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Abstract. The semantic valuations of classical logic, strong Kleene logic, the logic of

paradox and the logic of first-degree entailment, all respect the Dunn conditions: we call

them Dunn logics. In this paper, we study the interpolation properties of the Dunn logics

and extensions of these logics to more expressive languages. We do so by relying on the

Dunncalculus, a signed tableau calculus whose rules mirror the Dunn conditions syntac-

tically and which characterizes the Dunn logics in a uniform way. In terms of the Dunn

calculus, we first introduce two different interpolation methods, each of which uniformly

shows that the Dunn logics have the interpolation property. One of the methods is closely

related to Maehara’s method but the other method, which we call the pruned tableau

method, is novel to this paper. We provide various reasons to prefer the pruned tableau

method to the Maehara-style method. We then turn our attention to extensions of Dunn

logics with so-called appropriate implication connectives. Although these logics have been

considered at various places in the literature, a study of the interpolation properties of

these logics is lacking. We use the pruned tableau method to uniformly show that these

extended Dunn logics have the interpolation property and explain that the same result can-

not be obtained via the Maehara-style method. Finally, we show how the pruned tableau

method constructs interpolants for functionally complete extensions of the Dunn logics.

Keywords: Interpolation methods, Dunn logics, First degree entailment, Logic of paradox,

Strong Kleene logic, Exactly true logic, Tableau calculus.

1. Introduction

The following conditions were laid down by Dunn [11] to equip the logic of
first-degree entailment FDE [8,9,11] with an intuitive semantics based on
the values T (true and not false), B (both truth and false), N (neither true
nor false) and F (false and not true).

i. ¬ϕ is true if and only if ϕ is false,
¬ϕ is false if and only if ϕ is true;
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ii. ϕ ∧ ψ is true if and only if ϕ is true and ψ is true,
ϕ ∧ ψ is false if and only if ϕ is false or ψ is false;

iii. ϕ ∨ ψ is true if and only if ϕ is true or ψ is true,
ϕ ∨ ψ is false if and only if ϕ is false and ψ is false.

To illustrate how Dunn’s conditions fix the semantics of ∧, ∨ and ¬ on
4 = {T,B,N,F}, suppose that ϕ has the value T, i.e. ϕ is true and not
false. Then Dunn’s condition i. tells us that ¬ϕ is false and not true, i.e. has
the value F. Further reasoning along these lines leads to the following truth
tables.

Definition 1. (Truth tables for ∧, ∨ and ¬)

∧ T B N F
T T B N F
B B B F F
N N F N F
F F F F F

∨ T B N F
T T T T T
B T B T B
N T T N N
F T B N F

¬
T F
B B
N N
F T

The entailment relation of FDE over the propositional language L that
is based on ∧, ∨ and ¬ is then obtained by stipulating that, in passing from
premisses to conclusion, truth is to be preserved over all 4-valued valuations
of L’s sentences that respect the above truth tables.

Observe that Dunn’s conditions do not only fix the semantics of L’s
connectives on 4, but also on 3b = {T,B,F}, 3n = {T,N,F} and 2 =
{T,F}. We may thus define, for z ∈ {2,3b,3n,4}, the z-entailment relation
z by stipulating that, in passing from premisses to conclusion, truth is to
be preserved over all z-valued valuations of L’s sentences that respect the
above truth tables. Indeed,

2
comes down to classical logic CL,

3n
gives

us strong Kleene logic K3 [13],
3b

yields the logic of paradox LP [18] and

4
gives us, as already mentioned, FDE. As Dunn’s conditions thus give us

a uniform semantic approach to these four familiar logics, we will refer to
them as the Dunn logics.

The Dunn conditions also motivated the construction of the Dunn calcu-
lus (cf. [24]), a tableau calculus that gives us a uniform syntactic approach
to the Dunn logics. The Dunn calculus is a signed tableau calculus with
signs coding for truth (1), falsity (0), non-truth (1̂) and non-falsity (0̂). To
explain the use of these four signs, note that the Dunn conditions may also
be phrased in terms of non-truth and non-falsity. For instance, the following
is equivalent to Dunn condition ii:
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ii′. ϕ ∧ ψ is not true if and only if ϕ is not true or ψ is not true,
ϕ ∧ ψ is not false if and only if ϕ is not false and ψ is not false.

The Dunn calculus translates the original Dunn conditions and their formu-
lations in terms of non-truth and non-falsity as tableau rules. For instance,
the tableau rules corresponding to Dunn conditions ii and ii′ are as follows:

x : ϕ ∧ ψ
(∧x)

x : ϕ, x : ψ
, if x ∈ {1, 0̂}

x : ϕ ∧ ψ
(∧x)

x : ϕ | x : ψ
, if x ∈ {1̂, 0}

The Dunn calculus recognizes four distinct closure conditions: one for each
value of z ∈ {2,3b,3n,4}. These closure conditions have a straightforward
rationale. For instance, {1 : ϕ, 0 : ϕ} is 2-closed and 3n-closed as no sentence
can be true and false according to a 2- or 3n-valuation. On the other hand,
3b- and 4-valuations do allow for sentences that are both true and false and,
accordingly, {1 : ϕ, 0 : ϕ} is neither 3b- nor 4-closed. The Dunn calculus
allows us to capture the Dunn logics in a uniform manner, as we have the
following result:

Γ z ϕ ⇐⇒ {1 : γ | γ ∈ Γ} ∪ {1̂ : ϕ} has a z-closed tableau. (1)

In this paper, we will invoke the Dunn calculus to study the interpola-
tion property of the Dunn logics.

Interpolation property If, according to a logic L, α entails β, β is not a
tautology and α is not an anti-tautology,1 we say that the L-interpolation
condition for α and β is satisfied. A logic L is said to have the interpolation
property if, whenever the L-interpolation condition for α and β is satisfied,
there is a sentence γ, called the L-interpolant of α and β, such that every
propositional variable2 that occurs in γ occurs both in α and in β and such
that, according to L, α entails γ and γ entails β.

It is known that all four Dunn logics have the interpolation property.
However, in the literature this information is stored as four separate facts
which are proved in a highly non-uniform manner. For instance, Takeuti
[23, p. 33] shows that CL has the interpolation property via what he calls
Maehara’s method and that proceeds via an induction on proof length in a
sequent calculus for CL. On the other hand, Anderson and Belnap [1, p161]
prove that FDE has the interpolation property by showing that their Hilbert-
style calculus Efde for FDE only proves so-called tautological entailments.

1β is a tautology just in case it is entailed by any sentence whatsoever and α is an
anti-tautology just in case it entails any sentence whatsoever.

2In the present paper, we will restrict ourselves to the propositional case.
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And both Bendova [10] and Milne [14] give a semantic proof to establish
that K3 has the interpolation property.3

In the first part of this paper, we will introduce two distinct uniform
interpolation methods for the Dunn logics: both methods come with a single
constructive proof that establishes that all four Dunn logics have the interpo-
lation property. Both methods construct interpolants from closed tableaux
of the Dunn calculus, but they do so in rather different ways. Our first
method we call the Maehara-style method. The reason for doing so is that,
although there are notable differences, this method generalizes Maehara’s
interpolation method for CL to quite some extent. Our second method, the
pruned tableau method, does not have classical (or other) ancestors, but orig-
inates in this paper. As we will see, the pruned tableau method is preferable
to the Maehara-style method for, amongst others, the following two reasons:
– The pruned tableau method does not, in contrast to the Maehara-style

method, rely on a proof by induction but constructs the interpolant
directly from a closed tableau.

– Interpolants obtained via the pruned tableau method have lower senten-
tial complexity than those obtained with the Maehara-style method.

In a nutshell then, the pruned tableau method gives us a simpler and more
direct way to obtain interpolants for the Dunn logics than the Maehara-style
method does.

In a recent paper, Pietz and Rivieccio [17] presented Exactly True Logic
(ETL), an interesting variation upon FDE that is obtained by preserving
exact truth, i.e. the value T, over all 4-valued valuations of L. Although both
[17] and Wintein and Muskens [25] study ETL to quite some extent, no inves-
tigation of its interpolation property is to be found in the literature. We will
first explain that the Maehara-style method cannot be invoked to construct
interpolants for ETL. However, we will also show that ETL has the interpo-
lation property by using the pruned tableau method, which is yet another
reason to prefer the pruned tableau method over the Maehara-style method.

