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NOTES ON THE GEOMETRY

OF LOGIC AND PHILOSOPHY

Abstract. The paper is concerned with topological and geometrical charac-
teristics of ultrafilter space which is widely employed in mathematical logic.
Some philosophical applications (modal realism, theory of truth) are offered
together with visulisations that reveal the beauty of logical constructions.

The ultrafilter space (US), the set of maximal filters of a given algebra A,
plays the fundamental role of universal framework for semantical investiga-
tions. Obviously US is too weak in order to be interesting or important when
considered alone. Thus routinely it is provided with additional elements. The
most elementary enrichment is obtained through putting on US the Stone
topology ST (whose compactness was established by Tarski). In this case
a topological space 〈US,ST〉 is called the Stone space of the algebra A. Of
course US might be provided with other objects. As was first observed by
Lindenbaum, formalized languages can be conceived as sets with free oper-
ations determined by formation rules. Hence, if the algebra A is an algebra
of modal formulas, then US equipped with a binary relation constitutes a
frame; if we add to the frame a valuation function we will build a canonical
model of A. More general construction might be obtained through adding
a consequence operator Cn (defined by Galois connection). Routinely a set
supplied with a closure operator is regarded as a special type of topologi-
cal space, namely a closure space. The closure space 〈US,Cn〉 constitutes
so called B-natural dual space of A and is fundamental for abstract logics.
Logicians usually refer to US’ points (or sets of its points) as possible worlds
(Hughes, Cresswell), states of affairs (Hintikka), propositions (Segerberg) —
depending on the field of application. This paper is concerned with philo-
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sophical applications of US. Customary, description of US is kept on the level
corresponding to the properties of a given logic such like finiteness, regularity,
negativity, etc. Here we are going to expand this (from philosophical point
of view: cramped) field of studying; even topological separation properties,
originated in geometry and with no logical use, appear in the scope of our
interest. We hope that general structure of US (especially with addition of
ST) will shed new light on epistemology and ontology, for both of them are
rooted in questions about possible worlds (Leibniz), propositional attitudes
(Frege) and other concepts that might be modeled on the ground of US. We
are going to enjoy especially with metric (geometric) properties that despite
of philosophical meaning will reveal us visual beauty of logical constructions.

Geometric approach to logic is present at least in some influential works
on the algebraic foundations of metamathematics (Rasiowa, Sikorski [1970];
Rieger [1967]). Nevertheless these studies are confined only to the Cantor
discontinuum C D. Let E be a non-empty set and D the Cartesian product
UE where U is the set consisting only of integers 0, 1. For every a ∈ E, let
Da be the set of all u ∈ D such that ua = 1. We define the class D0 of all
sets Da (a ∈ E) and their complements. Let D be the field of subsets of D

generated by D0. The Cantor discontinuum CD is a topological space with
D0 as a subbasis. Obviously, by definition, D is a basis. Two main results
are as follows:

Theorem 1. Every mapping g from D0 into a Boolean algebra B can be
extended to a Boolean homomorphism h of D into B.

Theorem 2. The Cantor discontinuum C D is homeomorphic to the Stone
space of the Boolean algebra D.

We would like to extend the results of Rasiowa and Sikorski through
examining few more properties of the Stone space and the Cantor discontin-
uum. Moreover, this paper draws inspirations from topology and hence C D

plays different role here then in the two above theorems; we are concerned
with the Cantor perfect set rather then the Cantor discontinuum.

Let us fix a language L (a quotient algebra modulo logical equivalence
that is, as a rule, atomless). We are going to provide the set US of complete
theories of the language L with topology. We associate each sentence a

of the language to the set 〈a〉 of complete theories containing a. Hence
T ∈ 〈a〉 means that T |= a (read “a is a consequence of T ”). Note that
〈a〉 ∩ 〈b〉 = 〈a ∧ b〉 and therefore sets of the form 〈a〉 constitute an open
base for a topology ST associated with US. The topological space 〈US,ST〉
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(from now on abbreviated as US) is a Hausdorff space: if T 6= T ′, then,
because T and T ′ are complete, there exists some sentence a such that T |= a

and T ′ |= ¬a and hence 〈a〉, 〈¬a〉 are disjoint neighborhoods of T and T ′,
respectively. The space US is also 0-dimensional, i.e., a space with a base
consisting of both open and closed sets. Note that the complement of 〈a〉
is 〈¬a〉. Compactness is the most essential logical property of US. As was
proved by Gödel, for a set A of sentences to be consistent it is sufficient that
every finite subset of A be consistent. On the topological ground US is, in the
result, totally discontinuous and totally disconnected: all its subcontinua are
single points and every connected subset either is empty or reduces to a point,
respectively. Most of these facts were established by Stone’s representation
theorem:

Theorem 3 (Stone’s Theorem). Every Boolean algebra B is isomorphic to
the clopen (both open and closed) base of a compact 0-dimensional space.

