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Abstract

The simulation hypothesis has recently excited renewed interest, espe-
cially in the physics and philosophy communities. However, the hypothe-
sis specifically concerns computers that simulate physical universes, which
means that to properly investigate it we need to couple computer science the-
ory with physics. Here I do this by exploiting the physical Church-Turing
thesis. This allows me to introduce a preliminary investigation of some of
the computer science theoretic aspects of the simulation hypothesis. In par-
ticular, building on Kleene’s second recursion theorem, I prove that it is
mathematically possible for us to be in a simulation that is being run on a
computer by us. In such a case, there would be two identical instances of us;
the question of which of those is “really us” is meaningless. I also show how
Rice’s theorem provides some interesting impossibility results concerning
simulation and self-simulation; briefly describe the philosophical implica-
tions of fully homomorphic encryption for (self-)simulation; briefly inves-
tigate the graphical structure of universes simulating universes simulating
universes, among other issues. I end by describing some of the possible
avenues for future research that this preliminary investigation reveals.

He didn’t know if he was Zhuang Zhou dreaming he was a butterfly,
or a butterfly dreaming that he was Zhuang Zhou.

— Zhuangzi, chapter 2 (Watson translation [60])
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1 Introduction

1.1 Background
The “simulation hypothesis” is an intriguing concept that in one or form or another
has existed for thousands of years, in many human cultures. Since the advent
of powerful digital computers over the last two decades, it has excited renewed
interest among physicists as well as philosophers of science.

This modern iteration of the hypothesis has many versions that vary in their
precise details. However, the central idea is that some portion of a physical uni-
verse, including some conscious reasoning agents that exist in that cosmological
universe, might in fact be part of a simulation being run in a physical computer of
some super-sophisticated race of aliens [12, 31, 20]. Under the simulation hypoth-
esis, those agents would be variables evolving in a computer program running in a
physical computer designed by such a putative super-sophisticated race of aliens.
In particular, it might be that a portion of our cosmological universe is being sim-
ulated this way, so that we are variables evolving in some simulation computer.
The vague implication is that if we are in fact a simulation, then we do not have
any sort of “objective reality”. Moreover, much of philosophy of science, going
back to Kant (at least), would be rendered moot if we are simulations. In partic-
ular, this would happen to many of the flavors of “*** realism”, which suppose
there “exists” some “real” physical truth which is not reducible to a mathemati-
cal formalism, but instead is somehow “concrete”, non-mathematical in its very
essence — and so not just a computer algorithm.1

The central idea of the simulation hypothesis has been extended in an obvious
manner, simply by noting that the aliens that simulate our universe might them-
selves be a simulation in the computer of some even more sophisticated species,
and so on and so on, in a sequence of ever-more sophisticated aliens. Similarly,
going the other direction, in the not too distant future we might produce our own
simulation of a universe running in some future computer that we will create, a
simulation complete with variables that constitute “conscious, reasoning agents”.
Indeed, we might produce such a simulation in which the reasoning agents can
produce their own simulated universe in turn, etc. So in the near future, there
might be a sequence of species’, each one with a computer running a simulation
that produces the species just below it in the sequence, with us somewhere in the
“middle” of that sequence.

The literature of the last few decades on the simulation hypothesis has fo-
cused almost exclusively on whether we, in our universe are such a simulation.

1Arguably, the simple fact that the simulation hypothesis is logically consistent, but if true
would imply that there is no such “concrete”, non-mathematical reality, establishes that it is im-
possible to establish the logical necessity of any of these flavors of realism,
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This question is answered rather trivially if we adopt the view of ontic structural
realism, especially if that view is formalized in terms of Tegmark’s level IV mul-
tiverse [58, 59]: yes, in some universes we are a simulation, and no, in some other
universes we are not. It is not an either / or ’nuf said. (See also [16, 48].)

Even if we subscribe to the idea of a level IV multiverse though, there are sev-
eral research directions one can pursue. Some people have focused on ascribing
probabilities to the specific hypothesis that we, in our universe, are programs in
such a simulation [12, 20, 34]. In the language of the level IV multiverse, these
researchers have asked what the relative probabilities are of the set of all universes
in which we are programs in a simulation and the set of all universes in which we
are not.

These investigations of relative probabilities all beg (many) questions, about
what such probabilities might actually mean, formally. (Just as there are such
questions concerning the idea of ascribing probabilities to the universes in a level
IV multiverse in general.) How does one ascribe a measure, obeying the Kol-
mogorov axioms based on some associated sigma algebra, to a collection of event
each of which is a universe? Note that it is not even clear that this collection would
be a set, rather than a proper class of some sort. Directly reflecting such problems,
one could not experimentally assess any proposed value of such a probability, e.g.,
with a proper scoring rule. 2 See [61] for some related arguments.

More prosaically, many papers considering such probabilities assume, implic-
itly or otherwise, that there is some way to assign a uniform probability to all
universes. It is proven below in Section 2.4 that this is mathematically impossi-
ble in the kind of universes considered in this paper (which, one might argue, is
the kind of universes considered in these other papers). One might imagine that
rather than a uniform probability distribution, one could assign some sort of Can-
tor (“fair coin”) measure to the set of possible universes, as is done for example
in algorithmic information theory. However, it is proven in Section 7 that it is
impossible to assign a Cantor measure to a set of universes defined by a natural
and interesting set of restrictions.

In contrast to this work on the probability that we are living in a simulation,
some physicists have focused on whether there might be ways of experimentally
determining whether our universe is a program in a simulation [13, 11, 9]. Work
in this vein can only provide partial answers to the question of whether we are
a simulation, at best. For example, some of this work first make the assumption
that the simulating computer is digital, and so cannot fully faithfully represent real
numbers. (And also assumes that the state space of our universe is uncountably

2One might try to use a Bayesian “degree of belief” interpretation of probability to circumvent
this issue. However, without any decision that would be made based on the probability assigned,
and associated loss function, one could not apply Bayesian decision theory. So it is hard to see
how “degree of belief” is meaningful in this case.
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infinite, rather than being countable.) Other work in this vein investigates possible
empirically observable effects of “bugs” in the code being run by the simulating
computer.

Yet others have considered issues concerning the simulation hypothesis that
might charitably be characterized as “philosophical” in nature [32, 21, 26], at
least in that they do not involve mathematical reasoning of any sort.

Note though that the simulation hypothesis explicitly asks whether one uni-
verse (e.g., ours) might be a computer simulation being run in some (perhaps
different) universe. Strangely, despite its being formulated this way, there is al-
most no previous work investigating the simulation hypothesis using the tools of
computer science (CS) theory, or related fields like logic theory.

One earlier set of semi-formal results along these lines was presented in [64].
Some of those results define “simulation” in terms of the relationship between
languages at different levels of the time, polynomial, or exponential hierarchies
of CS theory, and some define “simulation” in terms of the relationship between
languages at different levels the arithmetic or analytic hierarchies of logic, or sim-
ilar constructions [22, 5, 30]. Other results in that paper define “simulation” in
terms of the relationship between computational machines with different Turing
degrees [57, 54]. Yet others consider the application of Gödel’s second incom-
pleteness theorem, defining simulation in terms of languages (in the logic theory
sense) with nested sets of axioms.

None of those results consider what it means for a computational machine
to simulate a physical universe, per se. There is no concern for “coupling” the
mathematics of CS theory to the laws of physics of our universe. One natural way
to address this lacuna is to use a particular formalization of the physical Church-
Turing thesis (PCT), and a closely related thesis which I call the reverse PCT
(RPCT). That is the approach I adopt in this paper.3 Specifically, in this paper I
will say that the PCT applies to a particular (portion of a) universe if the dynamics
of that (portion of a) universe can be implemented on a Turing machine (TM).
The RPCT instead says that any desired TM can be implemented by the dynamics
of the universe in question, by appropriate choice of the initial conditions of that
universe.

1.2 General comments
It is important to emphasize that in this paper I do not assume that the PCT applies
to our actual physical universe. I do not even restrict attention to those universes

3The reader unfamiliar with TMs and associated concepts like Universal Turing machines
(UTMs), instantaneous descriptions (ID) of the state of a TM and its tapes, prefix-free encodings,
etc., should consult Appendix A for appropriate background.
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that obey the laws of physics of our actual universe, as we currently understand
those laws. The focus is instead more general, considering what CS theory has to
say about any universe containing a computer that runs a simulation of a universe.
In particular, in this paper I am only concerned with establishing the logical possi-
bility of a physical system V that can (contain a computer that can) simulate some
universe V ′. I do not investigate the possibility of such a system under the laws
of physics as currently understood — never mind the even more narrowly defined
question of whether there is such a physical system in our universe, evolving in a
manner consistent with the laws of physics as currently understood.

It is also important to emphasize that although I will frequently refer to the
computer in a universe as a (U)TM, I do not mean that it is a physical system
consisting of a set of infinite tapes with associated heads, etc. Rather I just mean
that it has the properties of a (U)TM, i.e., that it is computationally universal. I
then choose to discuss this computational system as though it were implemented
as a (U)TM. So for example, the universe could be a laptop with a memory that
can be extended dynamically an arbitrary finite amount an arbitrary number of
times as it runs. (See Section 2.6 below for a detailed example of how a subset of
the specific universe occupied by us humans fits into this framework.)

Furthermore, there is no semantics in this paper, only syntax (in the terminol-
ogy of the foundations of mathematics). There are no structure functions, models,
etc. Concretely, this means that there is no distinction between universes that are
“real” and those that are “only simulations”. This reflects the viewpoint of the
simulation hypothesis itself. Formally, in this paper this lack of explicitly distin-
guishing real from non-real universes is possible due to my exploiting the physical
Church-Turing thesis.

1.3 Contributions
I begin in Section 2 by presenting the mathematical framework I will use in this
paper. I then use that to framework to formally define “simulate” in a way that
can apply to any pair of dynamical systems, with no restrictions to the laws of our
particular universe. Next, I formally define the PCT in terms of the mathematical
framework, as well as the RPCT. These definitions provide the first formalization
of the simulation hypothesis, as well as the the first fully generalization formaliza-
tion of the PCT, applicable to arbitrary universes, not just ours. These definitions
also provide the first fully general distinction of the PCT from the RPCT. To help
the reader ground the discussion, I also sketch a way to relate the “computers”
considered in these definitions to physical subsystems of our actual universe.

In the next section I explicitly prove that if a universe V ′ obeys the PCT, and a
universe V obeys the RPCT, then V can simulate V ′. I end that section by describ-
ing several arguments based on this result that one might suppose disprove the
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possibility of self-simulation, i.e., which prove that we could not be simulations
in a computer that we ourselves run.

In Section 4 I use Kleene’s second recursion theorem to address these argu-
ments.4 I use that theorem to prove that in fact we could be simulations in a com-
puter that we ourselves run. Specifically, I show that if a universe V obeys both
the PCT and the RPCT, then it can simulate itself, according to the formal defini-
tion of “simulate” provided in Section 2.2. I call this the self-simulation lemma. I
then describe several important formal features of the self-simulation lemma, and
present an example of how self-simulation might arise with advanced versions of
our current laptops. I end this section by describing how self-simulation is a far
deeper connection between an entity and itself than arises in all the earlier versions
of self-reference considered in the mathematics literature.

In the following section I present several mathematical properties of the num-
ber of iterations taken to simulate one’s one dynamics a given time ∆t into the
future. Some of these involve requirements that the time taken to simulate ∆t into
one’s own future does not decrease with ∆t, for any specific pair of values of ∆t.
Other properties involve the time-complexity of self-simulation, i.e., how much
longer than a time ∆t it takes to simulate a universe’s evolution up to a time ∆t in
the future.

The next section, Section 6 starts with a a discussion of some of the peculiar
philosophical implications of the simulation lemma, and especially of the self-
simulation lemma, for notions of identity. In particular, that section contains a
discussion of the fact that self-simulation does not just mean that you create some
doppelganger of yourself, a clone of yourself, which has autonomy and starts to
evolve differently from you once it has been created. Self-simulation does not
mean something akin to your stepping into a variant of the Star Trek transporter
which creates a copy of you at some other location while the original you still
exists. Rather than such cloning of yourself, self-simulation means that you run a
program on a computer which implements the exact same dynamics as your entire
universe, the universe that contains both you and your computer. So in particular,
that universe being simulated in a program running in your computer N contains
an instance of you who, in this simulation, is running a program on a computer
N′ that simulates your entire universe, and so in particular simulates an instance
of you who, in this simulation-within-a-simulation, is running a program on a
computer N′′ that simulates your entire universe, and so in particular ... Crucially,
under the PCT, all those instances of you are you; it is meaningless to ask which of
those instances “is the real you”, with the others being “just a copy”. This section
ends with a discussion of the philosophical quirks that would arise if the program

4This theorem is just called “the recursion theorem” in CS theory; see Appendix B for a
summary.
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being used to (self-)simulate universe is encrypted, so that only the being with a
special decryption key can understand the result of that computation.

The simulation and self-simulation lemmas allow us to define the “simulation
graph”. This is the directed graph where each node is a universe containing a
computer, and there is an edge from one node to another if the (universe identified
with the) first node can simulate the (universe identified with the) second node. In
Section 7 I present a preliminary investigation of this graph.

Then in Section 8 I discuss some of the mathematical properties that arise
in both simulation and self-simulation, in addition to those raised by considera-
tion of the simulation graph. Specifically, I use Rice’s theorem to establish that
many of the mathematical questions one might ask concerning simulation and
self-simulation are undecidable.

Next in Section 9 I discuss some of the very many open mathematical issues
involving the simulation framework that I have not considered in this paper.

Finally, I begin Section 10 with a discussion of the implications of the results
of this paper for arguments in some of the earlier semi-formal work on the simu-
lation hypothesis. After that I present quickly mention some of the ways that the
paradigm implicitly considered in this paper involving the classical Church-Turing
thesis might be extended to apply to quantum and / or relativistic universes.

2 Preliminaries

2.1 Notation
My notation is conventional. The set of of all positive integers is N, and the set of
non-negative integers is Z+ = N ∪ {0}. I write |X| for the cardinality of any set X.
In addition, for any set X I write X∗ for the set of all finite strings of elements of
X. Note that so long as X is finite, X∗ is countable. As an important example, B∗ is
the set of all finite bit strings. Since that set can be bijectively mapped to N, I will
follow convention and treat finite bit strings as positive integers and vice-versa,
with the bijection implicit.

As discussed in Appendix A, I write T m(x) for the (possibly partial) function
given by running the TM with index m on input x until it halts (with the function
undefined for input x if it does not halt for that input). So m ranges over all natural
numbers N. Often I assume, implicitly or otherwise, that certain quantities are in
the form of prefix-encoded bit strings. In particular, I use some standard bijective
encoding function of all tuples of bit strings into a single bit string, indicated using
angle brackets, 〈., .〉, 〈., ., .〉, etc. I assume that this encoding is non-decreasing in
the number of arguments, i.e., for any finite set of bit strings {b(1), b(2), . . . , b(m)},
the length of the bit string 〈b(1), b(2), . . . , b(m − 1)〉 is not greater than that of
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〈b(1), b(2), . . . , b(m)〉.
Other important definitions and notations is in Appendix A , e.g., of partial

functions, and of computable functions (here always assumed to be total). I also
review the definition of “computational universality” in that appendix. In addition,
there I review the definitions of a universal TM (UTM), and a prefix-free TM
(the implementation of TMs I will often be assume in this paper, implicitly or
otherwise). I also define the instantaneous description (ID) of a Turing machine
(TM) there. In the main body of this paper I will assume that the non-blank
alphabet of the TM, Λ, is just B. So as described in Appendix A, we can take
the state of the tape to be a finite string in B∗, even though strictly speaking the
definition of TMs assumes infinitely long tapes.