The pruned tableau method is not only interesting of itself but also has a
noteworthy corollary. In a recent article, Milne [14] shows that CL’s interpo-
lation property allows for the following non-classical refinement: whenever
the CL-interpolation condition for α and β is satisfied, there is a sentence γ

3We are not aware of an explicit proof which establishes that LP has the interpolation
property. However, as ϕ entails ψ according to K3 just in case ¬ψ entails ¬ϕ according to
LP, one readily shows that LP has the interpolation property on the basis of K3 having
the property.
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such that (i) every propositional variable that occurs in γ occurs both in α
and β (ii) α entails γ according to K3 and (iii) β entails γ according to LP.
The CL-interpolant that is obtained via the pruned tableau method is readily
shown to satisfy conditions (i), (ii) and (iii) and so Milne’s result is an imme-
diate corollary of the pruned tableau method. We will also show that Milne’s
result can be invoked to characterize CL as the transitive closure of the union
of K3 and LP which, so we think, is a novel result of independent interest.

The language L does not have a connective reserved for expressing impli-
cation. For CL, this is not a problem, as one may define material implication
→ in terms of ∨ and ¬ as usual. Material implication is an appropriate impli-
cation connective [2] for classical logic, which is to say that, according to CL,
Γ ∪ {ϕ} entails ψ just in case Γ entails ϕ → ψ. However, it is well-known
that no appropriate implication connective for K3, LP or FDE is definable
in the language L. This motivates us to consider the language L⊃, which
extends L with a connective ⊃ that has the following Dunn condition.
iv. ϕ ⊃ ψ is true if and only if ϕ is not true or ψ is true,

ϕ ⊃ ψ is false if and only if ϕ is true and ψ is false.

As this Dunn condition fixes the semantics of ⊃ on 2, 3b, 3n and 4, we
may extend the Dunn logics to L⊃ and one then readily shows that ⊃ is
an appropriate implication connective for each of the extended Dunn logics
thus obtained. Although quite some authors4 have studied the Dunn logics
over L⊃, the interpolation properties of these logics have, to the best of
our knowledge, not been investigated before. We extend our Dunn calculus
with tableau rules for ⊃ and then invoke the pruned tableau method to
prove, in a uniform way, that the extended Dunn logics over L⊃ all have
the interpolation property. We will also explain that attempts to obtain this
result via the Maehara-style method are bound to fail.

Classical logic is functionally complete, which is to say that L’s connec-
tives (restricted to 2) allow us to express every truth function on 2. However,
none of the other three Dunn logics, nor their extensions to L⊃, are func-
tionally complete: the connectives of L⊃ do not allow us to express all truth
functions on 3b, 3n or 4. It is thus natural to consider functionally complete

4In Avron [4], the extension of K3 to L⊃ is studied. Likewise, [4], studies the extension
of LP to L⊃ and the same logic is also studied by, for instance Batens [6] and Batens &
de Clerq [7]. Finally, the extension of FDE to L⊃ is studied in, amongst others, Arieli &
Avron [3].
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extensions of the Dunn logics and quite some authors5 have studied the
resulting logics. Takano [22] shows that any functionally complete many-
valued logic has the interpolation property. Although it thus follows from
Takano’s results that the functionally complete extensions of the Dunn log-
ics have the interpolation property, to actually construct an interpolant by
the general and semantic means provided in [22] is quite cumbersome. As we
will show however, the pruned tableau method constructs these interpolants
in a simple and informative manner.

The paper is structured as follows. Section 2 states preliminaries. In Sec-
tions 3.1 and 3.3, we introduce our two interpolation methods and show how
they can be invoked to prove, in a uniform manner, that the Dunn logics
have the interpolation property. In Section 3.2, we explain in which sense
the Maehara-style method resembles and in which sense it differs from Mae-
hara’s interpolation method for CL. In Section 3.4 we use the pruned tableau
method to prove that ETL has the interpolation property and explain that
this result cannot be obtained via the Maehara-style method. In Section 3.5
we show that Milne’s result is an immediate corollary of the pruned tableau
method and invoke Milne’s result to characterize CL in terms of K3 and LP.
In Section 4 we use the pruned tableau method to show that the Dunn log-
ics as defined over L⊃ have the interpolation property and explain that this
result cannot be obtained via the Maehara-style method. In Section 5 we use
the pruned tableau method to show that the functionally complete exten-
sions of the Dunn logics have the interpolation property. Section 6 concludes.

2. Preliminaries

2.1. Uniform Notation for Dunn Logics

Throughout the paper, 2, 3b, 3n and 4 are defined as in the introduction
and we will use Z to denote the set that consist of these four subsets of 4:
Z = {2,3b,3n,4}. In addition, the following notation for certain subsets of
4 will be in force.

1 := {T,B}, 0 := {F,B}, 1̂ := {F,N}, 0̂ := {T,N}. (2)

And so 1, 0, 1̂ and 0̂ code for, respectively, truth, falsity, non-truth and
non-falsity. The elements of {1, 0, 1̂, 0̂} will both be used semantically, as

5For functionally complete extensions of FDE, see e.g. Muskens [15], Arieli and Avron
[3], Ruet [20], Pynko [19], or Omori and Sano [16]. Muskens [15] also studies functionally
complete extensions of LP and K3.
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abbreviating a subset of 4 as indicated by (2), but also syntactically, as signs
of the Dunn calculus. It will always be clear from context which usage is
at stake.

We consider the propositional language L that is based on {∧, ∨, ¬} and
define a z-valuation for L to be to a function from the sentences of this
language to z ∈ Z that respects the truth-tables of Definition 1. Also, Vz

will denote the set of all z-valuations for L. The L entailment relation z

preserves truth over all z-valuations:

Γ z ϕ ⇔ if V (γ) ∈ 1 for all γ ∈ Γ then V (ϕ) ∈ 1, for all V ∈ Vz (3)

Per definition,
2
,

3n
,

3b
and

4
are equal to, respectively, CL, K3, LP and

FDE and so we may also write:

2
=

CL
,

3n
=

K3 ,
3b

=
LP

,
4

=
FDE

2.2. The Dunn Tableau Calculus

A signed sentence of L is an object of form x : ϕ with sign x ∈ {1, 0, 1̂, 0̂} and
with ϕ a sentence of L. Tableaux in the Dunn calculus will be certain sets
of branches, which are sets of signed sentences of L. The following definition
specifies what it means for a valuation to satisfy a branch.

Definition 2. (Satisfaction for branches) Let B be a branch and let z ∈ Z.
A valuation V ∈ Vz satisfies B iff every x : ϕ ∈ B is such that:

x = 1 =⇒ V (ϕ) ∈ {T,B} x = 0 =⇒ V (ϕ) ∈ {F,B}
x = 1̂ =⇒ V (ϕ) ∈ {F,N} x = 0̂ =⇒ V (ϕ) ∈ {T,N}

We say that B is z-satisfiable if there is a V ∈ Vz that satisfies B and that
B is z-unsatisfiable if there is no such V .

The tableau rules of the Dunn calculus are displayed below.

Definition 3. (Tableau rules of the Dunn calculus)

x : ϕ ∧ ψ
(∧x)

x : ϕ, x : ψ

x : ϕ ∧ ψ
(∧x)

x : ϕ | x : ψ
if x ∈ {1, 0̂} if x ∈ {1̂, 0}

x : ϕ ∨ ψ
(∨x)

x : ϕ | x : ψ

x : ϕ ∨ ψ
(∨x)

x : ϕ, x : ψ
if x ∈ {1, 0̂} if x ∈ {1̂, 0}
x : ¬ϕ

(¬x)
y : ϕ

x : ¬ϕ
(¬x)

y : ϕ
if 〈x, y〉 ∈ {〈1, 0〉, 〈0̂, 1̂〉} if 〈x, y〉 ∈ {〈1̂, 0̂〉, 〈0, 1〉}
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For formal considerations it will be useful to have a general form for rules,
for which we choose x : ϕ/B1, . . . , Bn, where x : ϕ is a signed sentence called
the top formula of the rule and each Bi is a set of signed sentences called
a set of bottom formulas of the rule. For example, one instantiation of (∧1)
could formally be written as 1 : ϕ ∧ ψ/{1 : ϕ, 1 : ψ} and one instantiation
of (∧0) could be expressed as 0 : ϕ ∧ ψ/{0 : ϕ}, {0 : ψ}. This general form is
useful, even though neither the number of sets of bottom formulas nor their
cardinality ever exceeds 2. Here is our official definition of a tableau.

Definition 4. (Tableaux) Let T and T ′be sets of branches. We say that
T ′ is a one-step expansion of T if, for some B ∈ T , x : ϕ ∈ B, and rule
x : ϕ/B1, . . . , Bn, T ′ = (T \{B}) ∪ {B ∪ B1, . . . ,B ∪ Bn}.