This paper is especially concerned with geometric features of US; we
would like to please our eyes. In order to be metric any topological space
must have ‘good’ separation properties. A classical result is due to Uryson:

Theorem 4 (Uryson’s Theorem). Every normal T1 space with a countable
base is metrizable.

Because US is Hausdorff, i.e., T2 space, whose base is isomorphic to the
countable Boolean algebra L, we must ensure that US is normal. One of the
peculiarities of the separation properties in compact spaces is the coincidence
of axioms T2, T3, T4; thus:

Theorem 5. Every compact Hausdorff space is normal.

An ultrafilter of Boolean algebra A is principal if it is generated by an
atom of A.

Theorem 6. Principal ultrafilters of algebra A coincide with isolated points
of the Stone space of A.

Hence US is a metrizable space without isolated points. Having these
properties in a hand we can start seeking topological equivalent for US. We
are especially interested with those homeomorphic spaces that are well known
and have a look.

Theorem 7. Up to homeomorphism, the Cantor perfect set is the only
0-dimensional metrizable compactum, which does not have isolated points.
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The Cantor perfect set (denoted here as C ) is one of the most interesting
examples of spaces that is often employed to create other useful mathematical
objects. We construct C as a limit of an iterative process. The algorithm is
as follows:

1. Divide the remaining intervals each into three equal parts.

2. Remove the open middle interval.

3. Repeat 1.

We start with the unit segment [0, 1], thus first we remove the interval (1
3 , 2

3).
This leaves a union of two closed intervals: [0, 1

3 ] ∪ [23 , 1]. Next we split each
of the remaining intervals [0, 1

3 ] and [23 , 1] into three smaller ones and remove
the middle part (1

9 , 2
9 ) from the first and (7

9 , 8
9 ) from the second, respectively.

We are left with the union of four intervals: [0, 1
9 ]∪ [29 , 1

3 ]∪ [23 , 7
9 ]∪ [89 , 1]. C is

defined as the leftover collection of points. As a subspace of the real line R,
the Cantor perfect set has a number of amazing properties. We will return
to it again. Now, we would like to emphasize that, by the last theorem, C is
topologically indistinguishable from topological space US. Suppose now that
S is any consistent normal propositional modal system. A canonical model
for S is a triple 〈W,R, V 〉. We take as members of W (typically labeled as
worlds) sets of well formed formulas that are maximal consistent with respect
to S. A valuation function V associates each formula of S with worlds in
which the formula is true. Thus V generates on W the Stone topology. Hence
we can conceive worlds as points of the Cantor perfect set. In the classical
theory of possible worlds (abbreviated here as PWT), as is practiced by
philosophers, one of these points must be designated; typically the designated
world is referred to as the actual one. Lewis in On the Plurality of Worlds

argues that all possible worlds do exist like the actual, our world. ‘Actual’ is
indexical like ‘I’ or ‘now’: it depends for its reference on the circumstances of
utterance. Thus inhabitants of other worlds may truly call their own worlds
actual. Lewis, contrary to us, do not identify possible worlds with ultrafilters;
he takes them as primitives (respectable entities in their own right) and so
his argumentation is strictly philosophical. We would like to present here
more formal treatement of modal realism.

Theorem 8. The Cantor perfect set is homogeneous.