Unfortunately (as happens all too often), there are some conflicts in the lit-
erature concerning terminology for TMs. The reader should always check Ap-
pendix A for the specific definitions used in this paper. Furthermore, even if the
reader is well-versed in TMs and the associated notation, and even if they are
familiar with the recursion theorem, they should still read Appendix B, since in
this paper I will use a slight extension of the recursion theorem, called the “total
recursion theorem”.

2.2 Framework for analyzing CS theory of the simulation hy-
pothesis

To connect with the PCT and CS theory more generally, I will consider universes
that can be understood as evolving in discrete time, and that contain a subsystem
that we will view as a “computer”. Since I will want to take that computer to be
computationally universal (and therefore having exactly the computational power
of a UTM), I will assume that it initially has some arbitrarily large finite number
of states, where that state space can be enlarged dynamically, as needed, by an
arbitrary amount.

I will also mostly be interested in cases where the computer simulates the
evolution of the state of the universe external to the computer (the environment
of the computer) and/or its own evolution. This means that the state space of the
environment must be finite (though arbitrarily large), to ensure that its state at a
particular time can be appropriately encoded on the input of a UTM.

This leads me to write the state space of a (computational) universe as

V = W × N (1)

where W is initially finite and cannot be extended dynamically, whereas N is
countably infinite. I will parameterize N as N×R. N = B∗ is the state of the tape(s)
in the case that the computer is represented as a TM, or it is the state of the memory
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in the case that the computer is represented as a RAM machine, or an appropriately
modified laptop computer. The reason for writing the countably infinite space N
as the set of finite bit strings is so that we can physically implement it as a system
that initially has a finite state space, but whose state space can be expanded by an
arbitrarily large finite amount an arbitrary number of times as the universe evolves.
See Section 2.6. I will write the elements of N as n.

R instead is a finite set that represents the internal variables of the computer.
So for example, in a conventionally represented TM, R would be the state of the
TM’s head, the position(s) of its pointer(s) on the tape(s), etc. 5

I will always assume that the initial, t = 0 state of R is some special initialized
value, r∅. So n0 is fully specified by n0, the initial state of the tape of the TM.
In addition, except when explicitly stated otherwise, whenever I refer to the state
of a computer for times t > 0, I will only be interested in the state of the tape at
that time. Therefore except where explicitly stated otherwise, I will treat N and
N as identical, with the associated individual states written as nt = nt. (The major
exception to this convention occurs in Section 5.3, in which I need to consider rt

for some times t that are after initialization but before the TM has halted.)
The elements of W and N are written as w and n, respectively. The elements

of V are written generically as v = (vW , vN) or (w, n). In general, the elements of
W as well as N can be indexed as multi-dimensional variables, e.g., as bit strings.
However, I never need to make such indexing explicit in this paper. Furthermore,
sometimes it will be convenient to give subscripts to some of these quantities, to
indicate the time (which I take to be discrete). For example, I will sometimes
write vt = (wt, nt) for the time-t state of the universe.

To simplify the analysis, I do not assume that the models of physical universes
that I investigate in this paper capture those universes in toto, e.g., if the state
spaces of those entire universes are actually uncountably infinite. Similarly, I will
not assume that a simulation running in a computer inside a universe models the
dynamics of an entire universe. Rather throughout this paper the expression “uni-
verse” should be understand as shorthand for “possibly coarse-grained subset of a
universe”. However I do assume that the universe obeys deterministic dynamics,
be it over the original state space (assuming it is countable) or some coarse-grained
state space. As an example, in Section 2.6 I present a detailed example of what
such a “coarse-grained subset of a universe” could be for our particular physical
universe.

5Strictly speaking, in a TM the pointer variables can have any value in N, since they can
point to an arbitrary position on the (countably infinite) tape(s). This technical concern can be
addressed several ways. For example, we might want to have the states of the pointer variables at
any iteration after the k’th iteration given by the state of some special subsection of the tape(s), n,
with the states of those variables at earlier iterations recorded in R. Another possibility would be
to have R infinitely extendable.
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I write the evolution of the universe from an initial, time-0 state (w0, n0) to
a time t state as a vector-valued evolution function g of the initial state of that
universe,

g(t,w0, n0) = (wt, nt) (2)

Note that the image of g is the Cartesian product W×N = W× (N×R). I use usual
notation for components of vector-valued functions. So in particular, g(t,w0, n0)N

is the N-component of g(t,w0, n0).
Unless specifically state otherwise, from now on I restrict attention to uni-

verses whose evolution function g is computable (see Appendix A). Note that for
“computable” to even be a potential property of g means that I am implicitly as-
suming that the outputs of g are actually single bit strings (or equivalently, single
counting numbers) that encode a pair of bit strings, as in Eq. (2).

2.3 What it means for one universe to simulate another
The term “simulation” was not given a formal definition in any of the previous
literature on the simulation hypothesis. Moreover, “simulation” (and the associ-
ated term “bisimulation”) already has a formal definition in the CS theory of state
transition systems [62]. However, despite its name, this definition from CS theory
does not describe what “simulation” is loosely understood to mean in the context
of the simulation hypothesis.

In this paper I will formalize simulation as follows:

Definition 1. A universe V = W × N with evolution function g simulates the
evolution of a universe V ′ = W ′×N′ with evolution function g′ iff there exist three
functions

T (∆t′,w′0, n
′
0) ∈ N

W(∆t′,w′0, n
′
0) ∈ W

N(∆t′,w′0, n
′
0) ∈ N

such that for all ∆t′ ∈ N,w′0 ∈ W ′, n′0 ∈ N′, t ≥ τ,

g(t, ω, η)N = 〈g′(∆t′,w′0, n
′
0)〉 (3)

where as shorthand, τ := T (∆t′,w′0, n
′
0), ω :=W(∆t′,w′0, n

′
0), η := N(∆t′,w′0, n

′
0).

Note that the LHS of Eq. (3) is the second of the two components of the vector-
valued function g, while the RHS is an encoding of both components of g′ into
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a single variable. Note also the requirement in Definition 1 that Eq. (3) hold for
all t ≥ τ, and so the state of the simulating computer N does not change after it
completes its simulation of the future state of V ′. This just means that I require that
the simulating computer halts when it completes its simulation. I also require that
the ID of the computer N be replaced in toto (i.e., uniquely, with all other variables
fixed to some predefined values) by the output of its simulation program. So for
example, if N is a multi-tape prefix TM, this means that when N halts with the
result of its simulation on its output tape, all the other tapes — the intermediate
work tapes and the input tape — have been re-initialized to be all blanks.

I will sometimes say that V “can simulate” V ′ rather than say that it “sim-
ulates” V ′. I also sometimes say that V simulates V ′ for simulation functions
T (., ., .), W(., ., .), and N(., ., .) if Definition 1 holds for that particular triple of
functions. In addition I say that V computably simulates V ′ if it simulates V ′, and
in addition the three functions T (∆t′,w′0, n

′
0),W(∆t′,w′0, n

′
0),N(∆t′,w′0, n

′
0) are all

computable. Unless specified otherwise, whenever I refer to “simulation” in this
paper I implicitly assume it is computable.

Note that Definition 1 does not require that the simulating computer N cal-
culates the future state of the universe V ′ no matter what the initial state of the
environment W outside of N, i.e., no matter what the value of w0. The reason
for this is to allow the computer N to retrieve the specific information it needs to
perform its simulation of the dynamics of the specific state v′0 from those super-
aliens who are running that computer N, and who exist in the environment of N,
W. Note though that this freedom also allows the beings running the simulation
computer N to intervene on the dynamics of that computer, e.g., by overwriting
the simulation program being run in the computer at any time they want. They
can even “pull the plug early” on that computer, before it finishes its computation.

Note also that Definition 1 allows the initial state of the simulating computer,
n0, to vary if we vary the time into the future, ∆t′, that the simulating computer
is calculating. Indeed, the definition allows n0 to vary for different ∆t′ even if N
is simulating the future state of V ′ for all those values of ∆t′ evolving from the
same initial state v′0 ∈ V ′. Concretely, I, a super-alien, might use one program to
compute the state v′ of a universe V ′ at the time ∆t′1 into the future of that universe,
and use a different program to compute the state of V ′ at a time ∆t′2 into the future
of that universe. (However, this flexibility is circumscribed if we restrict attention
to “time-consistent” universes, as discussed below in Section 5.3.)

I will informally use the term cosmological universe to refer to an entire phys-
ical universe obeying one set of laws of physics throughout, with one set of shared
initial conditions, etc.6 In general, V and V ′ might be portions of different cos-

6For simplicity, I sidestep the issue of multiverses with different physical constants but other-
wise identical physical laws, e.g., arising from a shared inflation epoch.
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mological universes, obeying different laws of physics. They could also be sub-
regions of the same cosmological universe though (and therefore obey the same
laws of physics). One way this could occur is if there are physically distinct re-
gions of same universe. (See Section 2.6.) This case of multiple computational
universes in the same cosmological universe will be important in the discussion
of the simulation graph below in Section 7.

Definition 1 allows both w0 and n0 to vary if we change w′0, even if n′0 is fixed.
Often we are interested in a more restrictive notion of simulation, where for a
fixed n′0, changing w′0 does not change n0 (even though changing w′0 will of course
change w0 in general). Intuitively, this restrictive form of simulation corresponds
to the case where the simulation program is fixed, reading in the precise initial
state of the system it is simulating after it starts running. As an example, this form
of simulation would be met if N were a UTM, so that n0 specifies the precise TM
that N is implementing, while w′0 is extra information that is subsequently “read
in” by that TM which is specified in n0.

We can formalize this restricted form of simulation with a simple extension of
Definition 1.

Definition 2. Suppose that V simulates the evolution of V ′ for three functions
T ,W,N . Then V freely simulates the evolution of V ′ if for some specific fixed
n′0, N(∆t′,w′0, n

′
0) is independent of w′0.

Finally, the definitions above only stipulate that the simulating computer N
eventually outputs the future state of V ′ at one specific time, v∆t′ . It is straight-
forward to extend these definitions to have N output an entire trajectory of L such
future states instead. To do this we would replace the first arguments of T ,W and
N with a vector ~∆t′ ∈ NL. We would also extend the definition of the evolution
function, to have

g′( ~∆t′,w′0, n
′
0) (4)

be the states of V ′ at the sequence of times ~∆t′ when it starts at time 0 with the
state w′0, n

′
0). Finally, we would modify the condition in Eq. (3) to say that V

trajectory-simulates V ′ if

For all ~∆t′ ∈ NL,w′0 ∈ W ′, n′0 ∈ N′, t ≥ τ,

g(t, ω, η)N = 〈g′( ~∆t′,w′0, n
′
0)〉 (5)

where τ := T ( ~∆t′,w′0, n
′
0), ω :=W( ~∆t′,w′0, n

′
0), η := N( ~∆t′,w′0, n

′
0).
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For simplicity in this paper I do not consider trajectory-simulation, focusing on
single-moment simulation. However, all the results below still apply for trajectory-
simulation, with minor terminological changes.

To minimize notation, in the sequel I will implicitly choose units of physical
time so that under the dynamics of any universe I am considering, the physical
computer in that universe takes one unit of (physical) time to run one iteration
of the computational machine it is implementing. (For example, if that compu-
tational machine is a UTM, then each iteration of the UTM takes one unit of
physical time.)

2.4 The Physical Church-Turing Thesis
Even restricting consideration to computers that can be described using classi-
cal physics, there are many different semi-formal definitions of the PCT in the
literature [49, 48, 23, 24, 3]. If we extend consideration to include quantum com-
puters [45], there are even more definitions [6, 44].

Whether in fact our particular cosmological universe obeys the PCT, be it the
classical or quantum PCT, has been subject to endless argument [2, 47, 6, 48,
46]. In particular, some researchers have designed purely theoretical, contrived
physical systems that are uncomputable in some sense or other [50, 25, 53] (see
also [19]). This work has resulted in attempts to define the PCT to exclude the
case of physical systems whose future is uncomputable but which cannot be con-
structed by we humans in a finite amount of time. This amounts to tightening the
PCT to concern not just what systems can be simulated, but rather what systems
can be constructed and then simulated.

In any case, as mentioned above, for the purposes of this paper, it does not mat-
ter whether some particular form of the PCT applies to our specific universe. What
matters is the CS theory implications of universes simulating other universes, and
in particular the implications if the PCT holds for such universes. Accordingly,
for current purposes, I make the following (fully formal) definition:

Definition 3. The Physical Church-Turing thesis (PCT) holds for universe V iff
the evolution function g(., ., .) of V is computable.

(Note that this is the first fully general definition of the PCT, even applicable to
universes whose laws of physics differ from ours.) By Definition 3, if the PCT
holds for V , there must be a UTM that (halts and) outputs the vector value of
g(., ., .), for all values of g’s arguments. (More precisely, there must be such a
UTM that outputs the string 〈g(., ., .)〉 for all values of g’s arguments if it receives
the encoded version of those arguments as its input.)

All the analysis in this paper will assume that at least some of the universes
being discussed obey the PCT. This means that the analysis below does not apply
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to any universes so many levels of computational power above our own that they
can contain computers capable of super-Turing computation [3]. In particular, the
analysis would not apply to any such universes that are simulating our universe.

Much of the earlier literature on the “physical Church-Turing thesis” accords
a prominent role to humans, and their abilities (or lack thereof), e.g., in arbitrarily
configuring the initial state of physical systems, or in observing their subsequent
physical state. There is no such role in Definition 3. All the PCT means in this pa-
per is that evolving the computational universe V does not require a computational
machine more powerful than a TM. In fact, it could be that that evolution can be
calculated on a machine that is strictly weaker than a TM, e.g., a finite automaton.
Furthermore, if V is a sub-region of some cosmological universe, it could be that
it requires machines more powerful than a TM to calculate the evolution of some
other sub-region of that cosmological universe, different from V .

For these kinds of reasons, some readers might argue that Definition 3 doesn’t
exactly capture any of the various properties that have been referred to as the
“physical Church Turing thesis” in the literature. In some senses it more like
one of the related concepts inspired by modern physics, e.g., some forms of ontic
structural realism [28, 39, 38, 4] or the level IV multiverse [58, 59]. But for current
purposes, we can ignore these semantic distinctions.

Finally, note that the set of spaces W × N is countably infinite, if we restrict
attention to any and all finite W. Therefore the set of universes defined by the spec-
ification of such a space, together with an evolution function that obeys the PCT,
is also countably infinite. Moreover, many of the considerations of the “simula-
tion hypothesis” in the literature implicitly assume such a universe and evolution
function. Finally, note that it is impossible to assign a uniform probability distri-
bution to the set N. This establishes the claim made in the introduction, that it
is impossible to assign a uniform probability distribution to the kind of universes
often considered in the literature on the simulation hypothesis.

2.5 The Reverse Physical Church-Turing Thesis
Loosely speaking, the PCT says that the dynamics of any universe that we are
considering can be computed on a UTM. One can “reverse” the requirement that
a universe obey the PCT, which results in the requirement that a universe contains
a UTM in it. If it obeys such a reversed PCT, a universe could implement all TMs.