Let B be a finite branch. A set of branches T is a tableau with initial
branch B if there is a sequence T0, T1, . . . , Tn such that T0 = {B}, Tn = T ,
and each Ti+1 is a one-step expansion of Ti (0 ≤ i < n). We also say that a
finite B has tableau T if T is a tableau with initial branch B.

The Dunn calculus recognizes four closure conditions, one for each value of
z ∈ Z.

Definition 5. (Closure conditions) Let B be a branch. We say that:

B is 4-closed ⇐⇒ {1 : ϕ, 1̂ : ϕ} ⊆ B or {0 : ϕ, 0̂ : ϕ} ⊆ B,
B is 3b-closed ⇐⇒ B is 4-closed or {1̂ : ϕ, 0̂ : ϕ} ⊆ B,
B is 3n-closed ⇐⇒ B is 4-closed or {1 : ϕ, 0 : ϕ} ⊆ B,
B is 2-closed ⇐⇒ B is 3b-closed or B is 3n-closed.

A branch that is not z-closed is called z-open. When, for some propositional
atom p, B contains some z-closed subset {x : p, y : p}, we say that B
is atomically z-closed. A tableau is (atomically) z-closed just in case all its
branches are (atomically) z-closed; if not, the tableau is (atomically) z-open.

The following theorem attests that the Dunn calculus is sound and com-
plete with respect to z-unsatisfiable branches.

Theorem 1. A finite branch B is z-unsatisfiable iff B has a z-closed tableau.

Proof. Proof: See [24].

An immediate corollary of the above theorem is that the Dunn calculus
allows us to capture the Dunn logics in a uniform way. For, with 1 : Γ :=
{1 : γ | γ ∈ Γ}, it readily follows that:

Γ z ϕ ⇐⇒ 1 : Γ ∪ {1̂ : ϕ} has a z-closed tableau (4)
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The following example illustrates the convenience of the uniform approach
to the Dunn logics that is provided by the Dunn calculus.

Example 1. Let α = ((p∧¬p)∧r)∨(q∧t) and let β = ((s∨¬s)∨t)∧(q∨r).
Consider the following tableaux for {1 : α} and { 1̂ : β} that may be depicted
as follows: Thus, the depicted tableaux of {1 : α} and {1̂ : β} have branches
X1, X2 and Y1, Y2 respectively, where:

X1 = {1 : α, 1 : (p ∧ ¬p) ∧ r, 1 : p ∧ ¬p, 1 : r, 1 : p, 1 : ¬p, 0 : p}
X2 = {1 : α, 1 : q ∧ t, 1 : q, 1 : t}
Y1 = {1̂ : β, 1̂ : (s ∨ ¬s) ∨ t, 1̂ : s ∨ ¬s, 1̂ : t, 1̂ : s, 0̂ : s}
Y2 = {1̂ : β, 1̂ : q ∨ r, 1̂ : q, 1̂ : r}

Note that, with B1 = X1∪Y1, B2 = X1∪Y2, B3 = X2∪Y1 and B4 = X2∪Y2,
T 3 = {B1, B2, B3, B4} is a tableau for {1 : α, 1̂ : β}. As T 3 is z-closed for
z ∈ {2,3b,3n} it follows from (4) that α z β whenever z ∈ {2,3b,3n}.

The two tableaux that are depicted in Example 1, as well as the tableau
T 3 for {1 : α, 1̂ : β}, are fulfilled, where a tableau T is fulfilled iff, for each
one-step expansion T ′ of T , we have T ′ = T . It is readily established6 that
a finite branch B has a unique fulfilled tableau; we will use square brackets
to denote the fulfilled tableau [B] of B. If B has a z-closed tableau, then in
particular [B] is z-closed. Moreover, [B] is then not only z-closed but also
atomically z-closed7.

2.3. Interpolation: Notation and a Useful Lemma

In this section we first define the interpolation property, and some associated
notions, for an arbitrary propositional language L. Then we state a lemma
pertaining to the Dunn logics that will be useful for showing that these logics
have the interpolation property.

Let L be an arbitrary propositional language and let Sen(L) be its set
of sentences. We write Voc(ϕ) (the vocabulary of ϕ) to denote the set of
propositional variables that occur in ϕ ∈ Sen(L). With Σ a set of sentences
of L, and with Θ a signed set of such sentences, Voc(Σ) =

⋃
ϕ∈Σ Voc(ϕ) and

Voc(Θ) =
⋃

x:ϕ∈Θ Voc(ϕ).
Let |= be any relation between sets of sentences and sentences of L. A

sentence ϕ of L is said to be a tautology of |= when ∅ |= ϕ and ϕ is called

6Do a straightforward induction on the number of logical connectives occurring in B.
7A proof can be given similar to Smullyan’s [21] proof of the corresponding fact for

classical logic.
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an anti-tautology of |= when ϕ |= ψ for any ψ ∈ Sen(L). With α and β
sentences of L, we say that the |=-interpolation condition for α and β is
satisfied just in case α |= β, α is not an anti-tautology of |= and β is not
a tautology of |=. Also, we say that γ is a |=-interpolant for α and β iff
α |= γ, γ |= β and γ is a sentence in the joint vocabulary of α and β:
Voc(γ) ⊆ Voc(α) ∩Voc(β). The interpolation property for |= is then defined
as follows.

Definition 6. (The Interpolation Property) |= has the interpolation prop-
erty iff whenever the |=-interpolation condition for α and β is satisfied, there
is a |=-interpolant for α and β.

The following lemma, pertaining to the Dunn logics, will turn out to be
useful.

Lemma 1. Let z ∈ Z and suppose that the z -interpolation condition for α
and β is satisfied. Then Voc(α) ∩ Voc(β) �= ∅.

Proof. Suppose, for a reductio ad absurdum, that the z -interpolation con-
dition for α and β is satisfied whereas Voc(α) ∩ Voc(β) = ∅. As α is not
an anti-tautology and as β is not a tautology, there have to be valuations
V ′, V ′′ ∈ Vz such that V ′(α) ∈ 1 and V ′′(β) �∈ 1. Let V ∈ Vz be the
(unique) valuation that valuates the propositional atoms of L as follows.

V (p) =

{
V ′(p) if p ∈ Voc(α)
V ′′(p) otherwise.

As Voc(α) ∩ Voc(β) = ∅, it readily follows from the definition of V that
V (α) = V ′(α) ∈ 1 and that V (β) = V ′′(β) �∈ 1. Hence, V testifies that
α � z β so that the z -interpolation condition for α and β is not satisfied.

3. Two Interpolation Methods for Dunn Logics

3.1. The Maehara-Style Interpolation Method

In this section we first present our Maehara-style interpolation method which
is then used to show, in one fell swoop, that all four Dunn logics have the
interpolation property.

By the bifurcation of a set of signed sentences Θ, we mean the ordered
pair 〈ΘL, ΘR〉 such that {ΘL, ΘR} is the partition of Θ in which all elements
of ΘL have their sign in {1, 0} and all elements of ΘR have their sign in
{1̂, 0̂}. To show that the Dunn logics have the interpolation property via
our Maehara-style method, the following lemma is crucial.
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Lemma 2. (Bifurcation lemma) Let Θ be a finite set of signed sentences of
L and let 〈ΘL, ΘR〉 be the bifurcation of Θ. If Θ has a z-closed tableau and
if Voc(ΘL) ∩ Voc(ΘR) �= ∅ there is a γ ∈ Sen(L) such that: (i) Voc(γ) ⊆
Voc(ΘL) ∩ Voc(ΘR) and such that (ii) both ΘL ∪ {1̂ : γ} and {1 : γ} ∪ ΘR

have a z-closed tableau.

Proof. We will prove the Bifurcation lemma via induction on the minimal
number k of one-step expansions that are needed to convert T0 = {Θ} into
a closed tableau of Θ.

Induction base If k = 0, Θ is z-closed. It suffices to consider the following
four cases, which are easily established. Below, p is a propositional atom
that is contained in Voc(ΘL) ∩ Voc(ΘR).

For {1 : ϕ, 1̂ : ϕ} ⊆ Θ, z ∈ Z: γ = ϕ satisfies (i) and (ii).
For {0 : ϕ, 0̂ : ϕ} ⊆ Θ, z ∈ Z: γ = ¬ϕ satisfies (i) and (ii).
For {1 : ϕ, 0 : ϕ} ⊆ Θ, z ∈ {2,3n}: γ = p ∧ ¬p satisfies (i) and (ii).
For {1̂ : ϕ, 0̂ : ϕ} ⊆ Θ, z ∈ {2,3b}: γ = p ∨ ¬p satisfies (i) and (ii).

