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Abstract An alternative conceptual setting of the basic system of inquisitive seman-
tics is presented. A situational interpretation of the proposed formalism is discussed.
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1 Introduction

Inquisitive semantics is a research program which has originated from an analysis of
questions, but currently is evolving towards a general theory of meaning.1 In this short
paper we propose an alternative conceptual setting of the basic propositional system of
inquisitive semantics, labelled InqB. Inquisitive entailment is retained in the setting,
but the concept of model used is more general.

Then we sketch a non-standard, “situational” interpretation of InqB.

2 InqB: The Canonical Account

InqB provides a new semantic framework for propositional languages.
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384 A. Wiśniewski

Let LP be a propositional language built over a non-empty set of propositional vari-
ables P , where P is either finite or countably infinite. The primitive logical constants
of the language are: ⊥,∨,∧,→. Well-formed formulas (wffs) of LP are defined as
usual.

On the canonical account of InqB, LP is supposed to be associated with the set of
suitable possible worlds, WP , being the model of LP . A possible world, in turn, is
conceived either as a subset of P or as a binary valuation of P . Regardless of which
of these solutions is adopted, WP is uniquely determined. When possible worlds are
conceptualized as sets of propositional variables, WP = ℘(P), i.e. the power set of
P . If, however, possible worlds are identified with indices, that is, binary valuations
of P , then WP is the set of all indices.

The intended area of applicability of InqB is the information exchange between
individuals. It is assumed that the expressions used are interpreted uniformly by the
parties involved. This is the main reason for which a language of the considered kind
is associated with exactly one model.

2.1 States, Support and Meaning

InqB defines the basic semantic categories in terms of support, being a relation between
a wff and a set of possible worlds. Sets of possible worlds are called states. They are
intuitively interpreted as representing information states. Singleton sets/states corre-
spond to information states of maximal consistent information, while WP corresponds
to the ignorant state, i.e. an information state in which no possible world is excluded.
∅ represents the absurd state. Formally, a state is a subset of WP .

Notation The letters A, B, C, D are metalanguage variables for wffs of LP , and the
letters X, Y are metalanguage variables for sets of wffs of the language. p is used
below as a metalanguage variable for propositional variables. The letters σ, τ , γ , with
or without subscripts, will refer to states.

Support is defined in InqB by the following clauses (we write “σ � A” for “state
σ supports wff A”; it is assumed that σ ⊆ WP ):

1. σ � p iff w(p) = 1 for any w ∈ σ ,
2. σ � ⊥ iff σ = ∅,
3. σ � (A ∧ B) iff σ � A and σ � B,
4. σ � (A ∨ B) iff σ � A or σ � B,
5. σ � (A → B) iff for each τ ⊆ σ : if τ � A then τ � B.

Negation is defined by:

¬A =d f (A → ⊥).

The definition of support generalizes the standard definition of truth of a wff in a world.
To see this, it suffices to put σ = {w} and then replace “{w} � A” with “A is true in
w”. We get the usual clauses defining truth of a wff in a world. As a result, classical
semantic concepts are definable in InqB. Let us stress, however, that, due to clauses
(4) and (5), support by a state does not amount to truth in each world of the state.
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Support and Sets of Situations 385

The account of meaning offered by inquisitive semantics is two-fold. The semantics
assigns to a wff its informative content and its inquisitive content. Both concepts are
defined in terms of support.

In the general setting of inquisitive semantics the informative content of a wff is
defined as the union of all states that support the wff. In the case of InqB, however,
the informative content of a wff A amounts to the truth set of A, that is, the set of
all the worlds from WP in which A is (classically) true. The inquisitive content of
A, in turn, is the family of all the states that support A. A wff A is inquisitive iff
the informative content of A does not support the wff A. In the case of InqB this
amounts to the following claim: the informative content of A does not belong to the
inquisitive content of A. The intuition which lies behind the concept of inquisitiveness
is: something more than the information the wff provides is needed to settle the issue
it raises. Wffs which are not inquisitive are called assertions. As for assertions, their
informative contents settle the issues they raise.

