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(3) Models have implicit functions and 
assumptions (e.g., Wimsatt, 2007; 
Winther, Forthcoming).

The pragMaTic vieW focuses on 
contextual factors, the agents, and use. For 
example, philosopher Leo apostel wrote:

Let then r(S,p,M,T) indicate the main 
variables of the modelling relationship. 
The subject S takes, in view of the purpose 
p, the entity M as a model for the proto-
type T. (apostel, 1960, p. 128)

The pragMaTic vieW includes syntax 
and semantics, and explores assumptions 
and functions of models.

Four Functions oF mathematical 
modeling
The pragMaTic vieW helps us focus 
on the functions of mathematical models, 
including (1) unification of both models 
and data, (2) model fitting to data, (3) 
mechanism identification accounting for 
observation, and (4) prediction of future 
observations.

uniFication
Unification involves the integration and 
synthesis of disparate types of evidence 
and models. For instance, Darwin unified 
hybridization, developmental, paleonto-
logical, and biogeographical data under a 
single theory. in mathematical modeling, 
unification often entails embedding – a sub-
sumption relation allowing for the unifica-
tion of (i) various mathematical theories/
models and (ii) the data pertinent to those 
theories/models (Friedman, 1983; van 
Fraassen, 1989).

 model Fitting
Model fitting employs statistical procedures 
such as regression analysis and hypothesis 
testing. although fitting is essential for 
model verification, models can be over fitted 
to accommodate all of the data, a practice 
called “fudging” by Lipton (2005), which 
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introduction
philosophy can shed light on mathematical 
modeling and the juxtaposition of modeling 
and empirical data. This paper explores three 
philosophical traditions of the structure of 
scientific theory – Syntactic, Semantic, and 
pragmatic – to show that each illuminates 
mathematical modeling. The pragmatic 
view identifies four critical functions of 
mathematical modeling: (1) unification of 
both models and data, (2) model fitting to 
data, (3) mechanism identification account-
ing for observation, and (4) prediction of 
future observations. Such facets are here 
explored using a recent exchange between 
two groups of mathematical modelers in 
plant biology. Scientific debate can arise 
from different philosophies of modeling.

PhilosoPhy oF science and models
Three distinct philosophical perspectives 
on the nature and dynamics of scientific 
theory were sequentially developed in the 
twentieth century. each was a critique of 
the previous perspective. each illuminates 
scientific modeling.

syntactic view: the logical structure oF 
scientiFic theory
The SynTacTic vieW (advocated by the 
vienna circle “Logical positivists”) took 
issue with nineteenth century german ide-
alism and argued that a scientific theory was 
actually a set of sentences expressed in a 
logical language L (e.g., carnap, 1928/2003; 
Woodger, 1937; Hempel, 1966). The lan-
guage L consisted of inference rules (e.g., 
modus ponens) and logical terms (e.g., ∃, ¬) 
as well as two types of vocabulary: theoreti-
cal (e.g., “proton,” “protein,” or “proletariat”) 
and observational (e.g., “hard,” “liquid,” or 
“blue”). Sentences could be of two forms 
– either theoretical (i.e., containing only 
theoretical vocabulary, or mixed, i.e., cor-
respondence rules), or observational (i.e., 
containing no theoretical vocabulary and 
acquiring meaning only from experimental 
observations).

semantic view: the mathematical 
structure oF scientiFic theory
in the late 1950s and early 1960s, some phi-
losophers of science critiqued the SynTac-
Tic vieW and focused on the history and 
sociology of scientific practice (e.g., Thomas 
Kuhn, paul Feyerabend, n.r. Hanson). 
another group suggested that a philosophy 
of science should focus on mathematical 
models, rather than logical languages. van 
Fraassen, an innovative advocate of this 
SeManTic vieW remarked:

to present a theory, we define the class of its 
models directly, without paying any atten-
tion to questions of axiomatizability, in 
any special language, however relevant or 
simple or logically interesting that might 
be. and if the theory as such, is to be iden-
tified with anything at all – if theories are 
to be reified – then a theory should be 
identified with its class of models. (van 
Fraassen, 1989, p. 222)

Models were “always a mathematical 
structure” (van Fraassen, 1970, p. 327; 
van Fraassen, 2008, p. 381), and theory 
was a family of mathematical models. The 
SeManTic vieW explored the mathe-
matical structure of science, including the 
hierarchy of models from high theory to 
phenomenological models (Suppes, 2002) 
and the nature of confirmation and valida-
tion (i.e., the correct semantics) of theoreti-
cal models (e.g., Lloyd, 1994).

Pragmatic view: Functions and 
assumPtions in scientiFic theory
The perspectives on syntactic structures and 
semantic relations offered by the  SynTacTic 
anD SeManTic vieWS are insufficient to 
describe scientific modeling because

(1) practices, instruments, and experi-
ments interweave with mathematical 
modeling (e.g., Hacking, 1983).