Induction step Suppose that Θ has a z-closed tableau Tk+1 that results
from T0 = {Θ} in k + 1 one-step expansions. Let (◦x) be the tableau rule
that is used in the one-step expansion from T0 to T1.

Suppose that (◦x) = (∧1). Then Θ has form Σ ∪ {1 : ϕ ∧ ψ} and, with
Θ1 = Σ∪{1 : ϕ, 1 : ψ}, we have T1 = {Θ1}. Let 〈ΣL, ΣR〉 be the bifurcation
of Σ. As Θ1 has a z-closed tableau in k one-step expansions it follows from the
induction hypothesis that there is a sentence γ that satisfies (i) and (ii) with
respect to the bifurcation 〈ΣL ∪ {1 : ϕ, 1 : ψ}, ΣR〉 of Θ1. It readily follows
that γ also satisfies (i) and (ii) with respect to the bifurcation 〈ΣL ∪ {1 :
ϕ ∧ ψ}, ΣR〉 of Θ, which is what we had to show.

Suppose that (◦x) = (∧0). Then Θ has form Σ ∪ {0 : ϕ ∧ ψ} and, with
Θ1 = Σ∪{0 : ϕ} and Θ2 = Σ∪{0 : ψ}, we have T1 = {Θ1, Θ2}. Let 〈ΣL, ΣR〉
be the bifurcation of Σ. As both Θ1 and Θ2 have z-closed tableaux in ≤ k
one-step expansions, it follows from the induction hypothesis that there are
sentences γ1 and γ2 that satisfy (i) and (ii) with respect to the bifurcations
〈ΣL, ΣR ∪ {0 : ϕ}〉 and 〈ΣL, ΣR ∪ {0 : ψ}〉 of Θ1 and Θ2 respectively. It
readily follows that γ = γ1 ∧ γ2 satisfies (i) and (ii) with respect to the
bifurcation 〈ΣL, ΣR ∪ {0 : ϕ ∧ ψ}〉 of Θ, which is what we had to show.

For tableau rules other than (∧1) and (∧0), the proof is completely similar.
For the actual construction of interpolants however, it will be convenient to
explicitly write down the remaining cases. To do so, let us abbreviate the
statement ‘Θ has a z-closed tableau and γ is a sentence of L that satisfies
conditions (i) and (ii) with respect to the bifurcation 〈ΘL, ΘR〉 of Θ’ as Θ�zγ.
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Using this notation the results from above, together with the remaining
cases, can be stated as follows:

Σ ∪ {x : ϕ, x : ψ} �z γ ⇒ Σ ∪ {x : ϕ ∧ ψ} �z γ x ∈ {1, 0̂}
Σ ∪ {x : ϕ} �z γ1 , Σ ∪ {x : ψ} �z γ2 ⇒ Σ ∪ {x : ϕ ∧ ψ} �z γ1 ∧ γ2 x ∈ {1̂, 0}

Σ ∪ {x : ϕ, x : ψ} �z γ ⇒ Σ ∪ {x : ϕ ∨ ψ} �z γ x ∈ {1̂, 0}
Σ ∪ {x : ϕ} �z γ1 , Σ ∪ {x : ψ} �z γ2 ⇒ Σ ∪ {x : ϕ ∧ ψ} �z γ1 ∨ γ2 x ∈ {1, 0̂}

Σ ∪ {x : ϕ} �z γ ⇒ Σ ∪ {y : ¬ϕ} �z γ 〈x, y〉 or 〈y, x〉 ∈ {〈1, 0〉, 〈0̂, 1̂〉}

Here is our uniform Maehara-style proof which establishes that all the
Dunn logics have the interpolation property.

Theorem 2. The Dunn logics have the interpolation property.

Proof. Suppose that the z -interpolation condition for α and β is satisfied.
Then, {1 : α, 1̂ : β} has a z-closed tableau and it follows from Lemma 1 that
Voc(α) ∩ Voc(β) �= ∅. Hence, in virtue of the Bifurcation lemma, there is a
γ ∈ Sen(L) such that {1 : α, 1̂ : β} �z γ. It immediately follows that γ is a
z -interpolant for α and β.

It readily follows from Theorem 2 that FDE has the perfect interpola-
tion property (cf. [1]) which is to say that an FDE-interpolant of α and β
exists whenever α entails β according to FDE, as recorded by the following
corollary.

Corollary 1. If α
FDE

β then there exists an FDE-interpolant of
α and β.

Proof. An inspection of the 4-closure conditions and the tableau rules of
the Dunn calculus reveals that neither {1 : α} nor {1̂ : β} can have a 4-
closed tableau: FDE has no (anti-)tautologies. Hence, the result follows from
Theorem 2.

The example below, which continues Example 1, illustrates how one con-
structs interpolants for the Dunn logics via our Maehara-style interpolation
method.

Example 2. (Interpolants via the Maehara-style method) Let α, β, X1, X2,
Y1, Y2 and T 3 = {B1, B2, B3, B4} all be as in Example 1. For z ∈ {2,3b,3n}
the z -interpolation condition for α and β is satisfied and we will show how
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the Maehara-style method constructs a z -interpolant for α and β for these
three values of z.

If z ∈ {2,3n} then T 3n = {X1 ∪{1̂ : β}, B3, B4} is a 3n-closed and hence
2-closed tableau of {1 : α, 1̂ : β}. Hence, it follows from the (induction base
of the) Bifurcation lemma that for z ∈ {2,3n}:

X1 ∪ {1̂ : β} �z r ∧ ¬r, B3 �z t, B4 �z q. (5)

Note that X1 ∪ {1̂ : β}, B3 and B4 are obtained by applying tableau rules
to C1, C3 and C4 respectively, where:

C1 = {1 : α, 1̂ : β, 1 : (p ∧ ¬p) ∧ r}
C3 = {1 : α, 1̂ : β, 1 : q ∧ t, 1̂ : (s ∨ ¬s) ∨ t}
C4 = {1 : α, 1̂ : β, 1 : q ∧ t, 1̂ : q ∨ r}

Moreover, as X1 ∪{1̂ : β}, B3 and B4 are obtained by applying only tableau
rules that have a single set of bottom formulas to C1, C3 and C4, it follows
from (5) and the (induction step of the) Bifurcation lemma that C1 �z r∧¬r,
that C3 �z t and that C4 �z q. As C3 and C4 are obtained by applying (∧1̂)
to C34 = {1 : α, 1̂ : β, 1 : q ∧ t} it follows that C34 �z t ∧ q. Further, as
{1 : α, 1̂ : β} is obtained from C1 and C34 by applying (∨1), it follows that
{1 : α, 1̂ : β} �z (r ∧ ¬r) ∨ (t ∧ q). And so it follows that, for z ∈ {2,3n},
γ := (r ∧ ¬r) ∨ (t ∧ q) is a z -interpolant for α and β.

If z ∈ {2,3b} then T 3b = {Y1 ∪ {1 : α}, B2, B4} is a 3b-closed and hence
2-closed tableau of {1 : α, 1̂ : β}. An argument similar to the one above
reveals that for z ∈ {2,3b}, we have {1 : α, 1̂ : β} �z (t ∨ ¬t) ∧ (r ∨ q) so
that δ := (t ∨ ¬t) ∧ (r ∨ q) is a z -interpolant for α and β.

As T 3 as defined in Example 1 is a tableau of {1 : α, 1̂ : β} that is z-
closed for all z ∈ {2,3b,3n} one may also use the Maehara-style method
to define z -interpolants based on this tableau. However, doing so results in
interpolants with higher sentential complexity. As the reader may care to
verify, by applying the Maehara-style method to T 3 we get that:

γ′:=((r ∧ ¬r) ∧ r) ∨ (q ∧ t) is a z -interpolant for α and β for z ∈ {2,3n}
δ′:=((r ∨ ¬r) ∧ r) ∨ (q ∧ t) is a z -interpolant for α and β for z ∈ {2,3b}

3.2. Maehara-Style Interpolation Versus Maehara’s Method

In this section we sketch Maehara’s interpolation method for CL. Doing so
is instructive as it allows us to point out an important difference between
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our Maehara-style method and Maehara’s method that, as we will see later
on, has some interesting consequences.

