tasks to which they are put, is a product of their history—of the 

circumstance under which they were developed.   

Another concept from Clark’s work is useful here:  what he calls the principle of the 

“historical snowball“, an informal principle formulated by geneticist and physician Francois 

Jacob: “Simpler objects are more dependent on (physical) constraints than on history. As 

complexity increases, history plays the greater part.”(Clark 1987, 280) 

Think of Dumbo the Elephant, the Disney elephant character whose ears grow so large that 

he could fly.  We know, of course, that in the real world, elephants will never fly.   Even though 

there are various evolutionary adaptations which enable certain creatures to fly, none of these 

will ever work for an elephant.  That is because there are other features of elephants (in 

particular: their bulk)—features that evolved in particular evolutionary circumstances in response 

to particular environmental pressures—which make adaptations like wings (or big, floppy ears) 

useless.   A wing is an adaptation for an insect, but not for an elephant. 

We propose to see climate models and the efforts of the various model intercomparison 

projects in a similar fashion.  A particular module which is “adaptive” for one GCM (in the sense 

that, given the present barrage of benchmarking tests available: it improves performance) may 

not be adaptive for another GCM—indeed it may degrade performance.    And it is the particular 

histories of the GCMs, the “environmental pressures” these models faced as they were developed 

(read: what the modelers were trying, in particular, to get the models to achieve, and the 

particular data sets they were using to benchmark their models as the models were being 

developed) that explain these differences.  The features of those models that became generatively 

entrenched through those histories are the features that make the elephants unable to fly and the 

insects unable to knock down trees—no matter how many wings we give the elephant, or how 

many tusks we give the insect. 

Put together, these two conclusions become particularly salient when we think about model 

pluralism and model uncertainty.   Think, again, of the procedure of “collecting the opinions of 

all the valuable witnesses.”  There are recent trends in climate science which suggest that the 

range of predictions made by the available arsenal of climate models corresponds, in some way 

or another, to a probability measure over those various possible outcomes (cf. IPCC 2007 or, for 

a more skeptical position regarding the feasibility of this endeavor, Smith 2002).  There is some 
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justification for this:  the principal justification is that policy makers desperately need to know 

these probabilities, and we know of no other way to generate them. 

But against a background of these practices, it is very important to remember the history 

that produced the particular arsenal we happen to have at our disposal, and to reflect on the 

possible effects this history has on that arsenal, and the epistemic limitations we face in 

uncovering and understanding those effects.  
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Image 1 

Image: from IPCC Third Ass. Report (TAR 2001), the fourth report is not different in 

principle; we use the TAR here because the images are available, while AR4 (2007) is still in the 

process of being completely published. 
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Image 2: 

 

 

 

 

 