InqB (and inquisitive semantics in general) enables a differentiation between clas-
sical tautologies: some of them are inquisitive, while some others are not. Being a
question is a semantic property of a wff: A is a question iff the truth set of A equals
WP . Each question is a classical tautology, but some questions are inquisitive.

2.2 Remarks on Models

As we have mentioned above, on the canonical account the set of propositional vari-
ables P of LP uniquely determines the set of possible worlds WP associated with
the language; this set constitutes the model of LP . A moment’s reflection reveals that
when P is countably infinite, WP is uncountably infinite.2 Finite models exist only
for languages over finite sets of propositional variables, and countably infinite models
do not exist at all. Yet, InqB simulates information exchange in terms of elimination
of worlds from an (initial) information state. As WP represents the ignorant infor-
mation state, it follows that, in the case of languages over countably infinite sets of
propositional variables, arriving at states of maximal consistent information (which
are singleton sets) requires an elimination of uncountably many possible worlds. On
the other hand, as long as we stay within the realm of Classical Recursion Theory,
there is no recursive function whose domain is an uncountably infinite set. Thus when
we deal with a language over infinite set of propositional variables/atoms, there is no
algorithmic procedure which leads from the ignorant information state to a state of
maximal consistent information. This is a strong philosophical claim stemming from
conceptual decisions only.

3 InqB: An Alternative Account

In this section we propose an alternative conceptual setting of InqB within which
inquisitive entailment is retained, but the concept of model is generalized.

2 The reasons are simple. First, there exist uncountably many subsets of a countably infinite set. Second,
there exists a 1–1 correspondence between indices defined over countably infinite set P and countably
infinite sequences of logical values, 1 and 0, and there exist uncountably many such sequences.
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Definition 1 (ι-model) An ι-model of LP is a structure:

〈W, V 〉 (1)

where W �= ∅ and V : P × W → {1, 0}.
The set W will be called the domain of the corresponding ι-model. W can be thought of
as a set of possible worlds. However, Definition 1 is neutral w.r.t. the controversy what
possible worlds are. The only condition imposed on W is non-emptiness. Thus the
cardinality of ι-models is not determined by the cardinality of P . Needless to say, there
exist ι-models of any cardinality, and many ι-models of a given cardinality. Moreover,
it is not excluded that W contains possible worlds which are indistinguishable with
respect to the valuation function V .

Remark We use the term “ι-model” for clarity only. Structures of the form (1) are
often employed in semantics. For example, they are used as models of (propositional)
S5.

Let M = 〈W, V 〉 be an ι-model. By a M-state we mean a subset of W . An
expression of the form “σ �M A” reads “M-state σ supports wff A”. The support
relation �M is defined by:

Definition 2 (Support in an ι-model) Let σ ⊆ W .

1. σ �M p iff V (p, w) = 1 for each w ∈ σ ,
2. σ �M ⊥ iff σ = ∅,
3. σ �M (A ∧ B) iff σ �M A and σ �M B,
4. σ �M (A ∨ B) iff σ �M A or σ �M B,
5. σ �M (A → B) iff for each τ ⊆ σ : if τ �M A then τ �M B.

Inquisitive negation is introduced by:

¬A =d f (A → ⊥).

Thus we get:

(neg) σ �M ¬A iff for each τ ⊆ σ such that τ �= ∅ : τ ��M A.

Remark The concept of support is defined similarly as in the standard setting (see
page 2); we have only added a relativization to M.

Note that support by a M-state does not amount to truth in each world of the
state: the clauses for disjunction and implication (as well as for negation) are more
demanding. The following holds:

Corollary 1 (Persistence) If σ �M A, then τ �M A for any τ ⊆ σ .

As a consequence we get:

Corollary 2 If σ �M A, then {w} �M A for each w ∈ σ .

The converse of Corollary 2 does not hold.
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Since we operate with ι-models, the respective semantic concepts of InqB become
relativized to models. For clarity, we begin with:

Definition 3 (Truth in a world of an ι-model) M, w |� A iff {w} �M A.

Definition 4 (Truth set in an ι-model) |A|M = {w ∈ W : M, w |� A}.
Definition 5 (Inquisitive content in an ι-model) Let W be the domain of an ι-model
M.