One might imagine that the reversed PCT could be formalized as the require-
ment that a universe’s computer N evolves independently of the rest of that uni-
verse. However, in general that is not possible — we will need to allow the beings
running the computer to provide it information, which means that that computer N
does not evolve autonomously as a UTM. So we cannot impose this simple version
of reverse PCT. On the other hand, we can require that N effectively implements a
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UTM. This is done as follows:

Definition 4. The reverse physical Church-Turing (RPCT) holds for universe
V = W × N with evolution function g iff there exist three functions

T̂ (k, y) ∈ N

Ŵ(k, y) ∈ W

N̂(k, y) ∈ N

such that for all TM indices k and all y ∈ B∗,

g
(
T̂ (k, y),Ŵ(k, y), N̂(k, y)

)
N

= T k(y)

iff T k halts on finite input string y.

I say that three functions T̂ ,Ŵ, N̂ all taking N × N → N have the RPCT prop-
erties for g if they obey the properties listed in Definition 4. I also say that the
computable RPCT holds for V iff all three functions T̂ (k, y),Ŵ(k, y), N̂(k, y) are
computable. Unless specified otherwise, throughout this paper I will assume that
whenever the RPCT holds, it’s computable.

Broadly speaking, the RPCT says that the system N operates like a UTM for
all pairs (k, y) such that T k(y) is defined, where k and/or y may be encoded in some
degrees of freedom in w0 rather than directly in n0. (That freedom to have k and
/ or y specified in the environment of the computer N allows that computer to do
things like observe its environment to retrieve the input string for a computation
from its environment before running that computation.)

I say that the pristine RPCT holds if for all k, y, the RPCT holds with

N̂(k, y) = k (6)

Ŵ(k, y) = y (7)

Eqs. (6) and (7) mean that the physical system implementing the UTM is initial-
ized with the precise TM that it is to supposed to implement, but not the actual
data that TM will be run on. In general, that data (the value of y) would be trans-
ferred into the computer N at a subsequent iteration, after this initialization of
the UTM, but before the UTM starts to run. As an example, this is what would
occur if we were to initialize a laptop with a universe-simulating program, with
the precise data that program is to run on fed into the laptop before starting the
simulation program. (See Section 2.6.) In this paper, when assuming the RPCT I
will not implicitly assume that the pristine RPCT holds unless I explicitly say so.

Just as the PCT as defined in Definition 3 has no role for humans, the RPCT
has no role for them. In particular, Definition 4 does not say that humans could
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configure the initial state of V to implement the dynamics of any desired TM. It
simply says that there is some such initial state of V that could implement that
dynamics.

The RPCT is accepted by many researchers, implicitly or otherwise. (Indeed,
it is commonly confounded with the PCT.) For example, Scott Aaronson wrote
in a blog post on Feb. 8, 2024 that “My personal belief is that... ‘yes,’ in some
sense (which needs to be spelled out carefully!) the physical universe really is a
giant Turing machine.” See also [14, 41, 50] and related literature for more formal
considerations of (what amounts to) the RPCT.

Despite the popularity of the RPCT among researchers, even if the PCT holds
in our specific universe, that does not mean that the RPCT has to hold as well. In
particular, cosmological considerations could prevent it from holding [37]. So the
results below specific to universes that obey the PCT and / or universes that obey
the RPCT might not apply to our specific universe. However, approximations of
the analysis might apply even if the PCT and/or RPCT don’t hold exactly in our
universe, depending on how precisely they are violated.

Even without worrying about the laws of physics in our universe, one might
suppose that the RPCT is logically impossible, and so cannot hold in any universe.
After all, the RPCT requires that the set X of physical variables of a universe
decomposes as X = W ×N where N is a physical system that implements a UTM.
In other words, a proper subset of the spatial degrees of freedom of the universe
constitutes a physical structure N capable of implementing any TM. But the PCT
thesis supposes that such an N would be able to simulate the dynamics of all of
X. So this N would have to be able to simulate itself, at the same time as it is
also simulating the entire rest of X, outside of N. This would seem to imply a
contradiction, that N is more computationally powerful than N is.

If this argument were valid, the RPCT would be impossible. And so in par-
ticular, no matter what the actual laws of physics, it would not be possible for us
to be part of a simulation by a computer, if that computer were itself contained in
our cosmological universe. In other words, if this argument were valid, it would
be a proof that the simulation hypothesis must be wrong.

One might be suspicious of this argument though, since it is quite similar to
the arguments that were made in the last century that no physical system can make
an extra copy of itself without destroying itself. (These arguments that copying
required destruction of the original were used to make the case that the common
definition of life involving replication must be wrong, or at least deficient.) Re-
sponding to these arguments, Von Neumann designed his “universal constructor”
in a cellular automaton setting. This demonstrated explicitly that it is possible for
a system to copy itself without harming itself in the process.7

7It is interesting to note that Von Neumann’s proof of this property of his universal constructor
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2.6 Sketch of how a portion of our cosmological universe could
obey the PCT and RPCT

In the rest of this subsection I sketch how the framework defined above might
apply to a portion of our actual cosmological universe, evolving according to the
laws of physics as we currently understand them.

Choose some particular inertial frame to describe physical systems in our uni-
verse. (Sticking to this specific inertial frame will allow us to circumvent the
complications of special relativity.) Let Y be a special subset of the space-time
of our cosmological universe defined by a cylinder in our chosen inertial frame, a
cylinder whose base consists of a 3-dimensional region, Y0. Y0 contains an infinite
number of accessible degrees of freedom, and all of the points in Y0 have the same
value of time in our chosen inertial frame, t0, a time which is long after the Big
Bang. (Having t0 be long after the Big Bang will allow us to circumvent the com-
plications of cosmological issues involving general relativity and the boundary
conditions of our cosmological universe, and will allow us to talk about initializ-
ing various physical variables in a computer that resides in Y .) For completeness,
suppose that Y extends infinitely to the future of time t0. Discretize time (in our
co-moving inertial frame) going forward from t0, writing the time at the end of
each interval as ti, i ∈ N, and the associated state of our region as Yi := Yti .

Let V = W × N be a coarse-graining of that 3-dimensional region defining Y
into a set of classical (non-quantum) bins, where W is finite and N is countably
infinite. As described above, it is useful to parameterize N as the set B∗ of all finite
strings of bits. Suppose that the variables given by that coarse-graining follow de-
terministic evolution. This requires in particular that V be physically isolated from
the rest of the universe, and so they collectively obey Hamilton’s equations. Note
that by considering the dynamics of V , we can circumvent the complications of
quantum mechanics, and in particular of extending the PCT thesis to the quantum
realm.

Since Hamilton’s equations are computable, and Xt obeys Hamilton’s equa-
tions, the PCT is obeyed by the dynamics of Xt. We also assume the projected
dynamics down to N implements a UTM (though perhaps it does so slowly, lim-
ited by the speed of light among other factors). Therefore the RPCT is also obeyed
by the dynamics of this universe, V .

Given this general setup, choose w0 ∈ W arbitrarily. Also pick an initial ID
n0 ∈ N of the UTM that has an arbitrary (blank-delimited) finite string on the
input tape, with all other tapes (if any) initially fully blank, and the pointers of the
UTM in their initialized positions.

is essentially identical to Kleene’s earlier proof of his second recursion theorem — and that it is
hard to imagine that Von Neumann did not know of Kleene’s earlier result, despite not citing it in
his work.
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Choose the dynamics of the entire universe V so that the first thing that hap-
pens when it starts evolving from its initial state is that a copy of w0 is placed after
the string n0 on the input tape of the (physical system implementing) the UTM.
Physically, this could reflect the process in which the being who is going to run the
simulation program on the computer feeds that computer the input data it needs
concerning the external universe. Alternatively, it could reflect the computer being
coupled to an observation device which observes that data and provides it to the
computer. After that the dynamical laws (Hamilton’s equations in this universe)
evolve both W and N, perhaps via a coupled dynamics, or perhaps completely
independently of one another.

As an aside, it is unusual in standard physics to consider state spacesB∗ (which
is the space we assign to N). However, such spaces arise naturally when modeling
a discrete computer, e.g., a laptop, whose memory is always finite — but can be
expanded by an arbitrary finite amount an arbitrary number of times. Viewing that
memory as M, we can formalize its dynamic expansion in terms of dynamics over
the uncountably infinite space B∞, by “embedding” N into B∞ as the indexed set
of spaces Nt = BK(t) for some function K : Z+ → N. We define this function K(t)
recursively. First, specify k(0) to be some arbitrary finite counting number. Then
if at time t there are any bits in B∞ \ Nt whose state at t + 1 is causally dependent
on the state of nt ∈ Nt, K(t) increases enough to include those bits. (Note the
implicit assumption that at every iteration t, there are only a finite number of such
bits whose state may depend on nt.)

See Appendix D for discussion of some subtleties of the scheme outlined
above for implementing a universe V in our actual, cosmological universe.

3 The simulation lemma
In this section I first derive the simulation lemma. I then discuss some of its
features, and in particular why it might seem to imply that self-simulation is im-
possible.

3.1 Proof of the simulation lemma
In this subsection I first state the simulation lemma formally and then prove it.

Lemma 1. If a universe V = W × N obeys the RPCT, then it can simulate any
universe V ′ that obeys the PCT.

Proof. By Definition 3, since V ′ obeys the PCT, its evolution function g′ is com-
putable. Therefore there is an index k ∈ N such that

T k(〈∆t′,w′, n′〉) = 〈g′(∆t′,w′, n′)〉
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for all ∆t′ ∈ N,w′ ∈ W ′, n′ ∈ N′. Therefore by Definition 4, since V obeys the
RPCT, there are three functions T̂ ,Ŵ, N̂ such that for any triple (∆t′,w′, n′) and
associated finite string y := 〈∆t′,w′, n′〉,

g
(
T̂ (k, y),Ŵ(k, y), N̂(k, y)

)
N

= T k(y)

= 〈g′(∆t′,w′, n′)〉 (8)

Next define

T (∆t′,w′, n′) := T̂ (k, 〈∆t′,w′, n′〉) (9)

W(∆t′,w′, n′) := Ŵ(k, 〈∆t′,w′, n′〉) (10)

N(∆t′,w′, n′) := N̂(k, 〈∆t′,w′, n′〉) (11)

Plugging these three definitions into Eq. (8) and then comparing to Definition 1
completes the proof. �

I will refer to Lemma 1 as the simulation lemma.

3.2 Why the simulation lemma might seem to preclude self-
simulation

The simulation lemma tells us that if there are some super-sophisticated aliens in
a universe V in which the RPCT holds, and if our universe obeys the PCT, then
it’s possible that we are simulations in a computer that the aliens are running.
(Of course, we would never know it if they were.) On the other hand, suppose
that as many have argued the PCT does not hold in our universe, because its
evolution cannot be evaluated on a TM. In such a case, even if the RPCT holds
in the universe that the aliens inhabit, there is no guarantee that we may be in
a simulation that they are running. This formalizes the intuitive idea that our
universe has to be “sufficiently simple, computationally speaking” in order for us
to be simulations in a computer of some super-sophisticated aliens.

Note though that even if the conditions in the simulation lemma hold, that
lemma doesn’t in some sense specify what argument (∆t′,w′0, n

′
0) to simulate. In

particular, it does not tell us what value n′0 the computer N′ that N is simulating
would need to start with in order for that simulation to give the dynamics of V
itself. To understand the implications of this, suppose that: i) the RPCT holds for
our universe, so we have a computer N we can run to simulate the evolution of
any universe that obeys the PCT; ii) our universe itself obeys the PCT. One might
suppose that when these two conditions are met, Lemma 1 implies that we can run
a simulation of our own universe, including ourselves. However, the simulation
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lemma provides no means for us to initialize our computer N in order to run a
simulation of ourselves. It provides no way to have a universe V determine how
to simulate itself.

In fact, if we take V = V ′ in the proof of Lemma 1, then Eq. (11) becomes a
fixed point equation:

n′ := N̂(k, 〈∆t′,w′, n′〉) (12)

We have no guarantee that the solution n′ to this fixed point equation is com-
putable. In fact, a priori, one might suspect that it is possible for there not to
be any solution to Eq. (12) whatsoever, computable or otherwise. In light of
Lemma 1, if that were the case, it would mean that the conditions for the sim-
ulation lemma cannot be met, i.e., that it is not possible for a universe V to obey
both the PCT and the RPCT.

An associated concern is that Lemma 1 only establishes the possibility of V
simulating V ′. It does not establish the possibility of free simulation. So even if
we can establish that there is a solution to the fixed-point equation Eq. (12), there
might only be one, i.e., there might only be a very specific initial state of our own
universe that we can simulate.

In fact, if a computer were to simulate the evolution of itself up to a certain
time in the future, that means in particular that it would simulate a “copy” of itself
running a computer which is simulating of a copy of itself running a computer
which is simulating, etc., ad infinitum. In other words, one might expect that self-
simulation would require an infinite regress of computers within simulations of
computers. That in turn would suggest that the computer could never complete
such a simulation of itself in finite time (assuming that the computer operates at a
finite physical speed).

Finally, none of the analysis above establishes that it is even logically possible
for a universe to obey both the PCT and the RPCT. It may be mathematically
impossible to meet the conditions for Lemma 2.

In the next section I prove that these concerns do not in fact prevent a universe
from simulating itself. In fact, not only is there a solution to Eq. (12), and not only
is there an explicit algorithm to construct that solution, but that solution is com-
putable, i.e., the algorithm that computes it is guaranteed to halt if implemented
on a Turing machine. This means that it is possible for a universe to obey both
the PCT and the RPCT. More interestingly, it means that we can construct a com-
puter such that for any given finite time interval ∆t and initial state of our universe
outside of that computer, we can load a program onto that computer which is guar-
anteed to halt in finite time after having simulated the full state of our universe at
the time ∆t into the future — including in particular the state of that computer
itself at that time. It also means that we could be inside a simulation being run on
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a computer that we ourselves are running (supposing our universe obeys both the
PCT and RPCT of course).

4 The self-simulation lemma
In this section I begin by proving that despite the arguments in Section 3.2, in
fact self-simulation is possible. The key is to have a time delay between the future
moment for which the state of the universe is being simulated on the one hand, and
when the computer simulation of that future state completes on the other hand.

After presenting that proof, I discuss certain important features of self-simulation.
I end this section by discussing how the possibility of self-simulation differs from
various forms of “self-reference” considered in the literature.

4.1 Proof of the self-simulation lemma
The proof of the simulation lemma just relies on elementary properties of TMs,
and the assumptions that the PCT and RPCT both are obeyed. We need more than
that to establish the possibility of free self-simulation. Specifically, we need to
also use the total recursion theorem, and we need to strengthen the assumption
that the RPCT holds into assuming that the pristine RPCT holds.

Lemma 2. If both the PCT and the pristine RPCT hold for a universe V = W ×N,
then for all ∆t there exists n0 ∈ N such that V freely simulates V for n0,∆t.

Proof. Since the PCT holds for V , its evolution function g(., ., .) is computable
(not just partial computable). Therefore if we fix ∆t, the first argument of g(., ., .),
and then invoke the total recursion theorem, we see that there exists n∗ such that

T n∗(w0) = g(∆t,w0, n∗) (13)

for all w0 ∈ W, where both g(∆t,w0, n∗) and T n∗(w0) halt for all inputs w0. Note
that the TM index n∗ will depend on both g and ∆t in general.