Although Maehara’s method (cf. [23, p 33]) is presented in terms of a
sequent calculus for CL, the method is readily translated in terms of a tableau
calculus. To do so, let us observe that the Dunn calculus contains a tradi-
tional signed tableau calculus for CL, which we’ll call the CL calculus, as a
subcalculus. Tableaux of the CL calculus are sets of positive L-branches, i.e.
sets of sentences of L that are signed with 1 or 0. The tableau rules of the
CL calculus are the positive rule of the Dunn calculus, i.e. the rules (◦x)
with ◦ ∈ {¬, ∧, ∨} and x ∈ {1, 0}. The closure conditions of the CL calculus
are as follows: a positive branch B is closed iff {1 : ϕ, 0 : ϕ} ⊆ B for some
sentence ϕ. The CL calculus is a notational variant of the calculus presented
by Smullyan [21] and so it readily follows that
Γ

CL
ϕ ⇐⇒ 1 : Γ ∪ {0 : ϕ} has a closed tableau (in the CL calculus)

To apply Maehara’s classical interpolation method, one extends the lan-
guage L with the propositional constant symbol ⊥ to obtain the language L⊥

and one then defines a positive L⊥-branch B to be closed⊥ just in case B is
closed or 1 : ⊥ ∈ B. The essential ingredient that is needed to prove that CL
has the interpolation property by Maehara’s method is the following lemma.

Lemma 3. (Partition lemma) Let Θ be a finite positive L-branch and let
{ΘL, ΘR} be an arbitrary partition of Θ. If Θ has a closed tableau there is
a γ ∈ Sen(L⊥) such that: (i) Voc(γ) ⊆ Voc(ΘL) ∩ Voc(ΘR) and such that
(ii) both ΘL ∪ {0 : γ} and {1 : γ} ∪ ΘR have a closed⊥ tableau.

Proof. By induction on the number of one-step expansions needed to con-
vert {Θ} into a closed tableau of Θ.

It then readily follows from the Partition lemma that CL has the inter-
polation property,as attested by the following theorem.

Theorem 3. CL has the interpolation property.

Proof. If the CL-interpolation conditions are satisfied, 1 : α, 0 : β has a
closed tableau so that there is a sentence γ of L⊥ that satisfies condition (i)
and (ii) of the Partition lemma. By replacing all occurrences of ⊥ in γ with
p ∧ ¬p for some p ∈ Voc(α) ∩ Voc(β) (which exists in virtue of Lemma 1)
one obtains a sentence of L that is a CL-interpolant for α and β.

The Partition lemma of Maehara’s method plays a similar role as the
Bifurcation lemma of our Maehara-style method. A notable difference
between the two methods is that our Maehara-style method does not, in con-
trast to Maehara’s method, involve a detour through the extended language
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L⊥. The reason that our Maehara-style method does not need such a detour
may be accounted for by the fact that the Bifurcation lemma is formulated
in terms of the unique bifurcation of a branch whereas the Partition lemma
is formulated in terms of all the partitions of a branch. The latter difference
is an essential one, as the following two remarks purport to illustrate.

First, observe that the Bifurcation lemma cannot be phrased in terms
of arbitrary partitions. To see this, note that Θ = {1 : p, 1̂ : p, } has a 4-
closed tableau so that, when phrased in terms of arbitrary partitions, the
“Bifurcation lemma” would require the existence of a sentence γ of L such
that Voc(γ) ⊆ {p} and such that both {1̂ : p, 1̂ : γ} and {1 : p, 1 : γ} have a
4-closed tableau. One readily shows that such a γ cannot exist. Hence, we
may say that bifurcations are an essential ingredient of our Maehara style
method.

Second, one may consider getting rid of the arbitrary partitions of the
Partition lemma by phrasing that lemma in terms of separated partitions,
where the separated partition 〈ΘL, ΘR〉 of a positive branch Θ is such that
ΘL contains all elements of Θ with sign 1 and ΘR contains all elements of Θ
with sign 0. Call the lemma that results from rephrasing the Partition lemma
in terms of separated partitions the Separated partition lemma. The truth
of the Separated partition lemma immediately follows from the truth of the
Partition lemma. However, the inductive proof that is underlying the Par-
tition lemma breaks down for the Separated partition lemma, as the reader
may care to verify by trying to prove the inductive step associated with a
tableau rule for negation. Without such an inductive proof, the Separated
partition lemma does not tell us how to construct a classical interpolant.
Hence, we may say that arbitrary partitions are an essential ingredient of
Maehara’s method.

In Sections 3.4 and 4, we will see some interesting consequences of the
fact that the Maehara-style method essentially relies on bifurcations.

3.3. The Pruned Tableau Method

The next theorem shows how to construct interpolants for the Dunn logics
via the pruned tableau method.

Theorem 4. The Dunn logics have the interpolation property.

Proof. Let z ∈ Z and suppose that the z -interpolation condition for α
and β is satisfied. It suffices to show that there is a sentence γ ∈ Sen(L)
with Voc(γ) ⊆ Voc(α)∩Voc(β) and such that (i) {1 : α, 1̂ : γ} has a z-closed
tableau and (ii) {1 : γ, 1̂ : β} has a z-closed tableau.
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Let [1 : α] and [1̂ : β] be the fulfilled tableaux of {1 : α} and {1̂ : β}
respectively and note that these tableau are z-open as α is not an anti-
tautology and β is not a tautology of z . Also, note that for any A ∈ [1 : α]
and B ∈ [1̂ : β], A ∪ B is z-closed as α z β. Let A be a z-open branch of
[1 : α] and define the sets A1 and A0 as follows, where p is a propositional
variable:

A1 := {p | 1 : p ∈ A and 1̂ : p ∈ B for some z-open B ∈ [1̂ : β]}
A0 := {¬p | 0 : p ∈ A and 0̂ : p ∈ B for some z-open B ∈ [1̂ : β]}

(6)

As A is z-open, and as A ∪ B is z-closed for any B ∈ [1̂ : β], it follows that
A1 ∪ A0 is non-empty and so the following sentence is well-defined:

γ(A) :=
∧ (

A1 ∪ A0
)

(7)

In terms of the sentences γ(A), we define the sentence γ as follows.

γ :=
∨

{γ(A) | A is a z-open branch of [1 : α]} (8)

Clearly, Voc(γ) ⊆ Voc(α) ∩ Voc(β) and so it remains to be shown that γ
satisfies (i) and (ii).

(i) Let [1̂ : γ] be the fulfilled tableau of {1̂ : γ}. With A ∈ [1 : α], X ∈ [1̂ : γ],
it suffices to show that A ∪ X is z-closed. If A is z-closed, we are done,
so suppose A is z-open. Then, from the definition of γ and the tableau
rule (∨1̂), it follows that 1̂ : γ(A) is an element of every branch of [1̂ : γ]
and so in particular of X. Further, from the definition of γ(A) and the
tableau rule (∧1̂) it follows that there is some atomic p for which:

(1 : p ∈ A and 1̂ : p ∈ X) or (0 : p ∈ A and 1̂ : ¬p ∈ X)

from which it readily follows that A ∪ X is 4-closed and hence z-closed.

(ii) Let [1 : γ] be the fulfilled tableau of {1 : γ}. With X ∈ [1 : γ] and
B ∈ [1̂ : β], it suffices to show that X ∪ B is z-closed. If B is z-closed,
we are done. So suppose B is z-open. Per definition of γ and the tableau
rule (∨1) it follows that there is a z-open branch A of [1 : α] such that
1 : γ(A) ∈ X. As A and B are atomically z-open and as A ∪ B is
atomically z-closed, it follows that there is an atomic p such that

(1 : p ∈ A and 1̂ : p ∈ B) or (0 : p ∈ A and 0̂ : p ∈ B)

Suppose, without loss of generality, that 1 : p ∈ A and 1̂ : p ∈ B. Then
p is one of the conjuncts of γ(A) and hence, as 1 : γ(A) ∈ X, it follows
that 1 : p ∈ X. But then X ∪ B is 4-closed and hence z-closed.
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Table 1. z -interpolants via the pruned tableau and the Maehra-style method

2 3n 3b

Pr. tab. q t ∧ q r ∨ q

T3n γ γ = (r ∧ ¬r) ∨ (t ∧ q) -

T3b δ - δ = (t ∨ ¬t) ∧ (r ∨ q)

T3 γ′/δ′ γ′ = ((r ∧ ¬r) ∧ r) ∨ (q ∧ t) δ′ = ((r ∨ ¬r) ∧ r) ∨ (q ∧ t)

Thus, in contrast to the Maehara-style method, constructing interpolants
via the pruned tableau method does not rely on a construction by induction
but reads off the interpolant directly from a closed tableau. The pruned
tableau method is not only simpler and more direct in this sense, but also the
obtained interpolants typically have lower sentential complexity than those
obtained with the Maeharae-style method, as illustrated by the following
example.

