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Prediction in Selectionist Evolutionary
Theory

Rasmus Grønfeldt Winther†‡

Selectionist evolutionary theory has often been faulted for not making novel predictions
that are surprising, risky, and correct. I argue that it in fact exhibits the theoretical
virtue of predictive capacity in addition to two other virtues: explanatory unification
and model fitting. Two case studies show the predictive capacity of selectionist evo-
lutionary theory: parallel evolutionary change in E. coli and the origin of eukaryotic
cells through endosymbiosis.

1. Introduction: The Critique. Selectionist evolutionary theory has often
been faulted for not being able to make novel predictions (e.g., Smart
1963; Popper 1974; Laudan 1977). More precisely, insofar as they even
care about predictions, practitioners of selectionist evolutionary theory
are taken to task for making neither (1) surprising nor (2) risky novel
predictions. That is, they are critiqued for

1. inferring new phenomena that could also be inferred using alter-
native theories, such as structural, developmental, and historical
contingency theories. The predicted phenomena are not surprising;

2. not being sufficiently rigorous about risky, novel predictions.
A. When risky predictions are not borne out, this failure is either

(i) downplayed and not reported or (ii) responded to by making
ad hoc modifications to relevant parts of selectionist evolution-
ary theory in order to save it.

B. Scant attention is paid to whether successful novel predictions
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are even risky or not. Note that a prediction that is not risky is
not a real test of selectionist evolutionary theory since the theory
would not be falsified even if the prediction were not satisfied.

Such strategies indeed would be epistemically objectionable.
The standard response is to note that selectionist evolutionary theory

does not make novel predictions but instead unifies and provides empir-
ically adequate models. I accept the two theoretical virtues defended by
the standard response, but go further. I argue that while the complexity
and historicity of the systems investigated by selectionist evolutionary
theory make predicting methodologically difficult, the theory indeed val-
ues and can formulate—under certain conditions—novel predictions that
are surprising, risky, and correct.

This article is a preliminary report on prediction in selectionist evo-
lutionary theory. In what follows, I briefly discuss unification, model fit-
ting, and predictive capacity as theoretical virtues that provide credentials
to the theory as a science. After this philosophical discussion, I use two
case studies to show that selectionist evolutionary theory can indeed make
novel predictions in an epistemically appropriate manner.

2. Three Theoretical Virtues. There are two standard responses to a Popper-
style critique of the scientific credentials of selectionist evolutionary the-
ory: appeal to the theoretical virtues of (1) explanatory unification or (2)
model fitting (or both). While selectionist evolutionary theory may not
make surprising and risky predictions, the argument goes, it still exhibits
one or both of these theoretical virtues. In contrast, I hold that the theory
expresses explanatory unification and model fitting as well as predictive
capacity. Moreover, each virtue is deeply connected to empirical adequacy.

2.1. Explanatory Unification. The defense of explanatory unification as
a virtue of selectionist evolutionary theory has roots in Darwin’s use of
Whewell’s notion of consilience. Darwin (1903) wrote: “I have always
looked at the doctrine of natural selection as an hypothesis, which if it
explained several large classes of facts, would deserve to be ranked as a
theory deserving acceptance” (1:139–140). This virtue of selectionist evo-
lutionary theory continues to de defended (see, e.g., Ruse 1979; Kitcher
1981; for opposing arguments, see Lloyd 1983; Hodge 1989). The theory
productively and reliably brings together disparate types of evidence—
hybridization, developmental, morphological, biogeographical, and pa-
leontological phenomena are placed under a single theoretical frame. Se-
lectionist evolutionary theory conjoins multiple kinds of old evidence.

Consilience is a nontrivial achievement. Successful unification provides
confirmation “boosts” for each piece of the theoretical structure (e.g.,
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Friedman 1974, 1981; Kitcher 1981, 1989). This is because confirmation
is acquired indirectly: the empirical adequacy of one part of the theory
strengthens a distinct, but connected, part.1 Moreover, our confidence in
the empirical adequacy of the whole theory also increases as a result of
unification.2 Lynn Margulis (1975) and E. O. Wilson (1998) speak to the
importance of unification in evolutionary theory.