Now apply our assumption that the pristine RPCT holds for V to the LHS of
Eq. (13) and then plug in the RHS of that equation. This shows that there must
exist a computable function T̂ such that for all w0 ∈ W,

g
(
T̂ (n∗,w0),w0, n∗

)
N

= T n∗(w0) (14)

= g(∆t,w0, n∗) (15)
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Finally, if we now define

T
(
∆t′,w′0, n

′
0
)

:= T̂
(
n′0,w0

)
(16)

W
(
∆t′,w′0, n

′
0
)

= w′0 (17)
N

(
∆t′,w′0, n

′
0
)

= n′0 (18)

for all ∆t′,w′0, n
′
0, then Eq. (15) can be re-expressed as

g(T
(
∆t′,w′0, n

∗) ,W (
∆t′,w′0, n

∗) ,N (
∆t′,w′0, n

∗)) = g(∆t,w0, n∗) (19)

Plugging this into Definition 1 completes the proof that V simulates the evolution
of V for n0 = n∗,∆t. Since Eq. (15) holds for all w0, while n0 is fixed to n∗, we see
that in fact V freely simulates the evolution of V for n∗,∆t. �

I will refer to Lemma 2 as the self-simulation lemma. It says that for any
fixed ∆t, there is an associated initial state of the computer such that for any initial
state of the rest of the universe, w0, that computer is guaranteed to halt and to
output the state of the entire universe at time ∆t.

4.2 Important features of the self-simulation lemma
Recall the convention that “simulate” implicitly means “computably simulate”.
So the self-simulation lemma not only says that there is an initial state of the
computer, n0, for which the computer simulates the entire universe including itself.
It says that n0 is a computable function. Specifically, that value n0 is the solution to
Eq. (13), and so implicitly depends on the combination of the time into the future
that we want to simulate, ∆t, and the evolution function g (which is encoded as
the index of a TM).

By definition, that means there is a halting program that constructs that n0. So
we can run that program (on any UTM we like, whether a physical system in V or
not) and be assured that it will eventually finish and tell us what other program n0

to load into our computer N in order to simulate the evolution of our universe.
The evolution function g arising in the self-simulation lemma can be encoded

as an integer (since it is a computable function, by hypothesis). Moreover, there is
an implicit function given by the self-simulation lemma that takes the combination
of ∆t and g to the initial state of the self-simulating computer. (See comment just
below Eq. (13) in the proof of Lemma 2.) As a notational shorthand, I will write
that implicit function as S : N×N→ N. (S stands for “self-simulation map”). As
discussed above, S is computable. In general, I will leave the second argument of
S implicit, and just write the TM whose existence is ensured by the self-simulation
lemma as S(∆t). So the output of the self-simulating computer when predicting
the state of its own universe at time ∆t when the initial state of its environment is
w0 is g(∆t,w0,S(∆t)).
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Example 1. Suppose you have a laptop which has a memory that can be extended
dynamically by an arbitrary finite amount, an arbitrary number of times. You’ve
got some program n0 that was already loaded into the laptop at iteration 0. The
first thing you then do is load into the input of that program (an encoding of) the
current state of your environment, i.e., of the rest of the universe external to your
laptop, which is w0. This changes n0 to some new value, n1.

After this you physically isolate isolate your laptop, from the rest of the uni-
verse, and start running it. The function g(∆t,w0, n0) gives the joint state of your
laptop and the universe external to it at the time ∆t into the future. Note that in
particular you, the being who is running your laptop, is part of the environment
of that laptop. So your initial state is specified in the value w0.

The self-simulation lemma says that there is some program n0 that your laptop
could have started with such that under the dynamics of the universe, it is guar-
anteed to halt at some finite time T̂ ((n0,w0). At that time that it halts, its output
would be the joint state of the universe external to your laptop and of the laptop
itself at that time ∆t. All other variables in the laptop other than this output have
been reinitialized, to the values they had before n0 was loaded onto the laptop,
e.g., to be all blanks.

Note that for any k ∈ N, there are an infinite number of indices i ∈ N such that
T i = T k. This means we can trivially modify the proof of Lemma 2 to establish
that there are an infinite number of initial states of the computer, n0, such that
that computer simulates the full universe, including itself. In Example 1, this is
reflected in the fact that there are an infinite number of precise programs all of
which perform the came computation as the program n0. Note though that in
general, those different programs will require different numbers of iterations to
complete their computations of the future state of the universe they are in.

Another important point is that that the self-simulation lemma holds for any
∆t. Whatever time ∆t we pick to evolve our universe to, there is a program we
can use to initialize the computer subsystem so that it will calculate the joint state
of the universe at that time. So in particular, if T (n0,w0) > ∆t, then the computer
calculates its own state at that time ∆t, a state it had along the way while it was
calculating what the joint state would be at that time.

It’s also worth pointing out that the proof of the self-simulation lemma does
not require the full power of the recursion theorem. That theorem applies to any
function so long as it is partial computable. However, the self-simulation lemma
only needs to use it for the specific case of the evolution function, which is in fact
a total computable function.

Note as well that the self-simulation lemma “hard-codes” the time ∆t into the
program n0 that will run on the computer. If we change ∆t, then in general we will
also changes n0. This is what allows us to define the function S(∆t) (for implicitly
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fixed g). Note though that ∆t does not exist in the universe as a physical variable,
in addition to the variables w and n. It is merely a parameter of the evolution
function that determines how we wish to initialize the (physical) variables of the
computer. So the cosmological universe does not perform that calculation ofS(∆t)
for some physically specified ∆t, and then use that value S(∆t) to initialize N.
See Appendix C for more discussion of this point.

4.3 Difference between self-simulation lemma and previous work
It’s important to distinguish the self-simulation lemma from earlier concepts con-
sidered in the literature. First, the traditional versions of the simulation hypothesis
discussed before did not involve the possibility that the beings running a simulat-
ing computer might be simulating their own universe, including themselves. Self-
simulation appears to be novel (pace informal musings like the one quoted in this
paper’s epigraph).

Note as well that the self-simulation lemma is not a reformulation of the old
warhorse, central to so much of computer science theory and the foundations of
math, of a mathematical object “referencing itself”. To clarify the difference,
suppose we feed a universal TM U an encoding of itself, 〈U〉, along with a finite
bit string w and then run that TM U. In other words, using 〈a, b〉 to indicate an
encoding of a pair of bit strings, a, b, into a single bit string, we are considering
the case where U’s input tape initially contains the bit string 〈〈U〉,w〉. In this
situation U is “referencing itself”. In particular, U(〈〈U〉,w〉) is computing the
output bit string that it itself would calculate if its input tape were initialized with
just w. Stated differently, the “inner” U, whose behavior if run on w is being
calculated, is the same as the “outer” U running with 〈〈U〉,w〉 on its input, with
this same w.

There are several major differences between such self-reference and the self-
simulation lemma. Most obviously, there is no notion of simulating the laws of
physics arising in the computation U(〈〈U〉,w〉). In contrast to the both the self-
simulation lemma and the traditional version of the simulation hypothesis, neither
the inner nor the outer U is simulating the dynamics of our computational uni-
verse.

Perhaps more importantly, U(〈〈U〉,w〉) does not calculate what it itself would
do if provided the string 〈〈U〉,w〉 as input (rather than be provided w as its input).
So it is not simulating its actual behavior, but rather some counterfactual behavior.
Indeed, for U to simulate its actual behavior on its actual input string, we would
need to feed U an infinitely long bit string, defined by an infinite regress:

〈〈U〉, 〈〈U〉, 〈〈U〉, . . .〉〉〉〉〉〉) (20)
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(One can see this simply by iteratively expanding w into 〈〈U〉,w〉).) It would be
physically impossible for any computerD implementing U to finish its computa-
tion in finite (physical) time if it starts with this infinite string as its input. More-
over, there is no way to get information about the rest of the physical universe
outside of that computer D into the input to D (since such information would
need to be appended at the end of the infinite string 〈〈U〉, 〈〈U〉, 〈〈U〉, . . .〉〉〉〉〉〉)).
None of these problems apply with the self-simulation lemma.

It is also important to distinguish the self-simulation lemma from the age-
old observation that if i) the universe extends infinitely spatially; ii) the physical
constants (and more generally physical laws) do not vary across that infinite space;
iii) the initial conditions of the regions inside the backward local light cones across
the full universe are IID random; then somewhere else in this universe there is a
copy of each of us, identical down to a fine level of detail.8. This simple statistical
phenomenon does not result in exact identity between any of those copies of us
and us. More importantly, perhaps the most striking aspect of the self-simulation
lemma is that if it applies to us, it would mean that we are running a program on a
computer that is simulating ourselves, as we run that simulating program. There is
as direct coupling between ourselves and our indistinguishable copy as possible;
one of us is directly controlling the other one of us, but those two versions of us
are one and the same. Phrased differently, one of of us is the parent, in a deep
and fundamental sense, of the other. In fact, we are both the parent and the child.
Indeed, if the self-simulation lemma holds, then there is an infinite regress of
copies of you, residing inside the successive layers of nested dolls of computers
simulating computers. No such nested set of copies of an individual arises under
the “age-old observation”.

Another function considered in the literature that in some respects resembles
the function g of the self-simulation lemma is the Von Neumann constructor. That
is a configuration of neighboring states in a particular cellular automaton that is ca-
pable of constructing an identical copy of itself as the cellular automaton evolves.
However, a Von Neumann constructor releases the copy of itself once it has cre-
ated it, and that copy then has a completely independent existence, undergoing
different dynamics. In fact, there is no time at which the Von Neumann construc-
tor and that of the copy of itself that it constructs undergo identical dynamics. The
Von Neumann constructor does not “run” the copy of itself that it makes, in the
sense of the function g in the self-simulation lemma.

8In fact, as has often been pointed out, we don’t need to assume the IID random property. If
the universe is infinite then the randomness of quantum mechanics means that there must be such
a copy of each of us — indeed, there must be an infinite number of such copies.
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5 Time delay, cheating computers, and self-simulation
In this section I present a few of the particularly elementary mathematical proper-
ties of self-simulation.

5.1 Necessity of time delay in self-simulation
One might suspect that there must be a delay between the time ∆t into the fu-
ture that a self-simulating computer is simulating, and the time at which it com-
pletes that simulation. Intuitively, the idea would be that, assume instead that
T (∆t,w0,S(∆t)) = ∆t. This would imply that

n∆t = (〈w∆t, n∆t〉) (21)
= (〈w∆t, 〈w∆t, n∆t〉) (22)
= (〈w∆t, 〈w∆t, 〈w∆t, n∆t〉〉〉) (23)
... (24)

By the pigeonhole principle, the lengths of the encoded strings in this sequence
must grow infinitely long. Therefore n∆t would have to be an infinitely long string.
But no UTM can write an infinite number of bits onto its output tape in a finite
number of iterations. This implies that the equality cannot be satisfied.

One could make a counter-argument though. One response to this intuitive
argument is to point out that our cosmological universe in many ways evolves
more like a parallel computer rather than a serial one, so that for example the state
space of N could evolve like an infinite one-dimensional Cellular automaton. That
would see to allow an infinite number of operations to occur simultaneously —
disproving the intuitive argument above. The computational implications of there
being parallel rather than serial dynamics in our universe are subtle though — see
Appendix D.

Even if we do restrict attention to a serial computer though, suppose we en-
code the bit-string (w∆t, 〈w∆t, 〈w∆t, n∆t〉〉), . . .) as the output generated by a simple
computer program, a program which would require very few bits to write down.
So while (w∆t, 〈w∆t, 〈w∆t, n∆t〉〉), . . .) is infinitely long, it can be encoded as a fi-
nite computer program (a short program, in fact). The simulation computer could
write such a finite program onto its output tape in a finite time. On the other hand
though, there is no computable function that can decode that version of the infinite
string (w∆t, 〈w∆t, 〈w∆t, n∆t〉〉), . . .) which has been encoded as a computer program.
Any program that tries to do this would never halt.

These arguments and counter-arguments are resolved in the following lemma:

Lemma 3. For all cases where a computer V is simulating itself, and for all
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associated ∆t,w0,

T (∆t,w0,S(∆t)) > ∆t

assuming |W | > 1.

Proof. Hypothesize that there is some ∆t,w0 such that

T (∆t,w0,S(∆t)) ≤ ∆t (25)

Then by Definition 1, for all t ≥ T (∆t,w0,S(∆t)),

g(t,W(∆t,w0,S(∆t)),N(∆t,w0,S(∆t))N = g(t,W(∆t,w0,S(∆t)),S(∆t))N (26)

So in particular, we would have

g(∆t,W(∆t,w0,S(∆t)),S(∆t))N = 〈g(∆t,w0,S(∆t))〉 (27)

Using the fact that we’re doing self -simulation,S(∆t) = n∆t, andW(∆t,w0,S(∆t)) =

w0. Plugging this into Eq. (27),

g(∆t,w0, n∆t)N = 〈g(∆t,w0, n∆t)〉 (28)

However, again using the fact that we’re doing self-simulation, g(∆t,w0, n∆t)N just
equals n∆t. Combining,

n∆t = 〈g(∆t,w0, n∆t)〉 (29)
= 〈w∆t, n∆t〉 (30)

Next, recall that in this paper I assume the encoding 〈., .〉 produces strings
whose lengths are non-decreasing functions of the lengths of its two arguments.
(See Section 2.1.) So if W has more than one state (and therefore w∆t is at least
a bit long), |〈w∆t, n∆t〉| > |n∆t|. In this case Eq. (30) is a contradiction. So our
hypothesis must be wrong, which establishes the lemma for the case |W | > 1. �

Lemma 3 means that for all w0, T (S(∆t)),w0,∆t) has no upper bound as ∆t
grows, and must always exceed ∆t. It does not means that T (n∗,w,∆t) is an
everywhere increasing function of ∆t though — T (S(∆t)),w0,∆t) + 1 can be less
than T (S(∆t)),w0,∆t), so long as it’s greater than ∆t.

One could of course forbid this possibility, simply by requiring thatT (S(∆t)),w0,∆t)
is not decreasing as a function of ∆t. There are other ways to address this issue
as well. One, mentioned in Section 2.2, is to modify Definition 1 so that the sim-
ulating computer does not just produce a single future state of the universe being
simulated, but rather produces an entire (finite) sequence of future states of the
simulated universe, in order. A related way to address this issue is addressed next,
in Section 5.2.
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5.2 Restrictions to impose on the evolution function
There are several additional restrictions it will sometimes be natural to place on
the evolution function. It would not change the main results presented below
in Sections 3 and 4 to impose those restrictions. However, it is helpful to invoke
them in certain parts of the subsequent analysis of those results.

We begin with the following definition:

Definition 5. A universe V has a (stationary) Markovian evolution function g if
for all ∆t > 0,w ∈ W, n ∈ N,

g(∆t,w0, n0) = γ∆t(w0, n0)

for some function γ : W × N → W × N

The dynamics of a stationary Markovian universe can be expressed as a time-
translation invariant function γ repeatedly running on its own output, i.e., as an
iterated function system. In practice, we are often interested in universes whose
dynamics is Markovian. In particular, we humans believe that our actual cosmo-
logical universe has this property.