Topological space X is homogeneous if for all x, y ∈ X there exists
homeomorphism h : X → X, such that h(x) = y. It means that all worlds
(including the actual one) are indistinguishable. Given that possible worlds
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constitute a homogeneous space of possibilities we can compare PWT with
Everett’s interpretation of quantum mechanics, well known as many-worlds

interpretation (MWI). Everett accepts the universal validity of Schroedinger
equation and consider the wave-function as a real object. MWI is a return
to the classical, pre-quantum view of the universe. For example the electro-
magnetic fields of Maxwell or the atoms of Dalton were considered in the
classical physics as true parts of the world. Therefore all possibilities in-
volved in wave-equation (including the outcome of measure) are equally real.
Following this way we might regard the actuality like the quantum cut and
modal realism like MWI. Despite of counterintuitive character of MWI cos-
mologists and quantum field theorists like Hawking, Gell-Mann, Feynman,
Weinberg regard MWI as true interpretation because it is ontology directly
suggested by mathematics. Therefore, adopting this view, we may expand
the classical weak ontology and regard modal realism as true theory (what
is suggested by topology). According to Lewis such strong ontology would
be a paradise for philosophers. There is a deeper link between quantum me-
chanics and PWT then the above philosophical speculations. The Hilbert

space is a fundamental scene for description of quantum phenomena. We
construct it as follows: let H be the set of all infinite sequences (xi)

∞

i=1 such

that
∞
∑

i=1
x2

i
< ∞. For any (xi)

∞

i=1 and (yi)
∞

i=1 we set

p(x, y) =

√

∞
∑

i=1
(xi − yi)2.

The metric space 〈H,p〉 is called a Hilbert space of countable weight.

Theorem 9. Every regular space with countable base can be embedded in
the Hilbert space.

Every metrizable space is regular and so we can regard possible worlds
space as a subspace of 〈H,p〉. The problem of connections between the two
spaces and eventual implications will be a subject of my future works. Let
us come back to the Cantor perfect set. It is often presented as one of the
best known and easily constructed fractals. Nowadays fractals are the most
popular mathematical objects and are applied almost everywhere. According
to Mandelbrot a fractal is a set whose topological dimension is lower then
Hausdorff one (denoted as dimH). Computing dimH is complicated even for
simple sets thus we introduce self-similarity dimension. By ratio list r we
mean a finite list of positive numbers (r1, r2, . . . , rn). An iterated system
realizing a ratio list r in a metric space S is a list (f1, f2, . . . , fn), where
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fi : S → S is a similarity with ratio ri. A nonempty compact set X ⊆ S is
an invariant set for (f1, f2, . . . , fn) iff X = f1(X) ∪ f2(X) ∪ · · · ∪ fn(X).

Theorem 10. Let fi : S → S be an iterated (contraction) function system,
then there is a unique invariant set (attractor) if S is complete.

It means that every iterated function system defined on the US space has
the unique attractor. It is very important fact for epistemology. Scientific
inquiry is usually modeled as a game between a scientist and Nature. To
start the game, a set P of worlds is announced to both players. One mem-
ber w of P is chosen by Nature as the actual world that is not revealed to
the scientist. Nature also chooses an environment, i.e., a data-stream that
provides information about the actual world. Then the scientist is (pro-
gressively) demonstrated the data in the environment and wins the game
just in case his evolving conjectures stabilize to the correct answer to the
question about w formulated in P . Moves made by Nature (data-stream)
constitute (through Galois connection) an iterated function system that acts
on the belief representation of scientist. Traditionally logicians model belief
set through US space (Segerberg). Now it is very natural to define epistemic

truth (winning strategy) as the only attractor of the game. Thanks to com-
pleteness of US epistemic truth must coincide with the absolute truth (no
matter who plays the game with Nature, including God, attractor (winning
strategy) is the same).

The dimension associated with ratio list r is the positive number d such
that:

rd
1 + rd

2 + · · · + rd
n = 1

Let us consider two dilations on the real line: f1 = x

3 and f2 = (x+2)
3 . The

Cantor perfect set C is the invariant set for the iterated function system
(f1, f2) with ratio list (1

3 , 1
3). Thus the similarity dimension d is the solution

of 2 · (1
3 )d = 1. So d = log 2

log 3 , what amounts to 0.6309. . . . Generally if X is
an invariant set for an iterated function system then dimH(X) differs from
d. But because C satisfies Moran’s open set condition (we omit technical
details) we have dimH(C) = d. As we pointed out C is homeomorphic to
US. Does it follow that dimH = log 2

log 3?

Theorem 11. If g : F → R
m is a bi-Lipschitz information, i.e., c1|x − y| 6

|g(x) − g(y)| 6 c2|x − y|, where x, y ∈ F , and 0 < c1 < c2 < ∞, then
dimH(F ) = dimH(g(F )).