2.2. Model Fitting. The defense of model fitting as a theoretical virtue
of evolutionary theory stems mainly from twentieth-century population
genetics. Common statistical procedures for model fitting include (1) re-
gression analysis and (2) Neyman-Pearson techniques for hypothesis test-
ing (e.g., Godfrey-Smith 1994; Sokal and Rohlf 1994; Mayo and Spanos
2006). Model fitting is generally fleshed out in terms of accommodating,
rather than predicting, the evidence.3 In evolutionary theory, model fitting
has been articulated in terms of the general notion of empirical adequacy
(e.g., Beatty 1980; Lloyd 1983, [1988] 1994].

Models are often overfitted. That is, variables, parameters, and func-
tions are altered or added in order to accommodate all of the available
data. Lipton (2005) calls this “fudging.” Hitchcock and Sober show that
accommodation is easy. Moreover, they argue that “accommodational
plasticity entails predictive impotence” (2004, 7, 22): “When a background
theory is sufficiently plastic that it can accommodate any data that may
come along, it is in no position to make predictions about what data will
come along” (2004, 7). Overfitting occurs when accommodational plas-
ticity is too high. This is a serious epistemic problem.

But some accommodation in the face of correcting evidence is necessary.
Hitchcock and Sober (2004) suggest an accommodation strategy that em-
ploys the Akaike Information Criterion (AIC). The AIC estimates pre-
dictive accuracy in terms of both the fit-to-data and the simplicity of a
model (Hitchcock and Sober 2004, 12). Accommodation and prediction
are intertwined in this account. However, in evolutionary theory per se

1. For example, Friedman 1981, 9. Kitcher (1981) provides a response to “spurious
unification.”

2. At least in the 1980s, both Friedman and Kitcher emphasized the relation between
unification and realism. The very presence of a unified theory seems to provide evidence
for an inference to the (existence of the) best ontology. This real ontology grounds the
unification. Van Fraassen (1980) and Laudan (1981, 1990) critique realist inferences based
on unified theory. But van Fraassen also writes, “presumption of unity is pervasive in
scientific practice” (1980, 83).

3. See Achinstein 1994, Brush 1994, and Hitchcock and Sober 2004 for clear contrasts
between accommodation and prediction. Only the third paper argues that the two are
intimately related. Williams (1982) conflates accommodation and prediction of evolu-
tionary hypotheses.
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the emphasis continues to be on (1) models that are confirmed and are
accommodated to the evidence through regression analysis, curve fitting,
and hypothesis testing, rather than on (2) the predictive capacity of models
in new evidentiary contexts.

2.3. Predictive Capacity. There is a strong tradition in the philosophy
of science arguing that the weight or relevance of a particular observation
or piece of data for theory testing, confirmation, and choice is significantly
greater if it is a novel prediction. A novel prediction meets the following
conditions: (1) it was not known before the theory was constructed, or it
was not used in the construction of the theory, and (2) the observation
or data follows—deductively or even with high probability—from the
theory (e.g., Popper 1963; Lakatos 1970; Zahar 1973; Gardner 1982; Giere
1983; Howson 1988; Worrall 1989, 2006; and Laudan 1990). The view
emphasizing the importance of novel predictions is sometimes referred to
as “historicist” or “heuristic,” as opposed to the “logical” view (e.g., Mus-
grave 1974; Mayo 1996; and Hitchcock and Sober 2004).

In contrast, the logical view holds that neither temporal order nor
construction independence are epistemic issues directly relevant to theory
justification (i.e., theory testing, confirmation, and choice). Formalist ad-
herents of the logical view consider novel prediction to be completely
irrelevant to theory justification (e.g., Hempel 1945, 1965; Carnap 1950;
see Musgrave 1974). Other partisans are more forgiving. For screening-
off advocates of the logical view, novel prediction is relevant to theory
justification but only indirectly, as it gets philosophically screened off by
more fundamental epistemic matters. Recent screening-off defenders have
highlighted the following epistemic concerns: (1) severe testing through
Neyman-Pearson, error-probing hypothesis testing (Mayo 1991, 1994,
1996, 2008; Mayo and Spanos 2006) or (2) contrastive testing through
either (a) maximum likelihood measures or (b) model selection criteria,
such as the AIC (Forster and Sober 1994; Sober 1994, 1999, 2008; Hitch-
cock and Sober 2004). Although Mayo and Sober disagree on basic as-
pects of theory justification (e.g., Need it be contrastive? How important
is it to evaluate and control for erroneous inferences of theory rejections
and theory likelihoods?), they agree that novel predictions are not necessary.