Another restriction is especially natural to impose when considering universes
that simulate themselves. This is the restriction that the computer in that universe
and its environment do not interact after some iteration k > 0. Arguably, without
this restriction, we have no assurances that the computer is simulating the future
state of its environment from times k to ∆t, rather than just observing the state
of its environment at time ∆t. We can capture this restriction in the following
definition:

Definition 6. Fix ∆t, and choose some integer k such that 0 < k < ∆t. A universe
V with a Markovian evolution function is shielded (after iteration k) if for all
w,w0, n0,

[γ∆t−k(w, nk)]N (31)

is independent of w, where we define

nk := [γk(w0, n0)]N (32)

5.3 Cheating self-simulation and how to prevent it
There are several ways that the self-simulation lemma can be met that can be
viewed as “cheating”. Perhaps the most egregious is the scenario in the following
example:
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Example 2. Suppose the computer’s initial state n0 is blank, and does not evolve
until time ∆t. Then at time ∆t, the value w∆t is copied onto the state of the computer
(e.g., by the computer observing that state of the environment at that time, or some
beings in the external universe overwriting the state of the computer at that time).
This results in the computer state n∆+1 = w∆t, which was precisely the state of v∆t.

The scenario described in Example 2 can be prevented by requiring that the
computer is shielded for all times after some k � ∆t. However, even if we require
shielding, together with the associated requirement of Markovian evolution, the
self-simulation lemma can still be satisfied if the computer essentially does noth-
ing up to the time ∆t, so that its state at that time does not depend on w0. This is
illustrated in the following example.9

Example 3. For simplicity, I describe this scenario as though the computer is a
single-tape UTM. Suppose that the initial state n0 of the tape of the TM is ∆t. The
first thing that happens is the tape is provided the initial state of the computer’s
environment, w0 (implicitly followed by an infinite string of blanks). Suppose that
in addition, there is a “counter” variable c that is initialized with the value 0 that
is appended to w0 on the tape. So the initial state of the tape is n0 = (∆t,w0, 0),
the initial state of the full TM is n0 = [∆t,w0, 0; r0], and the initial state of the full
universe is v0 = ([∆t,w0, 0; r0],w0).

The TM evolves shielded from its environment from now on. In all subsequent
iterations up to ∆t, nt does not change, while c increments by 1 in each of those
iterations. Then when the counter reaches ∆t, it stops incrementing. At this time
the contents of the tape of the TM is (∆t,w0,∆t), with the other variables of the
TM (its state and its head’s position) having some value r∆t. So the entire ID of the
TM at this moment is [∆t,w0,∆t; r∆t], and therefore the state of the full universe is
([∆t,w0,∆t; r∆t],w∆t).

Next the computer makes a second copy of w0 and appends that together with
r∆t to the end of its tape, so that it now has (∆t,w0,∆t, r∆t,w0) on its tape.10 It then
computes w∆t from that copy of w0, so that at some later time t2 > ∆t its tape is
(∆t,w0,∆t, r∆t,w∆t).

At this time the state of the full universe is vt2 = ([∆t,w0,∆t, r∆t,w∆t; rt2],wt2).
Note though that the value of the tape of the TM at t2 is identical to the state of

9As was mentioned in Section 2.2, in this subsection I need to explicitly write nt = (nt, rt),
rather than use the shorthand of identifying the state of the computer nt with the state of its tape,
nt which is used in most of the rest of this paper.

10Recall the discussion in Section 2.2 of the fact that it may prove convenient to augment
our TMs with a special instruction that copies the contents of an arbitrarily large portion of V to
another portion of V in a single iteration; that extra instruction could be used here, for calculational
convenience, so that we don’t have to account for the number of iterations it would require a
non-augmented TM to copy over that entire input, working on only a single variable in the multi-
dimensional state space W at a time.
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the entire universe at ∆t. So nt2 = g(∆t,w0, n0). We therefore satisfy the self-
simulation lemma by choosing T (∆t,w0, n0) = t2.

One might argue that in a certain sense the algorithm used in Example 3 for
self-simulation is a milder type of “cheating”, since the computer only increments
a counter up to time ∆t, not trying to evolve w0 at all. However, we can nest that
algorithm within itself an arbitrary number of times, so that w0 is being evolved
continually, not just after reaching the time ∆t. This is illustrated in the following
extension of Example 3, which shows how a shielded computer can produce a
subsequence of an entire trajectory of states of the full universe, computing those
states one after the other, in the proper time order:

Example 4. As in Example 3, treat the computer as a single-tape TM. However, do
not have any value ∆t on the tape of the TM at t0. In addition, there is no counter
variable. Other than that, we run the exact same algorithm as in Example 3, as
though ∆t had been set to 1, and there was no need for counter incrementing. So
the first thing that happens is the state of the tape gets overwritten with the value
w0. Suppose that this copy operation completed at some iteration t1 > 0. So the
full ID of the TM at t1 is [w0; rt1], and the state of the universe then is ([w0; rt1],wt1).

Next the TM appends rt1 to the end of its tape, and then copies w0 to after
that. When this is done it computes wt1 from the copy of w0, overwriting that copy.
Supposing it completes this at t2 > t1, the state of its tape at t2 is (w0, rt1 ,wt1), the
full ID of the TM then is [(w0, rt1 ,wt1); rt2], and the state of the universe then is
vt2 = [(w0, rt1 ,wt1); rt2],wt2). So the state of the TM at t2 is the state that the entire
universe had at t1 < t2.

At this point the TM appends the value rt2 to its tape, and then appends a
copy of the state wt1 that was stored on its tape to the end of its tape. It then
uses that copy to compute wt2 . Assuming it completes that computation at it-
eration t3 > t2, at iteration t3 the state of the tape is (w0, rt1 ,wt1 , rt2 ,wt2), the
ID of the TM is [(w0, rt1 ,wt1 , rt2 ,wt2); rt3], and the state of the full universe is
([(w0, rt1 ,wt1 , rt2 ,wt2); rt3],wt23). In particular, the state of the tape at t3 is the state
of the full universe at t2 < t3.

The computer keeps repeating this process, without ever halting. (Or alter-
natively, it can halt after some arbitrary, pre-fixed number of iterations, using a
counter variable to count iterations that is stored in R.) As it does so it com-
putes the full states of the universe at the iterations 1, t1, t2, t3, . . ., outputting those
computations at the iterations t1, t2, t3, . . ., respectively, where t1 < t2 < t3 < . . ..

I refer to the procedure run in Example 4 as (greedy) nested simulation of
a trajectory of states, with the sequence {t1, t2, . . .} called the simulation time
sequence.11 In this case the nested simulation is applied by a universe to itself, a

11The qualifier “greedy” indicates the fact that each successive computation is written to the
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special case I refer to as greedy nested self-simulation. Note that in nested self-
simulation, while the number of iterations to compute the state of the universe at a
time t is an increasing function of t, it is a partial function. Only a sub-sequence of
the full trajectory of states of the universe defined by the simulation time sequence,
{vt1 , vt2 , vt3 , . . .}, is computed.

The nested self-simulation only places a sequence of pairs (rti ,wti) onto the
tape, never separating the two elements of such a pair in its output. In addition,
recall from above we can almost always treat N as synonymous with N, with
Example 4 being the only instance in this paper in which we explicitly distinguish
the N and R components of N. Given all this, one might think that formally, we
could absorb the variable R into the variable W, leaving only N in the computer
variable N. Doing that would change W into the environment of N, not of N =

N × R.
This would simplify the notation of this paper. However, Definition 6 requires

that R and N both lie in N. If we absorbed R into W, then in nested self-simulation
the computer N (which would now only consist of the tape N) would have to inter-
act with its external environment for all iterations, never evolving autonomously.
So we could not require that the computer be shielded from its environment.

6 Philosophical issues raised by the simulation and
self-simulation lemmas

6.1 Who am I?
The simulation and self-simulation lemmas have some interesting philosophical
aspects. Most obviously, suppose that the PCT and RPCT both apply in our par-
ticular computational universe. Then not only might we be a simulation in a com-
puter run by aliens in a universe that our universe supervenes on — we and our
entire universe might be a simulation in a computer in our very universe. (This
is not an issue considered in the earlier literature on the simulation hypothesis.)
It might be that we comprise a portion of the universe external to the simulation
computer, i.e., our state in toto at time t is specified by wt, and our dynamics is ex-
actly given by g, and therefore we and our dynamics would also be exactly given
by the dynamics of n. In other words, we would be both in the universe external to
the computer, and in the simulation being run on the computer. And importantly,
there would be no possible experimental test we could perform that could distin-
guish “which of those two entities we are”. Our existence would be duplicated;

tape of the TM as early as possible. Technically, greedy nested simulation means that for all ti,
ti+1 − ti is as small as possible.
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we would be a duality, in all respects.
In that particular scenario, we are not the ones running the simulating com-

puter. However, if we ever in the future gain the capability of building and running
simulation computers, then by the self-simulation lemma, at that time we might
even be simulations in a computer that we ourselves run! In such a situation, since
the part of our universe containing us, W, is being reproduced in exact detail in-
side the computer that is simulating the dynamics of W, the version of us inside
the computer is itself running a computer, that in turn is simulating us running a
computer in exact detail.

In other words, we the humans running that physical computer inside of W,
might “be” either those people running that physical computer — or we might
be the people inside the physical computer who are evolving as the simulation
runs, and who are indistinguishable from the “other” humans who are running
that physical computer. By the RPCT, there is no conceivable physical test, no
observable value, that could tell us which of those two dynamic processes “is” us.
So in a non-Leibnizian, empirically meaningful sense of the term, we could “be”
either one of those two evolving objects. We could even both, and would never
know.

This conundrum raised by the self-simulation lemma concerning the concept
of “identity” is in some senses reminiscent of the “the boat of Theseus” concept.
Going beyond that concept though, the self-simulation lemma considers a situ-
ation where one object that is directly controlling the other, as both evolve. By
construction we cannot distinguish between the possibilities that we are the con-
troller object or we are the controlled, as both of them evolve. There is no such
splitting of identity among two simultaneously evolving objects in the boat of
Theseus scenario.

As a related point, loosely speaking, one can define “conscious experience”
of a person as their thinking about their own thinking. If we adopt that defini-
tion, and modify the RPCT thesis appropriately, then we could use the associated
modified version of the self-simulation lemma to establish the formal possibil-
ity of conscious experience. Rather than apply the original version of the lemma
to a physical computer’s simulating itself as it simulates itself, we would apply
this modified version ot the lemma a physical brain that performs computations
(“thinks”) about those computations (“thoughts”) it is performing.

6.2 Running (self-)simulation using fully homomorphic encryp-
tion

Another interesting set of issues arises if there is one universe V = W × N that
simulates a second universe V ′ = W ′×N′, but that simulation is a fully homomor-
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phic encrypted (FHE) version of the evolution function of that second universe.12

In other words, the program n0 ∈ N could be an FHE version of the program sim-
ulating V ′ that the beings who are running that computer N want it to compute. So
those beings would need to use a decryption key to understand the result of their
computer’s simulation of the evolution of V ′.

In this case, as a practical matter, if the simulator beings lost the decryption
key, then they would not be able to read out the results of their simulation. This
would be the case even though that simulation was in fact perfectly accurate. Or to
be more precise, those simulator beings could read the results of their simulation
— but would require their expending a huge amount of computational resources.13

On the other hand, since V ′ obeys the PCT there is no sense in which the
beings being simulated could know that they are being produced in a simulation.
So in particular, there is no way that they could know that they are being produced
in a simulation being made via an FHE algorithm, rather than some simulation that
is easier to understand. As an example, suppose we are a simulation, so that the
laws of physics we perceive are simply the evolution function g′ of our universe.
In this situation, we would not be able to distinguish the case where we are being
run on a simulation program that directly implements the laws of physics, in the
straight-forward way (cf. Section 2.6), or are instead being run on a FHE version
of the laws of physics. Moreover, in the latter case, if we could actually somehow
see our universe’s evolution from the perspective of the beings who are running
the program producing us, we would not be able to distinguish the laws of physics
controlling our universe in that simulation from completely random noise. In this
sense, the actual laws of physics in our universe might in fact be pure noise —

12Recall that in FHE you have an algorithm that runs on some encrypted data, producing a
result that when decrypted is identical to the result of running an associated algorithm on the
original data, without any encryption. So in order to use FHE encryption to run a program in an
encrypted fashion, all you need to do is have the encrypted data specify that program, and have
the algorithm running on the encrypted data be a UTM.

13As an aside, recall the common supposition that the sequence of events in our universe must
have low Kolmogorov complexity, in order for it to contain a pattern that is evident to us, so
that it “counts as having been generated by mathematical laws, rather than just being a lawless,
random sequence”. Note though that running a program via FHE rather than running it directly
does not change its Kolmogorov complexity. (Though to run it via an FHE and then also decrypt
the results would result in a composite program with slightly larger Kolmogorov complexity.)
So we could have a sequence of events that appear to be purely random, to us (and so would
not “count as mathematical laws”), even though they have low Kolmogorov complexity. In such a
situation they have low complexity, but we cannot distinguish them from a sequence of events with
high Kolmogorov complexity. One might argue that even if low Kolmogorov complexity of the
sequence is not a sufficient condition for it to be considered lawful, it is still a necessary condition
for it be considered lawful. However, Chaitin’s incompleteness theorem says it is impossible to
prove that any sequence with Kolmogorov complexity above a very small value actually has that
Kolmogorov complexity. So we can never prove that such a necessary condition is violated.
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and we would not be able to tell the difference.
Similar consequences arise if we consider self-simulation. We might be simu-

lating ourselves, but have done so with an FHE version of ourselves. Again, sup-
pose this is the case, but the decryption key has been misplaced. In this scenario,
we are a simulation that we ourselves are running — but we cannot understand
that simulation of ourselves, a simulation which is us.

7 The simulation graph
Section 6 contains a brief discussion of the philosophical issues that arise if we
consider simulation involving more than two universes. There are also interesting
mathematical aspects to such a situation. In particular, the graphical structure of
universes simulating universes can be quite interesting.

I start in this section with some preliminary remarks concerning that graph.
Then in Section 9 I discuss some other open mathematical questions.

7.1 The graph of simulations and self-simulations
I begin with the simple observation that simulation is a transitive relation:

Lemma 4. If V simulates V ′, and V ′ simulates V ′′, then V simulates V ′′.

Proof. The proof parallels that of Lemma 1. By hypothesis, the evolution func-
tion g′′ of V ′′ is computable, and there exist associated functions TV′,V′′ ,WV′,V′′ ,
NV′,V′′ that obey the RPCT properties for V ′ for (a set K′ that includes the number
k′ coding for) the TM T k′ that implements the evolution function g′′, where the
argument y′ of T k′ is set to 〈∆t′′,w′′0 , n

′′
0 〉 for any ∆t′′ ∈ N.

Similarly, by hypothesis there exist functions TV,V′ ,WV,V′ ,NV,V′ that obey the
RPCT properties for V for (a set K that includes the number k coding for) the TM
T k that implements the evolution function g′, where the argument y of T k is set
to 〈∆t′,w′0, n

′
0〉 for any ∆t′′ ∈ N. So in particular, V has this property where the

argument y of T k is set to

〈TV′,V′′(∆t′′),WV′,V′′(w′′0 ),NV′,V′′(n′′0 )〉

�

A (bare) simulation graph Γ is defined as a directed graph whose nodes are
universes where there is an edge from V to V ′ iff V simulates V ′. In light of the
transitivity of simulation, for any node V in a simulation graph Γ, and any node
V ′ on a directed path leading out of V , Γ must contain an edge from V to V ′. In
general though, if V ′ and V ′′ are two universes that are both descendants of V in
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the graph Γ, it need not be the case that one of them can simulate the other. In
addition, due to the possibility of self-simulation, the simulation graph need not
be a simple graph; it might contain edges that point to the same node that they
came from.