In other words Hausdorff dimension is invariant under bi-Lipschitz trans-
formation. Of course not every homeomorphism has bounded distortion,
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i.e., is bi-Lipschitz. Let us consider an example. We introduce now Cantor
discontinuum. It plays here different role then in investigations of Rasiowa,
Sikorski or Rieger and hence we define it a bit otherwise. By Cantor dis-
continuum (or cube) Dt of weight t we mean the product of t copies of the
discrete two point space {0, 1}.

Theorem 12. The Cantor discontinuum Dω of countable weight is homeo-
morphic to the Cantor perfect set.

We can define many metrics on Dω. Let m be a rational number satis-
fying 0 < m < 1. A metric pm is defined as following: if a = sl, b = sl′,
where a, b are infinite strings, s is, possibly empty, finite string and the first
character of l is different then the first character of l′, k is the length of s

then: pm(a, b) = mk.

The metric spaces constructed from Dω using different metrics pm are
homeomorphic to each other; moreover, all of them are complete. Neverthe-
less, they possess different Hausdorff dimensions. The space Dω with metric
pm has dimH = log 2

log 1

m

. Note that under pm = 1
2 dimH(Dω) = 1, while under

pm = 1
3 dimH = log 2

log 3 . Thus only metric space 〈Dω, p 1

3

〉 is bi-Lipschitz equiv-

alent to the Cantor perfect set. So, what does it mean, in fractal horizon,
that the space US is 0-dimensional?

Theorem 13. Let X be a separable metric space, then ind X = inf{dimH Y :
Y is homeomorphic to X}, where ind is (small) topological dimension.

Obviously US is separable space (it has countable base). Because
limm→∞

log 2
log 1

m

= 0, the ultrafilter space is 0-dimensional. Since C is home-

omorphic to Dω any finite, or even countable, power of C is homeomorphic
to C. It allows us to visualize the space US. Lets us consider the product
C × C. First draw a square 1 × 1, divide it into nine squares of sides 1

3 .
Remove five middle subsquares and repeat this process with left squares (see
Figure 1.) Note that we can spread the Cantor perfect set in any dimension
we want. For example take a unit cube, divide it into 27 sub-cubes, remove
all central ones and repeat this process with left cubes. The first step is il-
lustrated below (Figure 2). This way we construct three-dimensional Cantor
perfect set C×C×C that is homeomorphic to C×C. It is very distinctive
feature of C. Note that a unit segment I is, obviously, not homeomorphic to
the square I × I. Pattern arising from the above construction lies in the
exponents: in dimension n we divide a cube into 3n parts. For example the

© 2002 by Nicolaus Copernicus University



230 Marcin Wolski

Figure 1. The Cantor perfect set

Figure 2. The Cantor perfect set

hypercube is split into 81 sub-hypercubes. After first step we leave 16 four-
dimensional cubes. Although the power of C is attractive as mathematical
object, its visual beauty is quite poor. Hence we are going to present other
topological equivalents of US. Let T be a torus. Replace T by n linked (like
in a chain) distinct tori T1, T2, . . . , Tn. Repeating this process results in
metrizable, 0-dimensional space that is homeomorphic to the Cantor perfect
set and US. This space is known in general topology as Antoine’s necklace.
Hence we can imagine US (or the space of possible worlds) as is pictured out
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Figure 3. The space of possible worlds

on the Figure 3, where n = 10.∗ There is a peculiarity: although Antoine’s
necklace and C are homeomorphic to each other, they take different position
in the R

3 space. There is no authomorphism of R
3 transforming the Cantor

perfect set into the Antoine’s necklace.
Obviously, we might continue this investigation and look for other topo-

logical equivalents — nevertheless we stop here. As we have just seen, geom-
etry can tell us many interesting things about philosophy and logic. On the
ground of philosophy we can use this results to define new definition of truth
or to reconfigure our weak ontology — there was no room here to show all
details. On the ground of logic we have tried to follow topological investiga-
tions started by pioneer works of Tarski and McKinsey [1944]. Nevertheless
we do not present any results of logical importance; the paper is aimed to
reveal the hidden beauty of well-known theorems and to embed them into
the horizon of modern mathematics (such like fractal geometry). Although
Hausdorff dimension does not play an important role on the scene of logic, we
hope that exploration of US on the deeper level then dimH can bring us many
interesting results about its fractal nature. But it is a goal for future works.

∗ We present this picture thanks to The Geometry Center, University of Minnesota.
The reader can find there many fabulous mathematical objects.
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