The historicist view and the screening-off logical view agree that sur-
prising, risky, and successful novel predictions, when they can be had, are
impressive.4 Under this cogent perspective, such predictions are sufficient
for theory justification, though they are still not necessary according to
screening-off philosophers. Predictive capacity (i.e., the ability to make

4. Even Carnap seems, at times, to agree—e.g., Carnap 1945, 93.
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surprising, risky, and correct novel predictions) is the theoretical virtue,
and aim that I focus on in the case studies.

3. Selectionist Hypotheses: Alternatives and Levels of Specificity. Popper
and his students critique evolutionary theory tout court for lacking pre-
dictive capacity. I focus on a lower level of specificity: the predictive
capacity of different types of theories within evolutionary theory. Alter-
natives to selectionist evolutionary theory include the following evolu-
tionary theories: (1) structural (Gould and Lewontin 1979), (2) devel-
opmental (Amundson 2005), and (3) historical contingency (Beatty 2006).
Selectionist evolutionary theory adopts empirical and methodological
adaptationism (Godfrey-Smith 2001):

Empirical adaptationism: “Natural selection is a powerful and ubiq-
uitous force, and there are few constraints on the biological variation
that fuels it. To a large degree, it is possible to predict and explain
the outcome of evolutionary processes by attending only to the role
played by selection. No other evolutionary factor has this degree of
causal importance” (2001, 336).

Methodological adaptationism: “The best way for scientists to ap-
proach biological systems is to look for features of adaptation and
good design. Adaptation is a good ‘organizing concept’ for evolu-
tionary research” (2001, 337).

Indeed, selectionist evolutionary theory is committed to (1) a single overall
genealogy and (2) natural selection as (a) the main mechanism of evo-
lutionary change and (b) the only mechanism that can be appealed to for
predicting and explaining adaptations (Darwin [1859] 2001).

But the story is complicated. First, selectionist evolutionary theory and
its models often exhibit each of the three theoretical virtues analyzed in
Section 2. Second, many causes are operative in evolution. Thus, selec-
tionist theory is not exhaustive (e.g., Beatty 1997; Winther 2008). It suc-
cessfully predicts only some sorts of evidence (ditto for its alternatives!).
Ultimately, a full evolutionary theory must integrate different kinds of
predictive theories, as well as distinct types of evidence.

4. Two Case Studies. The case studies show how, through its predictive
capacity, selectionist evolutionary theory can be successfully tested against
its alternatives.

4.1. Parallel Evolution in the Bacterium E. coli. Causal intervention in
the sense of controlled and randomized experiments can be used to ground
the predictive capacity of selectionist evolutionary theory. For 2 decades,
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Richard Lenski and coworkers have performed a remarkable set of ex-
periments on the bacterium E. coli. In 1988, Lenski founded 12 popu-
lations of E. coli from a single ancestral population. Each day, the bacteria
are transferred into new liquid media and are allowed to reproduce. They
exhaust the glucose in the media after approximately seven generations
(i.e., 8 hours). The bacteria then enter into a lag phase and “must wait
until their ’springtime’ appears again the next day” (Lenski 2004, 226).
The experiment has already surpassed 30,000 generations of bacteria.5

The external conditions are controlled. The selection regimes are thus
effectively isomorphic across the 12 lines. Evolutionary change can be
measured in the laboratory.

Various kinds of parallel evolutionary changes have been observed.
Each one of the 12 replicate populations has evolved larger-sized cells
(Lenski 2004). Every population has lost the ability to catabolize most
sugar sources other than glucose (e.g., each one is now unable to catabolize
ribose; Cooper et al. 2001). These traits correlate strongly with fitness
(Cooper and Lenski 2000; Lenski 2004). Moreover, the genetic architecture
underlying the traits is modified in impressively similar ways across the
12 populations (Cooper, Rozen, and Lenski 2003).

Parallel evolutionary change is readily predicted by selectionist evo-
lutionary theory. In fact, parallel evolution in diverse lineages with a
common ancestor is expected, and demanded, given similar selection pres-
sures. This prediction is

1. Risky: The absence of any significant parallel evolution would be a
falsification of selectionist evolutionary theory.