Indeed, suppose we restrict attention to such a simulation graph universes such
that there is a directed edge from any node V in the graph to any other node
V ′ , V . Then the simulation relation cannot be a partially ordered set. Given this,
suppose that all of the nodes (universes) have a finite W and an evolution function
that obeys the PCT. As pointed out in Section 2.4, the set of such universes is
countably infinite, and so we cannot assign a uniform probability distribution to
that set. However, since the elements of the set are not partially ordered in the
simulation graph, we also cannot assign a Cantor measure over the elements of the
set, if we wish to use the simulation relation to fix how to assign such a measure
to the nodes in the graph. This establishes the claim made in the introduction, that
it is not possible to use a Cantor measure to assign probabilities to a very naturally
defined set of universes (at least, it’s not possible if we try to use the simulation
relation to fix the measure).

In general, a bare simulation graph could contain computational universes that
exist in the same cosmological universe (see Section 2.2), obeying the same laws
of physics, the same initial conditions, etc. It might also contain computational
universes that exist in different cosmological universes. These two cases can be
intermingled as well.

Note that in general there might also be multiple edges coming in to each
node. If we are such a node, that would mean that that we could simultaneously
be the simulations being run by more than one set of beings in other cosmolog-
ical universes. Another possibility is for there to be multiple beings in a single
cosmological universe all of whom are running a simulation that is us.

It’s worth briefly commenting on how this second possibility might come
about in our particular cosmological universe. One way is if those beings are all
running the simulations that are us at the same (cosmological, co-moving) time.
In such a situation we would have “split” identities, but at least they would all
exist at the same moment in time in our universe. Alternatively though, those be-
ings could be running simulations that are us, but are doing so at different times
(i.e., where there is no co-moving frame that contains all of those beings at the
moments they are running the simulations). In such a situation, our separate (but
identical) selves would all exist at a different moment of time. (Though of course,
those versions of us could not have seen that difference in times, at least not yet,
since after all, they are identical.)

The simplest way either of these situations could be arranged is if each of
the beings running simulations of us exists in a region of the same cosmological
universe, where each region is causally disconnected from the regions containing
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the other beings, and whose backward light cone doesn’t intersect the backward
light cones of the other beings simulating us. These restrictions would prevent
any complications from the need to have the intersections of the light cones not
prevent those beings from all simulating us. (This is true of both the case where
all the beings simulating us exist at the same time, and the case where some of
them exist at different times.)

In addition to being simulated by multiple other sets of aliens, we could our-
selves be running simulations that are us, while perhaps simulating some of those
beings who are running simulations of us. In this structure there would be edges
that are loops from us into us, and edges from those other universes into us, per-
haps together with some edges from us into those other universes.

Suppose we restrict the simulation graph Γ to only contain universes that can
simulate themselves, Suppose as well that we restrict the graph so that there is at
most a single edge from any universe to V to V ′ ( where V ′ may or may not differ
from V). Then the directed edges in Γ form a reflexive, transitive relation, i.e., they
form a preorder. In general, the relation provided by the edges in that simulation
graph can include both pairs of nodes that are symmetric under the relation and
pairs of nodes that are anti-symmetric under the relation. So while it is a preorder,
those edges need not provide either an equivalence relation or a partially ordered
set.

There exist many kinds of equivalence classes that could apply to a simula-
tion graph, depending on what universes it contained. Most obviously, we could
always divide those universes into equivalence classes where all computers in a
class can simulate one another. If in addition the edges form a linear order, then
all computers in a class can also simulate all computers in a class that is lower (ac-
cording to the ≤ ordering). But no universe can contain a computer that simulates
a universe in a higher equivalence class.

7.2 Time-ordered and time-bounded simulation graphs
If we consider a set of computable universes all of which obey the RPCT for
K = N, then the simulation graph is trivial: it is a fully connected graph. However,
even if we’re considering a set of computable universes all of which obey RPCT
for K = N, there might still be nontrivial structure in the graph given by placing an
edge from V to V ′ only if V simulates V ′ sufficiently quickly. More formally, we
can consider the time-bounded simulation graph in which there is an edge from
V to V ′ iff V simulates V ′ with a function T (∆t′,w′, n′) that obeys some bound in
the worst-case over all pairs (w′, n′) in how fast it can grow as a function of ∆t′.
For example, one could consider the variant of a simulation graph given by only
placing an edge from V to V ′ if for all pairs (w′, n′), T (∆t′,w′, n′) grows at most
polynomially with ∆t′. Other kinds of nontrivial simulation graphs arise if we
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consider the scaling of the resources (time, memory, etc.) needed to compute the
functions T ,W,N , or in the case of self-simulation, S. (See also the discussion
in Section 10 of time-minimal simulation functions, their scaling properties, and
computational complexity theory.)

Next, consider any two nodes V , V ′ connected by a directed path in a (bare)
simulation graph. TV(∆t′,w′, n′; ) will differ from ∆t. In this sense, T (∆t,w, n)
provides a well-defined measure of “the speed of time of the dynamics of a uni-
verse”, a speed of time that varies among the different universes along any path
descended from V . Note though that this speed of time is only defined for the
universe being simulated, measured against time intervals in the universe doing
the simulating. Moreover, the speed of time might differ depending on ∆t, i.e.,
T (∆t,w, n)/∆t might vary depending on ∆t, even for a fixed w, n.

In the case of self-simulation, we know from Lemma 3 that in fact the speed
of time is always sped up in a universe being simulated by itself. Accordingly, I
define a time-ordered simulation graph as any bare simulation graph where all
edges V → V ′ are removed where for at least one triple (∆t′,w′, n′),T (∆t′,w′, n′) <
∆t. (Whether or not V = V ′, as in self-simulation.) We do not allow edges in
which the speed of time slows down in time-ordered simulation graphs (though
we allow time to speed up).

Suppose that in fact T (∆t′,w′, n′) < ∆t for all n′,w′ in all universes on the
nodes of the graph. Then the time-ordered simulation graph cannot be cyclic.
However, it could still “spiral”, in the sense that going along a directed path start-
ing from a node v1 could land on a node vN that is an indistinguishable copy of
(the universe evolving in) node v1, except that the speed of time in vN is greater
than that in v1.

Recall as well from Section 4.2 that when the conditions in Lemma 2 hold for
a universe V . there are an infinite number of initial states of the computer, n0,
such that that computer simulates the full universe V , including itself. This may
have some interesting philosophical and mathematical implications. For example,
it suggests the possibility for me to run a computer which is simulating my entire
universe for a given time into the future ∆t, for my actual environment w0, and for
a program n0 that is computationally equivalent to the actual simulation program
I am using — but where that program n0 actually differs from the precise program
I am using. (So it is not a perfect self-simulation, in that sense.) This suggests
replacing any single loop in the simulation graph(i.e., any single edge from a
universe-node into itself) with a set of multiple such loops, distinguished by the
fact that they use different (but computationally equivalent) programs.
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7.3 Weak RPCT
In general we do not need to assume the full strength of the RPCT to prove a
particular instance of either the simulation lemma or the self-simulation lemma.
In the case of the former, we just need to assume that the simulating universe
can implement the evolution function of the universe being simulated, i.e., can
implement the particular TM specified by that evolution function of the universe
being simulated. It is not necessary that it can implement the Turing machine of
any universe there is. In the case of the latter, we just need to assume that the
universe can implement the (Turing machine specifying the) computable function
S(∆t). We do not need it to be computationally universal.

Accordingly, I say that the weak RPCT (for a set K ⊂ N) holds for universe
V if Definition 4 holds for V after one replaces the requirement that the functions
T̂ ,Ŵ and N̂ have the RPCT properties for all k, instead only requiring they they
have the RPCT properties for all k ∈ K (and evolution function g of V).

The associated weak simulation lemma says that V can simulate V ′ = W ′×N′

if V ′ obeys the PCT and V obeys the weak RPCT for a set K that includes three
functions T̂ ,Ŵ and N̂ that have the RPCT properties for all (∆t′,w′ ∈ W ′, n′ ∈
N′) (for the associated evolution function g′). With obvious generalizations, we
can weaken the RPCT further, by restricting the set of w′ ∈ W ′ and / or the set of
∆t — which corresponds to restrictions on the set of y in Definition 4. Transitivity
of simulation (Lemma 4) would still apply for a set of universes related this way.
So the simulation graph for such a set of universes would again be a preorder.

Similarly, suppose that a universe obeys the weak RPCT for a set K, where the
solution S(∆t) for V to simulate itself a time ∆t into the future lies in K. In this
case the universe does not obey the full RPCT, but it still is able to simulate itself
for that future time ∆t. Accordingly, I call this the weak self-simulation lemma
for universe V . As with the simulation lemma, we can further weaken the RPCT
so that we limit the set of w ∈ W and / or ∆t for which V simulates itself.

One could extend the simulation graph by changing the definitions of the edges
to include these weakened versions of the simulation and / or self-simulation lem-
mas. In particular, it might be of interest to investigate how the structure of the
graph progressively changes as we progressively weaken those lemmas.

In a similar way, we could weaken the PCT, either instead of weakening the
RPCT or in addition to weakening the RPCT. This would result in yet another pair
of lemmas, and another extension of the simulation graph.

7.4 Refinements of simulation graphs
There are many other variants of simulation graphs that might be interesting to
explore. As an example, consider some computational universe V = W ×N where
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W =×i∈I Ai for some set of spaces {Ai}. Suppose that our computational universe
is V ′ = W ′ × N′, where W ′ =× j ∈ JA j for some subset J ⊂ I. Now suppose that
the computer N is running a simulation of us. (For example, there might some
species of super-aliens who are a part of the environment W distinct from us, who
are running the computer N that way.) In this case there would be two instances
of our universe, one given by V ′, and one being simulated in N. In this case the
simulation graph (as defined above) would only have a single edge, from V to V ′.
Yet there would be two instances of us, evolving independently. To complicate
the situation further, we might also be running a simulation of ourselves.

In addition, any particular universe might be running more than one simulation
at once. Physically, this could occur by having one computer in that universe
running multiple simulations simultaneously, just like a laptop runs multiple tasks
simultaneously, by “swapping”. It could also occur by having multiple computers
in the universe, all running simulations.14

As an example, there might be a universe V that is running simulations of mul-
tiple different universes, V1,V2, . . . simultaneously, and as one runs down some of
the simulation paths from some subset of those universes, Vi1 ,Vi2 , . . ., one even-
tually converges at us. Similarly, there might be beings in a universe who are
running us in their computer who themselves are a simulation in a computer that
we are running. In such a case, the aliens would be a simulation running in a
computer that they themselves control, just “one step removed”. The same would
also be true of us of course. We would be a means for the aliens to “split” their
ontological status in two, while also being a means for us to split our ontological
status in two.

This suggests an extension of the simulation graph, in which all the edges
coming out of each node V are labeled by one or more elements of N. The in-
terpretation would be that for all i ∈ N, the set of edges out of V labeled i are a
maximal set of simulations that V could be doing simultaneously. (“Simultaneous
simulation” could be formalized by modifying Definition 1 so that the same initial
condition of the simulating computer, n0 ∈ N, would result in the computation of
the future state of multiple evolution functions.)

8 Implications of Rice’s theorem for (self-)simulation
Rice’s theorem, discussed in Appendix B, has some interesting implications for
both simulation and self-simulation. To illustrate these, for simplicity, throughout

14In terms of the formalism in this paper, the latter case would mean that “the” computer N
of the universe is actually a set of multiple computers running independently, in parallel. The
simulation lemma would apply directly, and the self-simulation lemma would also hold, where
S(∆t) is the initial joint state of all of the computers in the universe.
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this subsection I’m restricting attention to universes with a countably infinite W
as well as a countably infinite N.

First, Rice’s theorem tells us that the set of all computational universes V ′ that
can be simulated by a fixed universe V is undecidable. More formally, fix some
universe V that simulates at least one other universe. Define A(V) as the collection
of all TMs that compute the evolution function of universes V ′ that are simulated
by V . Note that every TM that lies in A(V) must be total, since all evolution
functions are. Therefore there are TMs that do not lie in A(V) (e.g., all TMs that
compute a partial function), as well as TMs that do lie in V (by definition of V and
A(V)). Moreover, any two TMs that compute the exact same evolution function
either both lie in A(V) or both do not, i.e., membership in A(V) does not depend on
how the associated TM operates, only on the function it computes. Therefore by
Rice’s theorem, it is undecidable whether an arbitrary (total TM and associated)
V ′ is a member of A(V).

As a variant of this result, again fix V , and also fix some spaces W ′,N′. Define
B(V, (w′0, n

′
0), (w′

∆t, n
′
∆t)) as the collection of all TMs that compute the evolution

function g′ of some universe V ′ = W ′ × N′ with the following two properties.
First, g′ sends (w′0, n

′
0) to (w′

∆t, n
′
∆t). Second, V simulates V ′ for the specific initial

condition (w′0, n
′
0) and the simulation time ∆t. Again, it is undecidable whether an

arbitrary TM lies in B(V, (w′0, n
′
0), (w′t , n

′
t)).

Flipping things around, Rice’s theorems tells us that for any fixed universe
V ′, the set of all other universes V that can simulate V ′ is undecidable. More
formally, fix V ′, and define the property of TMs that the function they compute is
the evolution function of a universe V that simulates V ′. Then it is undecidable
whether an arbitrary such (TM and associated) V has that property of simulating
V ′. An immediate consequence of this is that the set of all pairs of universes
(V,V ′) such that V simulates V ′ is undecidable.

Rice’s theorem also shows that:

1. The set of universes (and in particular evolution functions) that obey the
RPCT is undecidable.

2. The set of universes that can simulate themselves is undecidable.

3. The set of universes V that can simulate a universe V ′ , V that can in turn
simulate any universe at all is undecidable.

4. The set of universes V that can simulate a universe V ′ , V that can in turn
simulate V is undecidable.

5. Restrict attention to some set V of universes that can simulate themselves
(e.g., because all the universes inV obey both the PCT and the RPCT). The

40



set of those universes inV that can simulate itself for all ∆t ∈ N using some
specific function S(∆t) is undecidable.

6. In particular, for any k ∈ {2, . . .}, the set of universes inV that can simulate
itself for an associated S(∆t) for all ∆t ≤ k but not for some ∆t > k is
undecidable.

7. For any k ∈ {2, . . .}, the set of universes in V that can simulate itself for an
associated S(∆t) for all ∆t ≥ k but not for some ∆t > k is undecidable.

8. The set of those universes in V that can simulate itself for a time-ordered
S(∆t) is undecidable.

There are some strange philosophical implications of these impossibility re-
sults, especially those that concern self-simulation. For example, it is possible
that we are in a universe V that is simulating itself — but only up to some fu-
ture time, after which it is impossible for the simulation to still be accurate. At
that future time we would “split” into two versions of ourselves, which share an
identical past: the simulating version of us, and the simulated version of us. The
impossibility results above say that we can never be sure that this is not the case.

9 Mathematical issues raised by the self-simulation
and simulation lemmas

There are many mathematical questions suggested by the self-simulation lemma
that I am not considering in this paper. Most obviously, I have not considered the
computational complexity of finding S(∆t), and its dependence on g, ∆t, |W |, etc.