Example 3. (Interpolants via the pruned tableau method) With α, β, X1,
X2, Y1, Y2 as in Example 1, that example showed that [1 : α] = {X1, X2}
and [1̂ : β] = {Y1, Y2} are the fulfilled tableau of {1 : α} and {1̂ : β}
respectively. Let us illustrate how, for z ∈ {2,3n,3b} the pruned tableau
method obtains a z -interpolant for α and β. For z = 3b, X1, X2 and Y2

are 3b-open whereas Y1 is 3b-closed. And so, with γ(X1), γ(X2) and the

3b
-interpolant γ as defined by (7) and (8) respectively, we have γ(A1) = r,

γ(A2) = r and γ = r ∨ q. For z = 3n, X2, Y1 and Y2 are 3n-open whereas
X1 is 3n-closed. And so γ(X2) and the

3n
-interpolant are equal to q ∧ t.

Finally, for z = 2, X2 and Y2 are 2-open whereas X1 and Y1 are 2-closed.
And so γ(X2) and the

2
-interpolant are equal to q.

The pruned tableau method delivers a unique z -interpolant for α and β

whenever their z -interpolation condition is satisfied. In contrast, {1 : α, 1̂ :
β} may have several z-closed tableaux, which ensures that the z -interpolants
that are obtained via the Maehara-style method are not unique, as witnessed
by (the discussion following) Example 2. With α and β as defined in Example
2 and Example 3, the below table displays the z-interpolants—for z = 2, 3n
and 3n— for α and β that we obtained in those examples by the pruned
tableau method and by applying the Maehara-style method to the tableaux
T3, T3n and T3b as defined in Example 2.
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3.4. The Pruned Tableau Method and ETL

In a recent paper, Pietz and Rivieccio introduce and study exactly true logic
(ETL), whose semantic definition is as follows.

Γ
ETL

ϕ ⇔ if V (γ) = T for all γ ∈ Γ then V (ϕ) = T, for all V ∈ V4

In order to capture
ETL

via the Dunn calculus, we define ETL as follows.

Γ ETL ϕ ⇔ 1 : Γ ∪ 0̂ : Γ ∪ {1̂ : ϕ} has a 4-closed tableau (9)

Although perhaps a bit surprising at first sight, ETL coincides with
ETL

,
as the proof of the following proposition explains.

Proposition 1. Γ
ETL

ϕ ⇐⇒ Γ ETL ϕ.

Proof. First observe that it readily follows from the definition of
ETL

and
Theorem 1 that Γ

ETL
ϕ iff

1 : Γ ∪ 0̂ : Γ ∪ {1̂ : ϕ} has a 4-closed tableau and
1 : Γ ∪ 0̂ : Γ ∪ {0 : ϕ} has a 4-closed tableau.

However, an inspection of the tableau rules readily verifies that a branch B
has a 4-closed tableau iff its counterpart has a 4-closed tableau, where the
counterpart of B is defined as follows:

{1 : ϕ | 0̂ : ϕ ∈ B} ∪ {0 : ϕ | 1̂ : ϕ ∈ B} ∪ {1̂ : ϕ | 0 : ϕ ∈ B} ∪ {0̂ : ϕ | 1 : ϕ ∈ B}

As 1 : Γ ∪ 0̂ : Γ ∪ {1̂ : ϕ} is the counterpart of 1 : Γ ∪ 0̂ : Γ ∪ {0 : ϕ} it
follows that Γ

ETL
ϕ just in case Γ ETL ϕ.

To establish that ETL has the interpolation property in terms of the
Dunn calculus, we thus need to show the following: whenever the ETL-
interpolation condition for α and β is satisfied, there is a sentence γ in the
joint vocabulary of α and β such that both {1 : α, 0̂ : α, 1̂ : γ} and {1 : γ, 0̂ :
γ, 1̂ : β} have a 4-closed tableau. Observe that, as 〈{1 : α}, {0̂ : α, 1̂ : β}〉
is the bifurcation of {1 : α, 0̂ : α, 1̂ : β}, the Bifurcation lemma and hence
the Maehara-style method cannot be used to establish this. Moreover, given
the problems with rephrasing the Bifurcation lemma in terms of arbitrary
partitions as discussed in Section 3.2, to show that ETL has the interpolation
property via a Maehara-inspired method seems to be problematic in the
current setting. However, the pruned tableau method can be readily used to
construct ETL-interpolants, as attested by the following proposition.
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Proposition 2. ETL has the interpolation property.

Proof. Suppose that the ETL-interpolation condition for α and β is
satisfied. It suffices to show that there is a sentence γ ∈ Sen(L) with
Voc(γ) ⊆ Voc(α) ∩ Voc(β) and such that (i) {1 : α, 0̂ : α, 1̂ : γ} has a
4-closed tableau and (ii) {1 : γ, 0̂ : γ, 1̂ : β} has a 4-closed tableau.

Let [1 : α, 0̂ : α] and [1̂ : β] be the fulfilled tableaux for {1 : α, 0̂ : α} and
{1̂ : β} respectively, which are 4-open in virtue of the the ETL-interpolation
condition. Let A and B be 4-open branches of [1 : α, 0̂ : α] and [1̂ : β]
respectively and note that A ∪ B is 4-closed. Define A1 and A0 as in (6),
letting z = 4. For the following three reasons A1 ∪A0 is non-empty: (1) A is
4-open, (2) A ∪ B is 4-closed (3) B only contains sentences that are signed
with 1̂ or 0̂, which means that the (atomic) 4-closure of A ∪ B must be due
to the occurrence of an element of form 0 : p or 1 : p in A. Thus one may
define γ(A) as in (7) and γ as in (8), i.e.:

γ :=
∨

{γ(A) | A is a 4-open branch of [1 : α, 0̂ : α]}

Clearly, Voc(γ) ⊆ Voc(α) ∩ Voc(β) and entirely similar as in the proof of
Theorem 4 one shows that γ satisfies (i) and (ii).

The pruned tableau method thus readily establishes that ETL has the
interpolation property whereas the Maehara-style method cannot be used
to establish this fact. We take it that this is an additional (to the reasons
mentioned in Section 3.3) reason to prefer the pruned tableau method over
the Maehara-style method.

3.5. Milne’s Result and a Novel Characterization of CL

In a recent paper, Peter Milne [14] establishes what he calls ‘a non-classical
refinement of the interpolation property for classical logic’. Milne’s refine-
ment tells us that, whenever the

CL
-interpolation condition for α and β is

satisfied, there is a sentence γ in the joint vocabulary of α and β such that:

α
K3 γ and γ

LP
β (10)

Milne presents a semantic proof of (10) but his result also follows readily
from our proof of Theorem 4. This is attested by the following corollary,
which shows that the CL-interpolant that is obtained via the pruned tableau
method satisfies (10).
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Corollary 2. Suppose that the
CL

-interpolation condition for α and β is
satisfied. Let γ be the

CL
-interpolant for α and β as defined in the proof of

Theorem 4. Then α
K3 γ and γ

LP
β.

Proof. Suppose that the
CL

-interpolation condition for α and β is satisfied
and let γ be as indicated above. Observe that in the proof of Theorem 4 it
is shown that for any 2-open branch A of [1 : α] and for any X ∈ [1̂ : γ],
A ∪ X is 4-closed. Now a branch A of [1 : α] is 2-open if and only if A is
3n-open and so it follows that for any 3n-open branch A of [1 : α], A ∪ X is
4-closed and hence 3n-closed. This establishes that α

K3 γ. Similarly, one
shows that γ

LP
β.

Although Milne’s result is interesting in itself, we also feel that his has
an even more interesting consequence: CL can be characterized in terms of
K3 and LP, as the following propositions attests.

Proposition 3. (Characterizing CL in terms of K3 and LP) α
CL

β ⇐⇒
there is a sentence χ such that α

K3 χ and χ
LP

β.

Proof. For the left-to-right direction, we distinguish 3 cases. First, if α is
an anti-tautology of CL, setting χ = β establishes the claim. Second, if β is
a tautology of CL, setting χ = α establishes the claim. Third, if α is not an
anti-tautology of CL and β is not a tautology of CL, the claim is established
by Corollary 2. The right-to-left direction follows from the fact that CL
extends both K3 and LP and the transitivity of classical consequence.

4. Interpolation and Appropriate Implication

As was discussed in the introduction, K3, LP and FDE as defined over L
do not enjoy an appropriate implication connective, which motivates an
extension of L with ⊃. The Dunn conditions of ⊃, which were given in the
introduction, determine the following truth table.