‖A‖M = {σ ⊆ W : σ �M A}.

One can prove:

Corollary 3 ‖A‖M = {σ ⊆ |A|M : σ �M A}.
Corollary 4 ∅ ∈ ‖A‖M for any wff A and any ι-model M.

For brevity, we introduce:

Definition 6 σ �M X iff σ �M B for each B ∈ X .

3.1 Inquisitive Entailment

Inquisitive semantics defines entailment in terms of meaning inclusion: a wff A (inquis-
itively) entails a wff B iff the informative content of A is included in the informative
content of B and the inquisitive content of A is included in the inquisitive content of
B. However, in the case of InqB the second clause yields the first. Let us designate by
‖C‖ the inquisitive content of wff C w.r.t. the canonical model WP . More precisely:

‖C‖ = {σ ⊆ WP : σ � C}.

As for InqB, inquisitive entailment, |�InqB, can thus be defined as follows:

Definition 7 (Inquisitive entailment) X |�InqB A iff
⋂

B∈X
‖B‖ ⊆ ‖A‖.

Let us now prove that inquisitive entailment can be characterized in terms of ι-
models.

Theorem 1 X |�InqB A iff for each ι-model M = 〈W, V 〉 and each M-state σ : if
σ �M X, then σ �M A.

Proof It suffices to prove that a state of an ι-model supports (in the model) all the wffs
in X but does not support A if, and only if there exists a subset of WP which supports
X and does not support A—regardless of whether WP comprises indices or sets of
propositional variables.
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(⇒) Suppose that for some ι-model M = 〈W, V 〉 and some M-state σ it holds
that σ �M X and σ ��M A. For each w ∈ W , let us assign to w the index/valuation,
vw, defined by:

vw(p) = V (p, w), for any p ∈ P (2)

Let � be the set of indices assigned, in the above manner, to the elements of W . Given
the assignment, there exists a surjection f : W |→ �, such that:

f (w) = vw (3)

We define:

f [σ ] =d f { f (w) : w ∈ σ } (4)

f [σ ] is the image of σ under f . Clearly:

(a) f [σ ] = ∅ iff σ = ∅,
(b) if w ∈ σ , then vw ∈ f [σ ],
(c) if τ ⊆ σ , then f [τ ] ⊆ f [σ ].
Consider the following ι-model:

M∗ = 〈�, V ∗〉 (5)

where V ∗(p, f (w)) = f (w)(p). One can prove by induction that the following:

σ �M B iff f [σ ] �M∗ B (6)

holds for any M-state σ and each wff B.
Let B = p. We have:

σ �M p iff

∀w ∈ σ : V (p, w) = 1 iff

∀w ∈ σ : f (w)(p) = 1 iff

∀v ∈ f [σ ] : V ∗(p, v) = 1 iff

f [σ ] �M∗ p

Let B = ⊥. We get:

σ �M ⊥ iff σ = ∅ iff f [σ ] = ∅ iff f [σ ] �M∗ ⊥

Let B be of the form C → D.
Induction hypothesis. For any M-state σ :

σ �M C iff f [σ ] �M∗ C

σ �M D iff f [σ ] �M∗ D (7)
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Suppose that f [σ ] ��M∗ (C → D). So there exists γ ⊆ f [σ ] such that γ �M∗ C
and γ ��M∗ D. Since γ ⊆ f [σ ], for some τ ⊆ σ we have γ = f [τ ]. Hence, by the
induction hypothesis, σ ��M (C → D).

Suppose that σ ��M (C → D). Thus there exists a M-state τ ⊆ σ such that
τ �M C and τ ��M D. Clearly, f [τ ] ⊆ f [σ ]. Thus, by the induction hypothesis,
f [σ ] ��M∗ (C → D).