2. Surprising: Parallel evolution is not readily predicted under alter-
native theories/models such as historical contingency theory, which
emphasizes random genetic drift (RGD) as an evolutionary force.6

The novel prediction of parallel evolution in these experimental popu-
lations is a contrastive test of selectionist versus historical contingency
theory. As Cooper and colleagues observe, “Parallel evolution of a trait
across multiple lineages is often used as an indicator that the change is
adaptive and has been shaped by natural selection” (2001, 2834). Note
also that the data were not used to construct the predictions of either theory.
In short, defenders of the mechanism of selection should be relieved that
selectionist evolutionary theory shows this sort of predictive capacity.7

5. This number of generations is roughly equivalent to 750,000 years of human evolution.

6. However, perhaps novel predictions of other types of data will corroborate alternative
theories (Lenski and Travisano 1994; Beatty 2006).

7. Similar types of parallel evolution, under isomorphic experimental protocols, have
recently been found in yeast (Segrè et al. 2006).
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4.2. On the Endosymbiotic Origin of Eukaryotes. I now turn to a second
type of case in which comparative (i.e., phylogenetic) inference is used in
the context of selectionist evolutionary theory to formulate novel predic-
tions. Causal-experimental manipulations are not possible here.

A scientific controversy during the ’70s and ’80s concerned the evolution
of eukaryotic cells and their genome-containing organelles (e.g., mito-
chondria and chloroplasts) (Sapp 1994). There were two explicit alter-
natives:

1. The endosymbiotic theory, which postulated the serial union, and
uptake, of radically different sorts of prokaryotes over evolutionary
time (e.g., Margulis 1970, 1975, 1976).

2. A family of autogenous theories, which explained the internal origin
of genome-containing organelles through the “pinching off” of
membranes and subsequent intracellular sequestering of different
internal genomes and metabolic networks (e.g., Raff and Mahler
1972, 1975; Uzzell and Spolsky 1974; Cavalier-Smith 1975; Reijnders
1975; Taylor 1976).

Although both appealed to selection, they provided different explanations
and novel predictions.

Let me be very specific regarding the predictions made. Margulis (1975)
provides an impressive list of 15 predictions inferred from the endosym-
biotic theory. Natural selection is an explicit part of her framework (e.g.,
1975, 23). She claims that while “several” of the “experimentally verifiable
predictions are not absolute requirements of the theory, the phenomena
listed here would be much more likely consequences of the serial endo-
symbiotic theory than other suggested models of eukaryote organelle or-
igin (e.g., Raff and Mahler 1975)” (Margulis 1975, 28). Now, by observing
that they are “much more likely consequences,” she certainly considers
the novel predictions surprising. But by noting that they are not “absolute
requirements,” she downplays their risky aspect. Even then, it is clear
that four predictions were indeed risky: had they not been satisfied, Mar-
gulis’s theory would have been significantly weakened, even falsified. Here
are the novel predictions:

1. Eukaryote transformation (Margulis 1975, 29). “The phenomenon
of gene transfer from prokaryotes or eukaryotic donors to eukaryote
nuclei will be demonstrated.” Compare: “the integration of the en-
dosymbiont-proto-mitochondrion required wholesale transfer of
genes from the endosymbiont genome to an unrelated nuclear ge-
nome. A mechanism by which this end may have been achieved is
extremely difficult [!] to conceive” (Raff and Mahler 1972, 575–576).
Margulis’s surprising and risky novel prediction of gene transfer has
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been borne out; Raff and Mahler’s hypothesis has been falsified
(e.g., Adams and Palmer 2003; O’Malley and Dupré 2007).

2. The red algal thallus was a multicellular heterotroph that acquired
cyanelles (Margulis 1975, 28). The proto-red algae were hetero-
trophs. That is, they ingested other prokaryotes and did not syn-
thesize their own energy sources (e.g., sugars). They then entered
into selectively beneficial mutualisms with blue-green algae. Hence,
the “metabolic pathways and primary amino acid sequences” of their
“photosynthetic plastids” should resemble those of “blue-green al-
gae” and not those of red algae themselves, as the autogenous theory
predicted. This novel prediction has been amply corroborated (e.g.,
Oliveira and Bhattacharya 2000). It confirmed endosymbiosis and
helped falsify the family of autogenous theories.