⊃ T B N F
T T B N F
B T B N F
N T T T T
F T T T T

We consider the propositional language L⊃ that is based on {∧, ∨, ¬, ⊃}
and define a z-valuation for L⊃ to be to a function from the sentences of
this language to z ∈ Z that respects the truth tables of Definition 1 and the
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above truth table of ⊃. Also, V⊃
z will denote the set of all z-valuation for

L⊃. We define the L⊃ entailment relations z

⊃
which preserve truth over all

z-valuations of L⊃:

Γ z

⊃
ϕ ⇔ if V (γ) ∈ 1 for all γ ∈ Γ then V (ϕ) ∈ 1, for all V ∈ V⊃

z

Although
2

⊃
is just classical logic with ⊃ denoting material implication, the

other z

⊃
logics are genuine extensions of K3, LP and FDE for which ⊃ is an

appropriate implication connective, as the following proposition attests.

Proposition 4. For z ∈ Z: Γ ∪ ϕ z

⊃
ψ ⇐⇒ Γ z

⊃
ϕ ⊃ ψ.

Proof. By inspection.

The Dunn conditions for ⊃ do no only determine its truth table, but they
also give rise to the following tableau rules.

x : ϕ ⊃ ψ
(⊃x)

1̂ : ϕ | x : ψ
if x ∈ {1, 0̂}

x : ϕ ⊃ ψ
(⊃x)

1 : ϕ, x : ψ
if x ∈ {1̂, 0}

The tableau rules of the Dunn⊃ calculus are obtained by adding the above
rules for ⊃ to those of the Dunn calculus. The Dunn⊃ calculus has the same
z-closure conditions as the Dunn calculus and the following proposition will
not come as a surprise.

Proposition 5. Γ z

⊃
ϕ ⇐⇒ 1 : Γ ∪ {1̂ : ϕ} has a z-closed tableau.

Proof. See [24].

In Section 3.4, we explained that the Maehara-style interpolation method
cannot be used to show that ETL has the interpolation property. It turns
out that showing that the z

⊃
-logics have the interpolation property via the

Maehara-style method is also problematic. To see the problem, note that all
the rules of the Dunn calculus are bifurcation-neutral, which means that:
whenever the sign x the top formula x : ϕ of a rule x : ϕ/B1, . . . , Bn is
positive (i.e. x ∈ {1, 0}) so are the signs of the formulas that occur in
B1, . . . , Bn, and whenever x is negative (i.e. x ∈ {1̂, 0̂}), so are the signs of
the formulas that occur in B1, . . . , Bn. In contrast to the rules of the Dunn
calculus, (⊃1) and (⊃1̂) are not bifurcation-neutral. As a consequence, the
proof of the Bifurcation lemma breaks down when it is phrased in terms of
the Dunn⊃ calculus, as the reader may care to verify.

However, by invoking the pruned tableau method, we will show, in a
uniform way, that the logics z

⊃
all have the interpolation property. In order

to present the proof in a neat way, we first have the following definition.
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Definition 7. (z-closers) With A and B sets of signed sentences, a z-closer
of 〈A, B〉 is a pair 〈x : ϕ, y : ϕ〉 with x : ϕ ∈ A, y : ϕ ∈ B and such that
{x : ϕ, y : ϕ} is z-closed. We write Clz(A, B) for the set of all z-closers of
〈A, B〉 and define ClzA(A, B) and ClzB(A, B) as follows.

ClzA(A, B) := {x : ϕ | 〈x : ϕ, y : ϕ〉 ∈ Clz(A, B)}
ClzB(A, B) := {y : ϕ | 〈x : ϕ, y : ϕ〉 ∈ Clz(A, B)}

To show that the logics z

⊃
have the interpolation property, we will rely

on the following lemma

Lemma 4. For any ϕ ∈ Sen(L⊃) and x ∈ {1, 0}, any tableau of {x : ϕ} has
at least one positive branch B, i.e. at least one branch B such that x ∈ {1, 0}
whenever x : ψ ∈ B.

Proof. By an induction on the sentential complexity of ϕ that can be left
to the reader.

Theorem 5. The logics z

⊃
have the interpolation property.

Proof. Suppose that the interpolation condition for z

⊃
is satisfied. It suf-

fices to show that there is a sentence γ ∈ Sen(L⊃) such that Voc(γ) ⊆
Voc(α) ∩ Voc(β) and such that (i) {1 : α, 1̂ : γ} has a z-closed tableau and
(ii) {1 : γ, 1̂ : β} has a z-closed tableau.

Let [1 : α] and [1̂ : β] be the fulfilled tableau of {1 : α} and {1̂ : β}
respectively. For each sign x ∈ {1, 0, 1̂, 0̂} and z-open branch A of [1 : α],
we define the set Ax—consisting of propositional atoms signed with x— as
follows:

Ax = {x : p | x : p ∈ ClzA(A, B) for some z-open B ∈ [1̂ : β]}
We use the sets of signed sentences Ax to define their “unsigned counter-
parts” Ax. First, we set:

A1 := Voc(A1) A0 := {¬p | p ∈ Voc(A0)} (11)

If [1 : α] has a positive branch that is z-open, let A be an arbitrary such
branch and let χ :=

∧
(A1 ∪ A0), where the definition of A1 and A0 is

given by (11). If [1 : α] does not have a positive branch that is z-open,
let q ∈ Voc(α) ∩ Voc(β)—such a q exists as the interpolation condition is
satisfied—and let χ := q ∧ ¬q. We use the sentence χ to define the sets A1̂

and A0̂ as follows.

A1̂ := {p ⊃ χ | p ∈ Voc(A1̂)} A0̂ := {¬p ⊃ χ | p ∈ Voc(A0̂)}
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Let A be a z-open branch of [1 : α]. As A∪B is z-closed for any B ∈ [1̂ : β],
it follows that A1 ∪A0 ∪A1̂ ∪A0̂ is non-empty and so the following sentence
is well-defined:

γ(A) :=
∧ (

A1 ∪ A0 ∪ A1̂ ∪ A0̂
)

In terms of the sentences γ(A), we define the sentence γ as follows.

γ :=
∨

{γ(A) | A is a z-open branch of [1 : α]} (12)

Clearly, Voc(γ) ⊆ Voc(α) ∩ Voc(β) and so it remains to be shown that γ
satisfies (i) and (ii).

(i) Let [1̂ : γ] be the fulfilled tableau of 1̂ : γ. With A ∈ [1 : α], X ∈ [1̂ : γ],
it suffices to show that A ∪ X is z-closed. If A is z-closed we are done,
so suppose A is z-open. Then, from the definition of γ and the tableau
rule (∨1̂), it follows that 1̂ : γ(A) is an element of every branch of [1̂ : γ]
and so in particular of X. Further, from the definition of γ(A) and the
tableau rule (∧1̂) it follows that for some propositional atom p:

(1 : p ∈ A and 1̂ : p ∈ X) or (0 : p ∈ A and 1̂ : ¬p ∈ X) or

(1̂ : p ∈ A and 1̂ : p ⊃ χ ∈ X) or (0̂ : p ∈ A and 1̂ : ¬p ⊃ χ ∈ X)

From an inspection of the tableau rules pertaining to ¬ and ⊃ it readily
follows that A ∪ X is 4-closed and hence z-closed.

(ii) Let [1 : γ] be the fulfilled tableau of 1 : γ. With X ∈ [1 : γ], B ∈ [1̂ : β],
it suffices to show that X ∪ B is z-closed. If B is z-closed, we are done.
So suppose B is z-open. Per definition of γ and the tableau rule (∨1) it
follows that there is a z-open branch A of [1 : α] such that 1 : γ(A) ∈ X.
As A and B are z-open and as A∪B is z-closed, it follows that Clz(A, B)
is not empty. Moreover, A∪B is atomically closed. So let 〈x : p, y : p〉 ∈
Clz(A, B) where p is a propositional variable.

If x = 1 it follows that p is one of the conjuncts of γ(A), that 1 : p ∈ X
and hence that X ∪ B is z-closed.

If x = 0 it follows that ¬p is one of the conjuncts of γ(A), that 0 : p ∈ X
and hence that X ∪ B is z-closed.

If x = 1̂ it follows that p ⊃ χ is one of the conjuncts of γ(A) and hence
1̂ : p ∈ X or 1 : χ ∈ X. If 1̂ : p ∈ X then X ∪ B is z-closed, so suppose that
1 : χ ∈ X. An inspection of the definition of χ reveals that we must consider
the following two cases.
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(1) χ = q ∧ ¬q. Then, every positive branch of [1 : α] is z-closed. But then,
as [1 : α] has at least one positive branch it follows that z is either 2 or
3n. But if z is 2 or 3n, any branch which contains 1 : q ∧ ¬q is z-closed
and so X ∪ B in particular.