The cases of disjunction and conjunction are straightforward.
Since (6) holds, we get:

f [σ ] �M∗ X and f [σ ] ��M∗ A (8)

Assume that WP is the set of indices (i.e. valuations of P). Clearly, f [σ ] ⊆ WP .
By (2), (3), and (4) we get:

f [σ ] �M∗ p iff f [σ ] � p (9)

Thus the following can be easily proven:

f [σ ] �M∗ B iff f [σ ] � B (10)

where B is any wff. Hence, by (8),
⋂

B∈X ‖B‖ �⊆ ‖A‖ and thus X �|�InqB A.
Now assume that WP = ℘(P). Each index, v, in f [σ ] uniquely determines a

subset, Pv , of P such that Pv = {p ∈ P : v(p) = 1}. Let P f [σ ] stand for the set of
subsets of P determined by f [σ ]. Consider the following ι-model:

M∗∗ = 〈P f [σ ], V ∗∗〉 (11)

where V ∗∗(p,Pv) = 1 iff p ∈ Pv , for each v ∈ f [σ ]. One can easily prove that the
following:

f [σ ] �M∗ B iff P f [σ ] �M∗∗ B (12)

holds for any wff B. Hence, by (8):

P f [σ ] �M∗∗ X and P f [σ ] ��M∗∗ A (13)

But P f [σ ] ⊆ ℘(P) and the following holds:

P f [σ ] �M∗∗ p iff p ∈ Pv for each v ∈ f [σ ] iff P f [σ ] � p (14)

One can prove by induction that for each wff B:

P f [σ ] �M∗∗ B iff P f [σ ] � B (15)

Thus, by (13), X �|�InqB A.
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(⇐) Suppose that X �|�InqB A. Thus
⋂

B∈X ‖B‖ �⊆ ‖A‖. Hence there exists a
subset σ of WP such that σ � X and σ �� A.

Assume that σ is a set of indices. We consider the following ι-model:

M� = 〈σ, V �〉 (16)

where V �(p, v) = 1 iff v(p) = 1, for each v ∈ σ . One can easily prove by induction
that for any wff B:

σ � B iff σ �M� B (17)

Hence σ �M� X and σ ��M� A.
Assume that σ ⊆ ℘(P). Take the following ι-model:

M�� = 〈σ, V ��〉 (18)

where V ��(p, v) = 1 iff p ∈ v, for each v ∈ σ . As above, it can be shown that
σ �M�� X and σ ��M�� A. ��

As a consequence of Theorem 1 we get:

Corollary 5 |�InqB A iff for each ι-model M and each M-state σ : σ �M A.

Thus the conceptual setting proposed in this section is adequate for InqB: it retains
inquisitive entailment and the propositional logic determined by InqB is complete
w.r.t. the ι-models semantics.

Remarks As for the standard setting of InqB, a language of the considered kind is
associated with exactly one model, the canonical model (see Section 2 for details).
When LP is a language built over a set of propositional variables P , the model of
the language is just WP . The proof of Theorem 1 shows that WP corresponds to
an ι-model, MP , whose domain is WP , and for which we have �=�MP , that is,
support in the canonical model WP set-theoretically equals support in MP .3 Hence
the basic concepts of InqB, in particular inquisitiveness and informativeness, usually
defined in terms of the canonical model, are definable in terms of ι-models. Note
that the domain of MP can be thought of as representing the ignorant information
state.

4 A Situational Account of InqB

The elements of domains of ι-models have been so far intuitively construed as possi-
ble worlds. The only formal restriction imposed on domains of ι-models was non-
emptiness. Support is a relation between wffs and sets of elements of domains,
that is, intuitively, sets of possible worlds. In this section we are going to define

3 When WP comprises indices, the valuation function, V , of MP is defined by: V (p, v) = 1 iff v(p) = 1.
If WP = ℘(P), we put V (p, v) = 1 iff p ∈ v.
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the concept of truth of a wff in a possible world in terms of support. Clearly, this
requires a new way of thinking about ι-models and a non-standard account of possible
worlds.