I also have not considered the relation between ∆t and the physical timeT (∆t,w0, n0)
at which a computer N with initial state n0 running a simulation finishes its calcu-
lation of the state of V at physical time ∆t, when the initial state of the environment
is w0. In particular, I have not considered how the minimal value (over all n0) of
T (∆t,w0, n0)/∆t might depend on g, w0, the value of ∆t, etc. Associated ques-
tions, more in the spirit of computational complexity theory, would involve the
scaling of

min
n0

max
w0

T (∆t,w0, n0)
∆t

(33)

with |W |, for a fixed family of evolution functions {g|W |}.
Next, define “non-greedy nested self-simulation” as the variant of nested self-

simulation where for at least one ti in a simulation time sequence computed by
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the computer, ti, the gap ti+1 − ti is not minimal. Define the density (of simula-
tion times) of an instance of nested self-simulation producing the simulation time
sequence {t1, t2, . . .} for initial condition v0 = (w0, n0) as

D(w0, n0) := lim
i→∞

i
ti

(34)

Note that this is well-defined even if the instance of nested self-simulation pro-
duced by n0 isn’t greedy.

One obvious question is what the properties of g and v0 need to be for the
density D(w0, n0) to be well defined. A related question is whether in scenarios
where the density is well-defined, greedy self-simulation maximizes it.( A priori,
it could be that delaying some simulation times ti allows denser subsequent simu-
lation times.) A higher-level question is whether nested self-simulation, greedy or
otherwise, maximizes the density of simulation times over the set of all possible
TMs.

There are also interesting computational complexity issues concerning the
three computable functions that define one universe’s simulating another. In par-
ticular, there are obvious extensions of the basic framework to concern not perfect
simulation, but rather approximate simulation. This then immediately suggests in-
vestigating variants of simulation graphs, defined by the the approximation com-
plexity of (imperfect) simulation [5]. For example, one might consider simulation
graphs where edges from V to V ′ must respect an upper bound on how fast the
function T (∆t′,w′, n′) must grow as a function of ∆t′ in order for the resultant
simulation of V ′’s evolution to be at least a factor α within exact. As another ex-
ample, one could consider such approximation complexity in the computation of
T ,W,N themselves, rather than in the resultant behavior of T .

Similarly, we can consider the average-case complexity of all the issues arising
in the simulation framework. In this kind of approach we would again consider
a variant of simulation graphs, this time defined by requiring all edges from one
universe (labeled as V) to a potentially different universe (labeled as V ′) in the
simulation graph must obey associated bounds. In this case though those bounds
would concern the average-case behavior of T (∆t′,w′, n′) as a function of ∆t′, or
of the resources needed to compute the functions T ,W,N . Why might also want
to follow Levin in how precisely to define such “average-case complexity”.

There are many other open questions that involve slight variants of the frame-
work introduced in this paper, in addition to those discussed in the main text. For
example, there are some ways to refine the definition of simulation that might be
worth pursuing. One of these is to define the “time-minimal” triple of simula-
tion functions (T ,W,N)V,V′ used by V to simulate V ′ as the three such functions
where for all triples (∆t′,w′0, n

′
0), the associated time to complete the simulation,

T V,V′′(∆t′,w′0, n
′
0), is minimal. So intuitively, this triple of simulation functions
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minimizes the time cost (in the complexity theory sense) for V to perform the
computation of the future state of V ′. Next define

TV,V′(∆t′) := max
w′0∈W

′,n′0∈N′
T V,V′(∆t′,w′0, n

′
0) (35)

This is the worst-possible time to complete the simulation using the fastest simu-
lating computer.

It might be of interest to investigate the scaling of TV,V′(∆t′) as a function of
|V ′|, the size of the state space of V ′. (In the case of self-simulation, V = V ′,
and we might instead investigate the scaling of TV,V(∆t′) as a function of |W |.)
In particular, to get a precise analogy with the concept of time complexity in
computational complexity theory, we might want to investigate how that scaling
depends on both g and g′.

Analogous issues would arise for a “space minimal” variant of simulation,
involving the simulation function N rather than T . In particular, we could inves-
tigate how the scaling properties of the space-minimal cost depends on g, g′. This
would provide an analogy with the concept of space complexity in computational
complexity theory. In a similar way, it might be fruitful to view time-minimal and
/ or space-minimal versions of the RPCT.

10 Discussion
To my knowledge, Lemma 1 is the first fully formal statement of what has been
informally referred to in the literature as the “simulation hypothesis”. Going fur-
ther, it is also the first formal derivation of a set of sufficient conditions that ensure
that the simulation hypothesis holds. Lemma 2 then goes further, and establishes
sufficient conditions for a universe to have a computer that simulates itself, a pos-
sibility with strange philosophical consequences. These lemmas also lead to many
interesting questions that are purely mathematical, e.g., concerning the simulation
graph of universes simulating universes, the minimal time delay in self-simulation,
etc.

There have been informal discussions in the literature attacking the simulation
hypothesis on the grounds that each successive level of simulation within simu-
lation would necessarily be computationally weaker than the one just above it.
The idea is that due to this strict “weakening of computational power”, there is a
deepest possible level of simulation, containing a species that is not computation-
ally powerful enough to simulate any other species [15]. The argument is made
that this deepest level would only be a finite number of levels below the one we
inhabit.

This argument has been criticized for not considering the possibility that the
computational power of the successive levels might asymptote at some weakest
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amount of power. In this case there would actually be an infinite number of
levels below the one we inhabit, and none of them would be so weak as to be
incapable of simulating yet a deeper level. The point is moot however; the self-
simulation lemma disproves the starting supposition of the argument, that “each
successive level of simulation within simulation would necessarily be computa-
tionally weaker than the one just above it”.

The self-simulation lemma also problematizes — perhaps fatally — the whole
idea of assigning a probability to the possibility that “we are a simulation”. If
in fact we are a self -simulation, then we would be both the simulation, and the
simulator. Indeed, in some senses we would be an infinite number of simulations-
within-simulations, all distinguishable by how slowly they evolve, but in all others
ways completely identical. That raises the obvious question of how many in-
stances of us we need to include in tallying up the number of cases in which we’re
a simulation. Without answering that question, it is hard to see how to calculate
the probability of our being a simulation.

Numerous open issues concerning simulation and mathematics are discussed
in the text. There are also several open issues concerning simulation and the laws
of physics as we currently understand them. In particular, it might be worth inves-
tigating extensions of the analysis in this paper to concern quantum mechanical
and / or relativistic universes. One obvious question in this regard is whether the
quantum no-cloning theorem means that self-simulation could never arise (at the
quantum level) in our universe. If so, that might point to ways for the recursion
theorem to be modified for quantum rather than classical computers.
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A Appendix A: Turing machines
Perhaps the most famous class of computational machines are Turing machines [36,
56, 5, 52]. One reason for their fame is that it seems one can model any computa-
tional machine that is constructable by humans as a Turing machine. A bit more
formally, the Church-Turing thesis (CT) states that, “A function on the natural
numbers is computable by a human being mechanically following an algorithm,
ignoring resource limitations, if and only if it is computable by a Turing machine.”
Note that it’s not even clear whether this is a statement about the physical world
that could be true or false, or whether instead it is simply a definition, of what
“mechanically following an algorithm” means [23]. In any case, the “physical
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CT” (PCT) modifies the CT to hypothesize that the set of functions computable
with Turing machines includes all functions that are computable using mechanical
algorithmic procedures (i.e., those we humans can implement) admissible by the
laws of physics [6, 48, 50, 41].

In earlier literature, the CT and PCT were both only always described semi-
formally, or simply taken as definitions of terms like “calculable via a mechanical
procedure” or “effectively computable” (in contrast to the fully formal definition
given in Section 2.4). Nonetheless, in part due to the CT thesis, Turing machines
form one of the keystones of the entire field of computer science theory, and in
particular of computational complexity [42]. For example, the famous Clay prize
question of whether P = NP — widely considered one of the deepest and most
profound open questions in mathematics — concerns the properties of Turing
machines. As another example, the theory of Turing machines is intimately related
to deep results on the limitations of mathematics, like Gödel’s incompleteness
theorems, and seems to have broader implications for other parts of philosophy
as well [3]. Indeed, invoking the PCT, it has been argued that the foundations of
physics may be restricted by some of the properties of Turing machines [10, 1].

Along these lines, some authors have suggested that the foundations of statis-
tical physics should be modified to account for the properties of Turing machines,
e.g., by adding terms to the definition of entropy. After all, given the CT, one
might argue that the probability distributions at the heart of statistical physics are
distributions “stored in the mind” of the human being analyzing a given statis-
tical physical system (i.e., of a human being running a particular algorithm to
compute a property of a given system). Accordingly, so goes the argument, the
costs of generating, storing, and transforming the minimal specifications of the
distributions concerning a statistical physics system should be included in one’s
thermodynamic analysis of those changes in the distribution of states of the sys-
tem. See [17, 18, 65].

There are many different definitions of Turing machines that are computation-
ally equivalent to one another, in that any computation that can be done with one
type of Turing machine can be done with the other. It also means that the “scaling
function” of one type of Turing machine, mapping the size of a computation to
the minimal amount of resources needed to perform that computation by that type
of Turing machine, is at most a polynomial function of the scaling function of any
other type of Turing machine. (See for example the relation between the scaling
functions of single-tape and multi-tape Turing machines [5].) The following def-
inition will be useful for our purposes, even though it is more complicated than
strictly needed:

Definition 7. A Turing machine (TM) is a 7-tuple (R,Λ, b, v, r∅, rA, ρ) where:

1. R is a finite set of computational states;
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2. Λ is a finite alphabet containing at least three symbols;

3. b ∈ Λ is a special blank symbol;

4. v ∈ Z is a pointer;

5. r∅ ∈ R is the start state;

6. rA ∈ R is the accept state; and

7. ρ : R× Z×Λ∞ → R× Z×Λ∞ is the update function. It is required that for
all triples (r, v,T ), that if we write (r′, v′,T ′) = ρ(r, v,T ), then v′ does not
differ by more than 1 from v, and the vector T ′ is identical to the vectors T
for all components with the possible exception of the component with index
v;15

rA is often called the “halt state” of the TM rather than the accept state. (In
some alternative, computationally equivalent definitions of TMs, there is a set of
multiple accept states rather than a single accept state, but for simplicity I do not
consider them here.) ρ is sometimes called the “transition function” of the TM.
We sometimes refer to R as the states of the “head” of the TM, and refer to the
third argument of ρ as a tape, writing a value of the tape (i.e., semi-infinite string
of elements of the alphabet) as λ. The set of triples that are possible arguments to
the update function of a given TM are sometimes called the set of instantaneous
descriptions (IDs) of the TM. (These are sometimes instead referred to as “con-
figurations”.) Note that as an alternative to Def. 7, we could define the update
function of any TM as a map over an associated space of IDs.

Any TM (R,Λ, b, v, r∅, rA, ρ) starts with r = r∅, the counter set to a specific
initial value (e.g, 0), and with λ consisting of a finite contiguous set of non-blank
symbols, with all other symbols equal to b. The TM operates by iteratively ap-
plying ρ, if and until the computational state falls in rA, at which time the process
stops, i.e., any ID with the head in the halt state is a fixed point of ρ.

If running a TM on a given initial state of the tape results in the TM eventually
halting, the largest blank-delimited string that contains the position of the pointer
when the TM halts is called the TM’s output. The initial state of λ (excluding
the blanks) is sometimes called the associated input, or program. (However, the
reader should be warned that the term “program” has been used by some physicists
to mean specifically the shortest input to a TM that results in it computing a given
output.) We also say that the TM computes an output from an input. In general

15Technically the update function only needs to be defined on the “finitary” subset ofR×Z×Λ∞,
namely, those elements of R × Z × Λ∞ for which the tape contents has a non-blank value in only
finitely many positions.
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though, there will be inputs for which the TM never halts. The set of all those
inputs to a TM that cause it to eventually halt is called its halting set. We write
the output of a TM T run on an input x that lies in its halting set as T (x).

Write the set of non-blank symbols of Λ as Λ̂. Every λ on the tape of a TM that
it might have during a computation in which it halts is a finite string of elements in
Λ delimited by an infinite string of blanks. Accordingly, wolog we often refer to
the state space of the tape is Λ∗, with the trailing infinite string of blanks implicit.
Note that Λ∗ is countably infinite, in contrast to Λ∞.

If a function is undefined for some elements in its domain, it is called a partial
function. Otherwise it is a total function. In particular if a TM T does not halt for
some of its inputs, so its halting set is a proper subset of its domain, then the map
from its domain to outputs is a partial function, and if instead its halting set is its
entire domain, it is a total function.

We say that a total function f from (Λ \ {b})∗ to itself is recursive, or (total)
computable, if there is a TM with input alphabet Λ such that for all x ∈ (Λ\ {b})∗,
the TM computes f (x). If f is instead a partial function, then we say it is partial
recursive (partial computable, resp.) if there is a TM with input alphabet Λ that
computes f (x) for all x for which f (x) is defined, and does not halt for any other
x. (The reader should be warned that in the literature, the term “computable” is
sometimes taken to mean partial computable rather than total computable — and
in some articles it is sometimes taken to mean either total computable or partial
computable, depending on the context.)

An important special case is when the image of f is just B, so that for all
s ∈ (Λ \ {b})∗, f (s) is just a single bit. In this special case, we say that the set of
all s : f (s) = 1 is decidable if f is computable.

Famously, Turing showed that there are total functions that are not recur-
sive. In light of the CT, this result is arguably one of the deepest philosophical
truths concerning fundamental limitations on human capabilities ever discovered.
(See [23, 51, 49, 48].)

As mentioned, there are many variants of the definition of TMs provided
above. In one particularly popular variant the single tape in Definition 7 is re-
placed by multiple tapes. Typically one of those tapes contains the input, one
contains the TM’s output (if and) when the TM halts, and there are one or more
intermediate “work tapes” that are in essence used as scratch pads. The advan-
tage of using this more complicated variant of TMs is that it is often easier to
prove theorems for such machines than for single-tape TMs. However, there is no
difference in their computational power. More precisely, one can transform any
single-tape TM into an equivalent multi-tape TM (i.e., one that computes the same
partial function), as well as vice-versa [5, 36, 56].

To motivate an important example of such multi-tape TMs, suppose we have
two strings s1 and s2 both contained in the set (Λ∗ \ {b}) where s1 is a proper prefix
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of s2. If we run the TM on s1, it can detect when it gets to the end of its input, by
noting that the following symbol on the tape is a blank. Therefore, it can behave
differently after having reached the end of s1 from how it behaves when it reaches
the end of the first `(s1) bits in s2. As a result, it may be that both of those input
strings are in its halting set, but result in different outputs.

A prefix (free) TM is one in which this can never happen: there is no string in
its halting set that is a proper prefix of another string in its halting set. The easiest
way to construct such TMs is to have a multi-tape TM with a single read-only
input tape whose head cannot reverse, and a write-only output tape whose head
cannot reverse, together with an arbitrary number of work tapes with no such
restrictions.16 I will often implicitly assume that any TM being discussed is such
a multi-tape prefix TM.

Returning to the TM variant defined in Definition 7, one of the most important
results in CS theory is that the number of TMs is countably infinite. This means
that we can index the set of all TMs with N, i.e., we can write the set of TMs as
{T k : k ∈ N}. It also means that there exist universal Turing machines (UTMs),
U, which can be used to emulate an arbitrary other TM T k for any k. More pre-
cisely, we define a UTM U as one with the property that for any other TM T , there
is an invertible map f from the set of possible states of the input tape of T into the
set of possible states of the input tape of U with the following properties: Both f
and f −1 are computable, and if we apply f to any input string σ′ of T to construct
an input string σ of U, then:

1. U run on its input σ halts iff T run on its input σ′ halts;

2. If U run on σ halts, and we apply f −1 to the resultant output of U, we get
the output computed by T if it is run on σ′.