3. Hybridization between organelles and free-living micro-organism
DNAs (Margulis 1975, 30). “Direct nucleic acid hybridization studies
will show homologies between organisms and organelles as sketched
in Fig. 1 [the reticulated phylogeny on p. 27].” This was the clincher
novel prediction. Consider three different genomes: (1) eukaryotic
nuclear DNA, (2) mitochondrial DNA, and (3) the DNA from a
contemporary free-living prokaryote hypothesized to be related to
the proto-mitochondria (i.e., a photosynthetic alphaproteobacteria).
Endosymbiosis predicts that (2) and (3) will be sister taxa, with (1)
as the outgroup. In contrast, autogeny predicts that (1) and (2) will
be the sister taxa, with (3) as the outgroup. Impressive gene sequence
analysis, which controlled for differential rates of evolution and
other confounding factors, has amply corroborated the novel pre-
dictions of endosymbiotic theory (e.g., Yang et al. 1985; Gray, Bur-
ger, and Lang 1999).

4. Anastomosing phylogenies (Margulis 1975, 30–31). “A consistent
phylogeny at higher taxonomic levels (such as is available for tra-
cheophytes and chordates) acceptable to botanists, zoologists and
microbiologists . . . will only be possible after acceptance of the
symbiotic theory. . . . Because of anastomosing [reticulating] rela-
tionships . . . the finalization of such a phylogeny may be difficult.”
Her surprising and risky novel prediction has been strongly con-
firmed. Endosymbiosis, and lateral gene transfer more generally,
makes a neatly divisional, hierarchical tree of life difficult to draw.8

In summary, Margulis’s 1975 paper presents a number of key surprising,
risky, and correct novel predictions. She relies on comparative data and
comparative inference to express the predictive capacity of her theory. At

8. See also Woese 2000; Doolittle and Bapteste 2007; and O’Malley and Dupré 2007.
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least one of the 15 predictions remains undecided: eukaryotic flagella stem
from a spirochaete symbiosis (Margulis 1975, 30). However, most have
been strongly supported. The predictive capacity of the endosymbiotic
theory, which relies on natural selection and on a novel way to think
about descent with modification—that is, reticulation—is strong.

5. Conclusion: Promises and Limits of Prediction. I have shown through
two case studies that predictive capacity is an important theoretical virtue
in selectionist evolutionary theory, contra the standard critiques it has
received.

Some caveats are in order. By no means do I believe that predictive
capacity is easily forthcoming in evolutionary theory, selectionist or oth-
erwise.9 It is hard work to make surprising, risky, and correct novel pre-
dictions for complex systems with strong historicity (see Pigliucci 2002).10

However, through a well-designed causal-experimental protocol, Lenski
managed to control and randomize experimental conditions in order to
test selectionist evolutionary theory. And despite complexity and histo-
ricity, endosymbiosis is widespread and produces robust historical signals:
gene transfers, gene homologies between eukaryotic organelles and related
free-living prokaryotes, and reticulating phylogenetic patterns. Given
these signals, comparative inference can be used to formulate novel pre-
dictions that test endosymbiotic selectionist theory.

There are other examples of the predictive capacity of selectionist evo-
lutionary theory that should be developed: (1) Neil Shubin’s prediction
of an eventually found transitional fossil (Shubin 2008), (2) Richard Al-
exander’s prediction of naked mole rats, (3) predictions made by sex-ratio
theory (e.g., Schuster and Wade 2003), and (4) predictions regarding the
structure and origin of the genetic code (e.g., Knight, Freeland, and Land-
weber 1999). Comparative inference is used for the first two predictions.
Given the importance of mathematical modeling and simulation for the
second two predictions, these require further philosophical exploration.
This is a preliminary report.

In short, in addition to explanatory unification and model fitting, pre-
dictive capacity (i.e., the ability to make surprising, risky, and correct

9. Nor even in theoretical physics (Putnam 1981).

10. Popper also accepts the difficulty of making predictions in systems that are not “well-
isolated, stationary, and recurrent” (1963, 339). He adds that “contrary to popular belief
the analysis of such repetitive systems is not typical of natural science” (340). However,
he also claims that “all theoretical sciences are predicting sciences” (339; see also “risky
predictions,” 36; “new kinds of test[s],” 118). He thus holds two views that do not fit
together comfortably: prediction is rare in science, yet it is also its hallmark. I will not
engage in exegesis here but merely note that it is the latter view that is most characteristic
of Popper and his students.
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novel predictions) is a central theoretical virtue of selectionist evolutionary
theory.
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