4.1 Intuitions

The domain of an ι-model is a non-empty set. It is not excluded that the domain
contains elements which are indistinguishable w.r.t. the valuation function, V , of the
model: it may happen that for some distinct elements, w and w′, of the domain, we
have V (p, w) = V (p, w′) for each propositional variable p of the language in ques-
tion. Now think of elements of the domain of an ι-model as situations, and of the
valuation function V as follows: “V (p, w) = 1” means “p holds in situation w”,
while the meaning of “V (p, w) = 0” is: “it is not the case that p holds in situation
w”.4 We do not attempt to define situations in general. As Devlin (1991, p. 70) puts it,
“Situations are just that: situations”. Yet, we tend to think that situations are, at least
partially, determined by subjective factors. An agent categorizes the world according
to his/her conceptual apparatus, and conceptualizes some phenomena as situations.
But which phenomena are conceived as situations and which are not depends on an
agent’s decisions, though rarely conscious ones. Our only assumption concerning
the realm of situations is: there may exist different situations which, nevertheless,
agree on the level of “atomic facts”. Thus situations are not supposed to be deter-
mined by the ”atomic facts” that hold in them (by the logical values of propositional
variables). This assumption reflects the underlying idea that situations are predomi-
nantly epistemic constructs and, as such, are dependant upon an agent’s propositional
attitudes and conceptual framework. However, if you are inclined to think of situa-
tions in purely ontic terms, the above assumption makes room for an indeterministic
perspective.

At a given moment only some situations constitute the “point of reference” of an
agent’s cognitive or epistemic activities. The set of such situations can be labelled
as “the (epistemic) world of situations the agent lives in (at a given moment)” and
identified with a possible world. To be more precise, we construe the domain, W , of
an ι-model 〈W, V 〉 as a single possible world, Ŵ , comprising all the situations from
W .5 In order to keep things simple M-states different from W (i.e. proper subsets of
the domain) are not regarded as possible worlds.6

4 Observe that V (p, w) = 0 does not yield “¬p holds in w’, as V is defined only for atoms/propositional
variables.
5 Possible worlds in our sense are thus not situations, but sets of situations. Assuming that we are speaking
about well-founded sets, no possible world is a situation. In order to avoid this consequence one can turn
to a set theory that allows for non well-founded sets (e.g. Aczel’s theory). In this setting Ŵ would be the
non well-founded set which, besides the elements of W , has also W as a member. It would make no harm
to stipulate that V (p, W ) = 1 iff V (p, w) = 1 for any w ∈ W such that w �= W .
A different version of an uncommitted “situational” semantics in which an assignment of a set of situations
to a wff plays the basic role can be found in Wiśniewski (1997); see Wiśniewski (2013), pp. 33–45 for an
English translation.
6 Of course, each non-empty M-state different from W can serve as the domain of another ι-model and
thus determine another world. Our construction is not ontologically loaded.
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4.2 Truth

What about truth? Let us introduce a certain auxiliary concept.

Definition 8 (Truth in an ι-model) A wff A is true in an ι-model M (in symbols:
M |� A) iff σ �M A for each M-state σ .

Note that the concept of truth in an ι-model is defined in terms of support. Since
Corollary 1 holds, one can easily prove:

Corollary 6 Let W be the domain of an ι-model M.

M |� A iff W �M A.

Thus a wff is true in an ι-model just in case it is supported by the domain of the
model. But recall that the (classical) truth of A in each w ∈ W does not warrant that
W supports A: the concept of support is stronger.

The domain, W , of an ι-model M = 〈W, V 〉 corresponds to a single possible world,
Ŵ (construed in the sense described above). Let us now assume that truth in Ŵ equals
truth in M = 〈W, V 〉. We get the following characteristics of the resultant concept of
truth:7

Corollary 7 Let “Ŵ |� A” abbreviate “A is true in Ŵ ”.

1. Ŵ |� p iff ‖p‖M = ℘(W ),
2. Ŵ |� (A → B) iff ‖A‖M ⊆ ‖B‖M,
3. Ŵ |� (A ∨ B) iff ‖A‖M = ℘(W ) or ‖B‖M = ℘(W ),
4. Ŵ |� (A ∧ B) iff ‖A‖M = ℘(W ) and ‖B‖M = ℘(W ),
5. Ŵ |� ¬A iff ‖A‖M = {∅}.

Clause (1) yields that an atomic sentence/propositional variable p is true in Ŵ iff
p holds in each situation being an element of W . (2) states that an implication is true
in Ŵ just in case each set of situations included in W that supports the antecedent also
supports the consequent. (3), in turn, says that a disjunction is true in Ŵ iff each set of
situations included in W supports a disjunct, while (4) states that a conjunction is true
just in case each set of situations included in W supports both conjuncts. According to
(5), a negation is true in Ŵ iff the empty set is the only set included in W that supports
the negated wff.