(2) There are a variety of modeling syn-
taxes – mathematics, diagrams, narra-
tives, simulations, and programs, etc. 
(e.g., Morgan and Morrison, 1999).
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Hence, the replication of patterns observed 
in nature does not guarantee that the mecha-
nism that underlies it in the real world has 
been discovered or explained” (p. 101). put 
differently, a model can mimic reality for the 
wrong reasons. comparative analysis of dis-
tinct proposed mechanisms, including novel 
discriminating predictions is necessary.

conclusion
The preceding illustrates that no model 
can fully satisfy all the functions and 
virtues of modeling. For instance, every 
model is limited in scope and identifies 
only some mechanisms. There are trade-
offs among functions (Wimsatt, 2007); 
for instance, (1) unification comes at the 
price of model fitting and prediction, and 
(2) model fitting and mechanism identi-
fication are not always aligned. Because 
of these trade-offs, different researchers 
make distinct claims about which func-
tions are primary and forget that a theory 
is often a family of mathematical models, 
with each model maximizing only some 
functions.

Modelers should not become prison-
ers of their own abstractions (Levins and 
Lewontin, 1980, p. 67), and should seek 
integration among reasonable models 
(Mitchell, 2003; Winther, 2011). The philo-
sophical perspective i have here called The 
Pragmatic View makes our modeling func-
tions explicit.
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Álvarez-Buylla et al. (2007) show that two 
hypothetical proteins A (activator) and L 
(inhibitor) can produce the same growth 
and flowering patterns as the prusinkiewicz 
et al. (2007) model.

sPeaking at cross-PurPoses
prusinkiewicz et al. (2007) and Álvarez-Buylla 
et al. (2007) capture the same system behav-
ior, yet they disagree about the other party’s 
legitimate modeling claims. Álvarez-Buylla et 
al. (2007) write “The unjustified reduction of 
a complex network… to a pair of interacting 
genes, leads to conclusions that might not 
be accurate” (p. 102), whereas prusinkiewicz 
and coen (2007) retort: “We do not deny the 
importance of further interactions, but we 
find it important to get a clear grasp of the 
key principles before incorporating too many 
genes” (p. 154). Thus, Álvarez-Buylla et al. 
(2007) and prusinkiewicz and coen (2007) 
adopt differing but complementary perspec-
tives on modeling functions. Álvarez-Buylla 
et al. (2007) emphasize model fitting and 
prediction and are skeptical of unification 
and of how to identify mechanism, whereas 
prusinkiewicz and coen (2007) focus on 
unification. indeed, a simple unifying model 
has significant virtues, even if it is difficult 
for it to fit diverse and complex empirical 
situations.

now, prusinkiewicz et al. (2007) allude 
to the importance of unification: “We 
propose that a relatively simple develop-
mental mechanism – the transient model 
– underlies the restriction of inflorescence 
types to a small region of morphospace” (p. 
1455). note that the model is itself consid-
ered a mechanism, a reification with which 
Álvarez-Buylla et al. (2007) take issue. 
Moreover, prusinkiewicz and coen (2007) 
argue: “[Our]… approach is to simplify the 
problem through various levels of abstrac-
tion, and focus on the underlying prin-
ciples” (p. 155). prusinkiewicz and coen 
(2007) endorse a ceteris absentibus (“all 
other factors absent/abstracted away”) heu-
ristic to context, a reasonable and produc-
tive strategy when unification is the goal.

in contrast, Álvarez-Buylla et al. (2007) 
present a methodological critique of 
prusinkiewicz et al. (2007), emphasizing 
biological complexity and model fitting: 
“The point we are trying to make is that 
there might be several alternative mecha-
nisms, such as the transient and toy ones, 
that could reproduce similar sets of patterns. 

can be addressed by the akaike information 
criterion (Hitchcock and Sober, 2004; see 
Winther, 2009).

 mechanism identiFication
Mechanism identification uses vari-
ous strategies, including (i) analysis (i.e., 
decomposition into constituent parts and 
processes, given a theoretical perspective), 
(ii) causal surgery (pearl, 2000), and (iii) 
mechanism transplantation (see Winther, 
Forthcoming). Mathematical models assist 
in these strategies, and hence in mechanism 
identification (Winther, 2011).

 Prediction
The relevance of an observation or datum 
for the testing, confirmation, and choice of 
mathematical models and theories is sig-
nificantly greater if it is a novel prediction 
(e.g., popper, 1963; see Winther, 2009). in 
this sense, an excellent prediction is surpris-
ing, validating, and correct.

a case study
The foregoing is illustrated with a debate 
between two camps of modelers, each 
focusing on different modeling functions. 
The possibility of collaboration rather than 
conflict is explored and advocated.

the models
prusinkiewicz et al. (2007) present a sim-
ple model for the development of inflores-
cences, which postulates a single parameter 
– vegetativeness (veg) – as the indicator of 
flowering. if a meristem has a high veg, it 
continues to grow vegetatively. if it has a 
low level, it flowers. The model stipulates 
that levels of veg decrease over time and that 
meristems have one of two internal states: 
A or B. Meristems can be apical or lateral. 
in each, veg drops and induces flowering at 
two different times: T

a
 and T

B
. Since lateral 

branches do not usually produce flowers 
(p. 1453), the model assumes that mer-
istems in A revert to B. This “transience” 
model emulates flowering patterns that are 
related empirically to two Arabidopsis genes, 
TERMINAL FLOWER and LEAFY. it also 
mimics genetic experimental data.

Álvarez-Buylla et al. (2007) present an 
alternative “toy model” inspired by Turing’s 
(1952) morphogenesis model, wherein an 
activator auto-catalyzes and induces an 
inhibitor that inhibits the activator and 
diffuses more rapidly (see Winther, 2011). 
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