(2) χ =
∧

(A1 ∪ A0) for some positive z-open branch A of [1 : α]. As A is
z-open and as A∪B is z-closed it follows that there is some propositional
atom r such that (1 : r ∈ A and 1̂ : r ∈ B) or (0 : r ∈ A and 0̂ : r ∈ B).
If 1 : r ∈ A it follows that r is one of the conjuncts of χ, that 1 : r ∈ X
and hence that X ∪ B is z-closed. If 0 : r ∈ A it follows that ¬r is one
of the conjuncts of χ, that 0 : r ∈ X and hence that X ∪ B is z-closed.

If x = 0̂ it follows that ¬p ⊃ χ is one of the conjuncts of γ(A) and hence
that 1̂ : ¬p ∈ X or 1 : χ ∈ X. If 1̂ : ¬p ∈ X then 0̂ : p ∈ X and hence X ∪ B
is z-closed. If 1 : χ ∈ X, an argument entirely similar to that given above
reveals that X ∪ B is z-closed.

5. Interpolation and Functional Completeness

In order to define functionally complete extensions of the Dunn logics, we
consider the propositional constant symbols f, b and n, which we interpret
as constant functions denoting the values F, B and N respectively. Also, we
consider the unary connective − that will denote Fitting’s [12] conflation
operator, i.e. the following truth function on 4:

− T = T − B = N − N = B − F = F (13)

Let L4 be the language that is obtained by extending L⊃ with f, b, n and
−.

Proposition 6. L4 (with its logical vocabulary interpreted as indicated
above) is functionally complete with respect to 4.

Proof. See Avron [5].

By an L4-valuation, we mean a function from the sentences of L4 to 4
that respects the above indicated interpretation of ¬, ∧, ∨ ⊃, −, f, b and n.
We will use V#

4 to denote the set of all L4-valuations and define the L4

entailment relation
4

#
as follows:

Γ
4

#
ϕ ⇔ if V (γ) ∈ 1 for all γ ∈ Γ then V (ϕ) ∈ 1, for all V ∈ V#

4

Takano [22] shows that any functionally complete many-valued logic, and
so in particular

4

#
, has the interpolation property. However, to actually
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construct interpolants for
4

#
by the general and semantic means provided

in [22] is quite cumbersome. As we will show below, the pruned tableau
method constructs these interpolants in a simple and informative manner.
To do so, let us define tableau rules for the conflation operator:

x : −ϕ
(−x)

y : ϕ
if 〈x, y〉 or 〈y, x〉 ∈ {〈1, 0̂〉, 〈1̂, 0〉}

The tableau rules of the Dunn#
4 calculus are obtained by adding the above

rules for the conflation operator to those of the Dunn⊃ calculus. Tableaux
in the Dunn#

4 calculus are sets of L4-branches, i.e. sets of signed sentences
of L4. The closure conditions of the Dunn#

4 calculus are as expected: an
L4-branch B is 4#-closed just in case

B is 4-closed or {1 : f, 0̂ : f, 1̂ : b, 0̂ : b, 1 : n, 0 : n} ∩ B �= ∅

One then readily shows that the Dunn#
4 -calculus captures

4

#
.

Proposition 7. Γ
4

#
ϕ ⇐⇒ 1 : Γ ∪ {1̂ : ϕ} has a 4#-closed tableau.

Proof. Via a straightforward modification of the proof of Theorem 1.

The proof of the below proposition shows how the pruned tableau method
constructs

4

#
-interpolants.

Proposition 8.
4

#
has the interpolation property.

Proof. Suppose that the
4

#
-interpolation condition for α and β is satisfied.

For any 4#-open branch A of [1 : α] and any sign x, define the set Ax as
follows:

A1 := {p | 1 : p ∈ A and 1̂ : p ∈ B for some 4#-open B ∈ [1̂ : β]}
A0 := {¬p | 0 : p ∈ A and 0̂ : p ∈ B for some 4#-open B ∈ [1̂ : β]}

A1̂ := {−¬p | 1̂ : p ∈ A and 1 : p ∈ B for some 4#-open B ∈ [1̂ : β]}

A0̂ := {−p | 0̂ : p ∈ A and 0 : p ∈ B for some 4#-open B ∈ [1̂ : β]}
As the union of the sets Ax thus defined is non-empty, the following sentence
is well-defined:

γ(A) :=
∧ (

A1 ∪ A0 ∪ A1̂ ∪ A0̂
)

(14)

We now define the sentence γ as follows:

γ :=
∨

{γ(A) | A is a 4#-open branch of [1 : α]} (15)
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By an argument similar to the one used in the proof of Theorem 4, it follows
that γ is a

4

#
-interpolant for α and β.

Indeed, the proof of proposition 8 is a straightforward generalization of
the proof of Theorem 4, which ensures that the pruned tableau construction
of

4

#
-interpolants is just as simple as the construction of interpolants for

the Dunn logics over L. The proof of proposition 8 is also informative, as
it shows that

4

#
-interpolants can always be found L−, the sublanguage of

L4 that is based on {¬, −, ∧, ∨}. That is, we have the following corollary to
proposition 8.

Corollary 3. If the
4

#
-interpolation condition for α and β is satisfied,

then there is a γ ∈ Sen(L−) that is a
4

#
-interpolant for α and β.

Proof. By inspecting the proof of Proposition 8.

Let us, for sake of completeness, also briefly discuss interpolation for
functionally complete extensions of

3b
and

3n
. Avron [5] shows that the

language L3b, obtained by extending L⊃ with f and b, is functionally com-
plete with respect to 3b. From this result, it is not hard to show that L3n,
obtained by extending L⊃ with f and n, is functionally complete with respect
to 3n. Completely similar to the above, one defines the notion of an L3b- and
L3n-valuation and by preserving truth over these valuations one defines the
L3b- and L3n-entailment relations

3b

#
and

3n

#
respectively. We may show

that
3b

#
and

3n

#
have the interpolation property by invoking the Dunn⊃

calculus in combination with the 3b#- and 3n# closure conditions, which
are defined as follows.

B is 3b#-closed ⇔ B is 3b-closed or {1 : f, 0̂ : f, 1̂ : b, 0̂ : b} ∩ B �= ∅
B is 3n#-closed ⇔ B is 3n-closed or {1 : f, 0̂ : f, 1 : n, 0 : n} ∩ B �= ∅

One may show that, for z ∈ {3b,3n}:

Γ
3b

#
ϕ ⇐⇒ 1 : Γ ∪ {1̂ : ϕ} has a z#-closed tableau

By invoking the pruned tableau method one readily shows that
3b

#
and

3n

#

have the interpolation property and that their interpolants can always be
found in L⊃:
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Proposition 9. For z ∈ {3b,3n}: (i) z

#
has the interpolation property and

(ii) whenever the z

#
-interpolantion condition for α and β is satisfied, there

is a γ ∈ Sen(L⊃) that is a z

#
-interpolant for α and β.

Proof. The proof of (i) is entirely similar to the proof of Theorem 5, and
(ii) follows from this similarity.

Theorem 5 shows that
3b

⊃
,

3n

⊃
and

4

⊃
have the interpolation property

and the proof of this theorem immediately delivers a proof (cf. Proposition
9) which shows that

3b

#
and

3n

#
have the interpolation property. However,

as the proof of Theorem 5 crucially involves Lemma 4 and that lemma is
no longer true with the tableau rules pertaining to the conflation operator
− in force, the proof strategy of Theorem 5 cannot be invoked to show that

4

#
has the interpolation property.

6. Concluding Remarks

We first explained how the Dunn conditions give us a uniform semantic
approach to CL, K3, LP and FDE and also, in terms of the Dunn calculus,
a uniform syntactic one. We then used the Dunn calculus to define two dis-
tinct uniform interpolation methods for Dunn logics and their extensions:
the Maehara-style method, which is inspired by Maehara’s interpolation
method for CL and the pruned tableau method, which is novel to this paper.
The pruned tableau method is simpler than the Maehara-style method as it
does not construct interpolants via an inductive argument and as the con-
structed interpolants typically have lower sentential complexity than those
of the Maehara-style method. Moreover, whereas the Maehara-style method
cannot be used to construct interpolants for ETL and for extensions of the
Dunn logics with an appropriate implication connective, we showed that the
pruned tableau method can be unproblematically invoked to do so. We also
showed that Milne’s recent “non-classical refinement of CL’s interpolation
property” is an immediate corollary of the pruned tableau method and we
used this corollary to characterize CL as the transitive closure of the union
of K3 and LP. We concluded the paper by showing how the pruned tableau
method constructs interpolants for functionally complete extensions of the
Dunn logics.
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