Needless to say, it can happen that a wff (even an atom/propositional variable!) is
not true in Ŵ and its negation is also not true in Ŵ .

So far so good. But the key assumption has been: support is defined as in InqB.
Let us now test the consequences of this assumption against some natural-language
examples.

Let W be a non-empty set of situations. Take the following sentence:

John is irritated. (19)

7 Recall that ‖A‖M is the set of all M-states that support A.
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For simplicity, assume that “John” is a rigid designator w.r.t. elements of W . The
sentence (19) is true in Ŵ just in case John is irritated in each situation from W , and
untrue otherwise.

Now let us analyse:

If John is irritated, then his cat is nervous. (20)

Observe that the truth of (20) in Ŵ does not require any of “John is irritated” and “John’s
cat is nervous” be true in Ŵ . (20) is true in Ŵ just in case each set of situations included
in W that comprises situations in which John is irritated is also a set of situations in
which John’s cat is nervous. Thus an implication can be true in Ŵ although neither its
antecedent nor its consequent is true in Ŵ .8 Is this an acceptable consequence? Well,
think of counterfactuals and defaults.

Consider, in turn:

John is not irritated. (21)

where “not” is construed as sentential negation. (21) is true in Ŵ iff no situation in
which John is irritated belongs to W .

Next, let us consider:

John is irritated and his cat is nervous. (22)

(22) is true in Ŵ just in case each set of situations included in W supports both
conjuncts. Since the conjuncts are atomic sentences, it follows that (22) is true in Ŵ
iff John is irritated in each situation from W and his cat is nervous in each situation
from W.

Let us analyse:

If John stays at home, then if John is irritated, his cat is nervous. (23)

One can easily prove that a formula of the form A → (B → C) is supported by a state
if and only if the corresponding formula A∧ B → C is supported by the state.9 Hence
(23) is true in Ŵ just in case each set of situations from W that comprises situations
in which John stays at home and is irritated is also a set of situations in which John’s
cat is nervous.

Now let us consider:

John is irritated or his cat is nervous. (24)

8 Recall that “A is not true in Ŵ ” means “there is a subset of W that does not support A”, and this is not
tantamount to “¬A is true in Ŵ ”.
9 For, suppose that σ �M (A → (B → C)), but σ ��M (A∧B → C). Hence for some τ ⊆ σ : τ �M A,
τ �M B and τ ��M C . Thus τ �M A and τ ��M (B → C), that is, σ ��M (A → (B → C)).
Now suppose that σ ��M (A → (B → C)). It follows that for some τ ⊆ σ : τ �M A and τ ��M
(B → C). Hence for some τ ′ ⊆ τ : τ ′ �M B and τ ′ ��M C . Therefore τ ′ �M (A ∧ B) and thus
σ ��M (A ∧ B → C).
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(24) is true in Ŵ iff John is irritated in each situation from W or John’s cat is nervous
in each situation from W . Interestingly enough, the “inquisitive” feature of disjunc-
tion disappears in the current setting: what we have got resembles the “disjunction
property” known from Intuitionistic Logic, but this time pertaining not only to the-
ses/theorems.

Let us analyse:

If John stays at home or John is irritated, then his cat is nervous. (25)

Now the claim is: each set of situations that comprises situations in which John stays
at home is also a set of situations in which his cat is nervous, and each set of situ-
ations that comprises situations in which John is irritated is also a set of situations
in which his cat is nervous. The reason is that a formula of the form A ∨ B → C
is supported by a state iff the formula (A → C) ∧ (B → C) is supported by the
state.

The case of:

If John is irritated when staying at home, then his cat is nervous. (26)

interpreted as an instance of (p → q) → r , is, despite the non-classical meaning of
negation, similar. One can prove that a formula of the form (A → B) → p (where
p is a propositional variable) is supported by a state just in case the corresponding
formula (¬A → p) ∧ (B → p) is supported by the state.10 Thus the claim of (26)
is: each set of situations that does not include a situation in which John stays at home
is also a set of situations in which his cat is nervous, and each set of situations that
comprises situations in which John is irritated is also a set of situations in which his
cat is nervous.