As is standard, I fix some set of (prefix free) encodings of all tuples of finite
bit strings, 〈.〉, 〈., .〉... In particular, in general the input to a UTM is encoded as
〈k, x〉 if it is emulating TM T k running on input string x. However, sometimes for
clarity of presentation I will leave the angle brackets implicit, and simply write
the UTM U operating on input 〈k, x〉 as U(k, x). In addition, as shorthand, if x is
a vector whose components are all bit strings, I will write the encoded version of
all of its components as 〈x〉.

16It is not trivial to construct prefix single-tape TMs directly. For that reason it is common
to use prefix three-tape TMs, in which there is a separate input tape that can only be read from,
output tape that can only be written to, and work tape that can be both read from and written to.
To ensure that the TM is prefix, we require that the head cannot ever back up on the input tape
to reread earlier input bits, nor can it ever back up on the output tape, to overwrite earlier output
bits. To construct a single-tape prefix TM, we can start with some such three-tape prefix TM and
transform it into an equivalent single-tape prefix TM, using any of the conventional techniques for
transforming between single-tape and multi-tape TMs.
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Intuitively, the proof of the existence of UTMs just means that there exists pro-
gramming languages which are “(computationally) universal”, in that we can use
them to implement any desired program in any other language, after appropriate
translation of that program from that other language. This universality leads to a
very important concept:

Definition 8. The Kolmogorov complexity of a UTM U to compute a string σ ∈
Λ∗ is the length of the shortest input string s such that U computes σ from s.

Intuitively, (output) strings that have low Kolmogorov complexity for some spe-
cific UTM U are those with short, simple programs in the language of U. For
example, in all common (universal) programming languages (e.g., C, Python,
Java, etc.), the first m digits of π have low Kolmogorov complexity, since those
digits can be generated using a relatively short program. Strings that have high
(Kolmogorov) complexity are sometimes referred to as “incompressible”. These
strings have no patterns in them that can be generated by a simple program. As a
result, it is often argued that the expression “random string” should only be used
for strings that are incompressible.

We can use the Kolmogorov complexity of prefix TMs to define many associ-
ated quantities, which are related to one another the same way that various kinds
of Shannon entropy are related to one another. For example, loosely speaking, the
conditional Kolmogorov complexity of string s conditioned on string s′, written
as K(s | s′), is the length of the shortest string x such that if the TM starts with
an input string given by the concatenation xs′, then it computes s and halts. If we
restrict attention to prefix-free TMs, then for all strings x, y ∈ Λ∗, we have [36]

K(x, y) ≤ K(x) + K(x | y) + O(1) ≤ K(x) + K(y) + O(1) (36)

(where “O(1)” means a term that is independent of both x and y). Indeed, in a
certain technical sense, the expected value of K(x) under any distribution P(x ∈
Λ∗) equals the Shannon entropy of P. (See [36].)

Formally speaking, the set B∗ is a Cantor set. A convenient probability mea-
sure on this Cantor set, sometimes called the fair-coin measure, is defined so
that for any binary string x the set of sequences that begin with σ has measure
2−|σ|. Loosely speaking, the fair-coin measure of a prefix TM T is the probability
distribution over the strings in T ’s halting set generated by IID “tossing a coin”
to generate those strings, in a Bernoulli process, and then normalizing.17 So any

17Kraft’s inequality guarantees that since the set of strings in the halting set is a prefix-free set,
the sum over all its elements of their probabilities cannot exceed 1, and so it can be normalized.
However, in general that normalization constant is uncomputable, as discussed below. Also, in
many contexts we can actually assign arbitrary non-zero probabilities to the strings outside the
halting set, so long as the overall distribution is still normalizable. See [36].
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string σ in the halting set has probability 2−|σ|/Ω under the fair-coin prior, where
Ω is the normalization constant for the TM in question.

The fair-coin prior provides a simple Bayesian interpretation of Kolmogorov
complexity: Under that prior, the Kolmogorov complexity of any string σ for any
prefix TM T is just (the log of) the maximum a posterior (MAP) probability that
any string σ′ in the halting set of T was the input to T , conditioned on σ being
the output of that TM. (Strictly speaking, this result is only true up to an additive
constant, given by the log of the normalization constant of the fair-coin prior for
T .)

The normalization constant Ω for any fixed prefix UTM, sometimes called
“Chaitin’s Omega”, has some extraordinary properties. For example, the succes-
sive digits of Ω provide the answers to all well-posed mathematical problems. So
if we knew Chaitin’s Omega for some particular prefix UTM, we could answer
every problem in mathematics. Alas, the value of Ω for any prefix UTM U cannot
be computed by any TM (either U or some other one). So under the CT, we cannot
calculate Ω. (See also [8] for a discussion of a “statistical physics” interpretation
of Ω that results if we view the fair-coin prior as a Boltzmann distribution for an
appropriate Hamiltonian, so that Ω plays the role of a partition function.)

It is now conventional to analyze Kolmogorov complexity using prefix UTMs,
with the fair-coin prior, since this removes some undesirable technical properties
that Kolmogorov complexity has for more general TMs and priors. Reflecting this,
all analyses in the physics community that concern TMs assume prefix UTMs.
(See [36] for a discussion of the extraordinary properties of such UTMs.)

Interestingly, for all their computational power, there are some surprising ways
in which TMs are weaker than the other computational machines introduced above.
For example, there are an infinite number of TMs that are more powerful than any
given circuit, i.e., given any circuit C, there are an infinite number of TMs that
compute the same function as C. Indeed, any single UTM is more powerful than
every circuit in this sense. On the other hand, it turns out that there are circuit
families that are more powerful than any single TM. In particular, there are circuit
families that can solve the halting problem [5].

I end this appendix with some terminological comments and definitions that
will be useful in the main text. It is conventional when dealing with Turing ma-
chines to implicitly assume some invertible map h(.) from Z into Λ∗. Given such
a map h(.), we can exploit it to implicitly assume an additional invertible map
taking Q into Λ∗, e.g., by uniquely expressing any rational number as one product
of primes, a, divided by a product of different primes, b; invertibly mapping those
two products of primes into the single integer 2a3b; and then evaluating Rh(2a3b).
Using these definitions, we say that a real number z is computable iff there is a re-
cursive function f mapping rational numbers to rational numbers such that for all
rational-valued accuracies ε > 0, | f (ε) − z| < ε. We define computable functions
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from Q→ R similarly.

B Appendix B: The recursion theorem and Rice’s
theorem

Any reader not already familiar with the theory of Turing machines should read
Appendix A before this appendix.

Kleene’s second recursion theorem [55, 35, 43, 7] can be stated as follows:

Theorem 5. For any partial computable function Q(x, y) there is a Turing ma-
chine with index e such that T e(x) = Q(x, e) for all x.

An elegant proof of an extended version of Kleene’s second recursion theorem
can be found in [43]. In terms of the notation in this paper, it proceeds as follow:

Proof. For any TM of the form M(x, y) taking two arguments, define ~M(y, x)�x

as the index e such that T e(x) = M(y, x) for all x, with y fixed.
Using this notation, define

S (t) := ~T t(t, x)�x (37)

Note that S (.) is a total computable function. Using Eq. (37), choose an index k
such that

T k(t, x) = Q(S (t), y) (38)

(Such an index must exist since the RHS of Eq. (38) is a partial computable func-
tion.)

Finally, set t = k in Eq. (38) and then plug in Eq. (37). The proof is completed
by choosing

e := ~T k(k, x)�x (39)

�

In computer science theory, Kleene’s second recursion theorem is just called
“the recursion theorem”. It has played an extremely important role in computer
science theory. For example it provides the underlying formal justification for
Von Neumann’s universal constructor, which in turn was extremely important for
understanding the foundations of biology. More prosaically, it provides the formal
justification for why computer viruses are possible (assuming we use computers
that are Turing complete).
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An important special case of the theorem is where Q(., .) is a total computable
function. In this case the theorem says that that there must be an e such that
T e(x) = Q(x, e) for all x, and therefore is also total computable. So, we can
restrict to total computable functions Q(., ) and total TM’s T e, as a special case. I
call this extension the “total recursion theorem” in the main text.

The theorem has elicited some interesting commentary. For example, [43]
writes that

“The proof has always seemed too short and tricky, and some con-
siderable effort has gone into explaining how one discovers it short
of “fiddling around” ... Some of his students asked Kleene about it
once, and his (perhaps facetious) response was that he just “fiddled
around”’ — but his fiddling may have been informed by similar re-
sults in the untyped λ-calculus.”

Another interesting comment was made by Juris Hartmanis [29]:

“The recursion theorem is just like tennis. Unless you’re exposed to
it at age five, you’ll never become world class.”

Interestingly, Hartmanis didn’t encounter the recursion theorem until he was in
his 20’s — and yet went on to win the Turing award.

Rice’s theorem is an extremely powerful theorem about computability which
can be proven from Kleene’s second recursion theorem. (This is shown in the
wikipedia entry on Rice’s theorem, for example.) Perhaps the simplest way to
state it is the following:

Let G be any non-empty set of partial computable functions (e.g.,
represented as a set of bit strings that encode the TMs that compute
those functions). Suppose I can design an algorithm that correctly de-
termines whether any specific partial computable function f lies in G,
i.e., suppose that membership in G is decidable. Rice’s theorem says
that if this is the case, then G must be the set of all partial computable
functions, i.e., our algorithm must always produce the output, “yes”.

So if there is any TM T that computes a function that is not in G, then there must
be a TM T ′ such that our algorithm cannot tell us whether the function that T ′

computes lies in G.
Intuitively, fix some property G of the functions that can be computed by TMs,

and suppose we design an algorithm to decide whether the function computed by
an arbitrary TM lies in G. Rice’s theorem tells us that either G is the set of all
such functions, or there are some TMs that our algorithm fails on.

An important special case is where G is restricted to a set of binary-valued
partial functions. In this case Rice’s theorem concerns the decidability of sets of
languages.
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C Appendix C: Why ∆t is not a physical variable
Recall that as mentioned in Section 4.2, ∆t is not a physical variable, but rather
it is a parameter of the evolution function. At first one might think that it makes
more sense to have ∆t be a physical variable in the universe, fixed in the value
v0. The idea would be to design the framework so that if we change the value of
this physical ∆t from some t1 to some t2 , t1, without changing any of the rest of
the universe, then V would simulate V ′ for t2 iterations into the future rather than
t1. iterations In addition, in this alternative approach g would only be an explicit
function of w0 and n0, and not of ∆t.

This would be particularly problematic in the case of self-simulation though.
In general, we are interested in evolving an arbitrary initial state of the universe
an arbitrary time into the future. That initial state and that time into the future that
interests us are completely independent. In particular, we might be interested in
evolving the initial state of the universe to a future time that differs from whatever
value the variable ∆t specified in v0 might have. So it would seem that we need
two times into the future to be specified in this alternative framework.

There are also more formal problems with this alternative approach. Suppose
that ∆t were specified as the initial value of a component of w, the physical vari-
able giving the universe external to the computer. In this approach, there would
be no way to have W

(
∆t′,w′0, n

′
0

)
= w′0 (in order to get free simulation), while

also having T
(
∆t′,w′0, n

′
0

)
, ∆t′. Yet as described below, in fact it is impossible

to have T
(
∆t′,w′0, n

′
0

)
= ∆t′ for all ∆t′ — the pristine RPCT could not hold if we

imposed that requirement.
On the other hand, suppose that rather than having ∆t be specified as a compo-

nent of w0, we had the initial state of the computer be some string 〈p0,∆t〉, where
we want to view p0 as a fixed “simulation program” that would run on the com-
puter, taking ∆t as input. In other words, suppose that ∆t were always specified
as part of the initial state of the computer, n, and g did not involve ∆t directly. In
this case, because g itself does not vary with ∆t the recursion theorem would not
just fix the initial simulation program we want the computer to run, but also the
time ∆t into the future we are running it. We would not be able to simulate the
evolution of the universe to an arbitrary time in the future.18

Ultimately, the way we are getting around these problems in the framework
I’ve adopted is by having ∆t just be a parameter of the evolution function, spec-
ifying how far into the future we want to simulate the evolution of the physical

18A subtlety is that the recursion theorem can in general be satisfied by more than one n∗ —
by an infinite number in fact. It is not clear though that there is a way to exploit this flexibility so
that there is at least one n∗ that satisfies the recursion theorem for all ∆t. So for simplicity, this
possibility is not considered in this paper.
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universe. and not a physical variable. So for example it does not need to be repro-
duced as the output of the computer if the cosmological universe is to simulate its
own future.) A consequence of this workaround is that we need to hard-code n∗

into the initial state of the program in a way that depends on ∆t.19

D Appendix D: Subtleties with the model in Sec-
tion 2.6

Section 2.6 presented an example of how a portion of our actual universe could
implement the purely formal model of universe V given in Section 2.2. In that
example the computer was implemented as a UTM, replete with tapes, etc.. This
might seem a particularly awkward way of modeling a portion of our cosmologi-
cal universe whose dynamics is computationally universal. After all, our universe
“runs in parallel”, whereas a UTM is a serial system. This means that to imple-
ment such a UTM would require copious use of energy barriers and the like, to
prevent the parallel nature of Hamilton’s equations from “leaking through”.

Given that, it might seem more reasonable to use an infinite one-dimensional
cellular automata (CA [63, 33, 40, 27]) running a computationally universal rule,
as a model of a universal computer that is purely parallel. Arguing against this
though, one might object that such a CA performs an infinite number of operations
in parallel in each iteration. A single conventional TM, operating on one cell per
tape in each iteration, could not execute any such single iteration of a CA in finite
time. So such an infinite CA is doing something that is beyond the ability of a
Turing machine.

Despite this though, in point of fact one-dimensional CA are not viewed in
the literature as more powerful than TMs. The reason is that that infinite number
of parallel operations done by a CA does not provide it the ability to compute
functions that cannot be computed by Turing machines. (E.g., one cannot use a
one-dimensional CA to solve the halting problem.) Formally, this discrepancy is
resolved by working with arbitrarily large — but finite — sub-strings of an infinite
one-dimensional CA.

Another subtlety is that in the example in Section 2.6, the first thing that hap-
pens when V evolves is that w0 is copied onto the input tape. That single operation
could take an arbitrarily large number of iterations of the UTM, depending on the
size of W. This would require adding some large constant dependent on |W | to

19Indeed, the way the derivation of the self-simulation lemma uses the recursion theorem can
be viewed as a special case of the generalized parameter-dependent form of the recursion theorem
given in [43]. The derivation of the self-simulation lemma uses that generalized form for the
special case where the space of parameters is single-dimensional. So in the notation of that paper,
here m = 1.
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many of the calculations in this paper. To avoid having to consider this techni-
cal issue, it might be convenient to implicitly modify V so that N evolves as a
conventional UTM that is augmented with a special instruction. That special in-
struction copies an arbitrarily number of bits from W into N in a single iteration.
Similarly, it might be convenient to include a special instruction that copies an
arbitrarily large number of bits from one portion of N to another portion. Whether
to consider such a modified V or not is really just a matter of taste.
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