Finally, let us consider:

If John’s cat is nervous, then John does not stay at home

or John is irritated. (27)

The claim of (27) is: each set of situations that comprises situations in which John’s
cat is nervous is also a set of situations that does not include a situation in which John
stays at home or each set of situations such that John’s cat is nervous in any of these
situations is also a set of situations in which John is irritated.

It seems that the results of the above considerations comply with intuitions.

10 Let σ �M ((A → B) → p), but σ ��M (¬A → p) ∧ (B → p). Thus: (a) σ ��M (¬A → p) or
(b) σ ��M (B → p). If (a) holds, then there exists τ ⊆ σ such that τ �M ¬A and τ ��M p. Hence
M, w �|� p for some w ∈ τ , and, simultaneously, M, w |� ¬A. Therefore M, w �|� ((A → B) → p)

and hence σ ��M ((A → B) → p). As for (b), we reason analogously.
Let σ �M (¬A → p) ∧ (B → p), but σ ��M ((A → B) → p). Hence for some τ ⊆ σ we have:
τ �M (A → B) and τ ��M p. Thus M, w �|� p for some w ∈ τ . Therefore, by the initial assumption
and Corollary 1 we get: M, w |� A as well as M, w |� ¬B. On the other hand, if τ �M (A → B) and
w ∈ τ , then M, w |� (A → B). A contradiction.
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4.3 Inquisitive Entailment Again

Inquisitive entailment viewed from the canonical point of view warrants the transmis-
sion of support. It can be proven, however, that inquisitive entailment also warrants
transmission of truth understood in the above-sketched manner.

Theorem 2 X |�InqB A iff A is true in each ι-model in which all the wffs in X are
true.

Proof For conciseness, let “M |� X” abbreviate “M |� B for each B ∈ X”.
(⇒) By Theorem 1 and Corollary 6.
(⇐) Suppose that A is true in each ι-model in which all the wffs in X are true. Let

M = 〈W, V 〉 be an arbitrary but fixed ι-model. Hence M satisfies the condition:

if M |� X, then M |� A (28)

By Corollary 6 we get:

if W �M X, then W �M A (29)

Suppose that for some M-state σ we have:

σ �M X and σ ��M A (30)

Since σ ��M A, σ �= ∅. Consider the following ι-model

M∗ = 〈σ, V ∗〉 (31)

where V ∗(p, w) = V (p, w) for any w ∈ σ . By Corollary 6 we get:

M∗ |� X and M∗ �|� A (32)

On the other hand, by assumption each ι-model which makes true all the wffs in X
makes true A as well. Thus:

M∗ |� A (33)

We arrive at a contradiction. Hence the following condition holds:

for each M-state σ : if σ �M X, then σ �M A (34)

Recall that M is an arbitrary ι-model. Thus the analogue of (34) holds for any model
for which the analogue of (28) is true. By assumption, the latter is true for each ι-model.
Hence, by Theorem 1, X |�InqB A. ��
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5 Concluding Remarks

Inquisitive semantics in general, and InqB in particular have been designed as tools
of modelling information exchange. This explains some peculiarities of the canonical
account of InqB. A language in question has only one model since the “meanings”
of the expressions used are supposed to be uniform. An information state of maximal
consistent information is assumed to be reachable by linguistic means, and since states
of this kind are modelled as singleton sets of worlds, one has to construe possible worlds
in a way that excludes the existence of different worlds which agree on the values of
propositional variables. Conceiving possible worlds as indices or sets of propositional
variables secures this.

As for the ι-models semantics for InqB proposed in this paper, a language in question
has many models, and elements of domains need not be distinguishable in terms of
valuations. It is an open problem whether, and if so, how the alternative conceptual
setting can be profitably used in the modelling of information exchange. Yet, as we
have shown, the ι-models approach is more general but still retains InqB-entailment,
and, on the other hand, facilitates the use of the formalism outside the realm of its
intended applicability.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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