Skip to main content
Log in

Superintuitionistic Companions of Classical Modal Logics

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

This paper investigates partitions of lattices of modal logics based on superintuitionistic logics which are defined by forming, for each superintuitionistic logic L and classical modal logic Θ, the set L[Θ] of L-companions of Θ. Here L[Θ] consists of those modal logics whose non-modal fragments coincide with L and which axiomatize Θ if the law of excluded middle p V ⌍p is added. Questions addressed are, for instance, whether there exist logics with the disjunction property in L[Θ], whether L[Θ] contains a smallest element, and whether L[Θ] contains lower covers of Θ. Positive solutions as concerns the last question show that there are (uncountably many) superclean modal logics based on intuitionistic logic in the sense of Vakarelov [28]. Thus a number of problems stated in [28] are solved. As a technical tool the paper develops the splitting technique for lattices of modal logics based on superintuitionistic logics and ap plies duality theory from [34].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. AMATI, G., & F. PIRRI, 1994, “A uniform tableau method for intuitionistic modal logics”, Studia Logica 53, 29-60.

    Google Scholar 

  2. BLOK, W., 1978, On the degree of incompleteness in modal logic and the covering relation in the lattice of modal logics, Report 78-07, Dept. of Math., University of Amsterdam.

  3. BLOK, W., & D. PIGOZZI, 1982, “On the structure of varieties with equationally definable principle congruences I”, Algebra Universalis 15, 195-227.

    Google Scholar 

  4. BLOK, W., & D. PIGOZZI, 1991, Local deduction theorems in algebraic logic, in Algebraic Logic, edited by H. Andreka, J. D. Monk, and L. Nemeti, pages 75-109, North-Holland, Budapest.

    Google Scholar 

  5. BULL, R. A., 1965, “A modal extension of intuitionistic logic”, Notre Dame Journal of Formal Logic 6, 142-146.

    Google Scholar 

  6. BULL, R. A., 1966, “MIPC as the formalization of an intuitionistic concept of modality”, The Journal of Symbolic Logic 31, 609-616.

    Google Scholar 

  7. Bosic, M., & K. DoŠen, 1984, “Models for normal intuitionistic modal logics”, Studia Logica 43, 217-245.

    Google Scholar 

  8. DoŠen, K., 1985, “Models for stronger intuitionistic modal logics”, Studia Logica 44, 39-70.

    Google Scholar 

  9. CHAGROV, A. V., & M. V. ZAKHARYASCHEV, 1991, “The Disjunction Property of intermediate propositional logics”, Studia Logica 51, 189-215.

    Google Scholar 

  10. CHAGROV, A. V., & M. V. ZAKHARYASCHEV, 1996, Modal and superintuitionistic logics, Oxford University Press.

  11. EWALD, W. B., 1986, “Intuitionistic Tense and Modal Logic”, The Journal of Symbolic Logic 51, 166-179.

    Google Scholar 

  12. FINE, K., 1985, “Logics containing K4, Part II”, Journal of Symbolic Logic 50, 619-651.

    Google Scholar 

  13. FISCHER SERVI, G., 1977, “On modal logics with an intuitionistic base”, Studia Logica 36, 141-149.

    Google Scholar 

  14. FISCHER SERVI, G., 1980, Semantics for a class of Intuitionistic Modal Calculi, in M. L. Dalla Chiara (ed.), Italian Studies in the Philosophy of Science, Reidel, Dordrecht, 59-72.

    Google Scholar 

  15. FISCHER SERVI, G., 1984, “Axiomatizations for some Intuitionistic Modal Logics”, Rend. Sem. Mat. Univers. Polit. 42, 179-194.

    Google Scholar 

  16. FONT, J., 1984, “Implication and deduction in some intuitionistic modal logics”, Reports on Mathematical Logic 17, 27-38.

    Google Scholar 

  17. FONT, J., 1986, “Modality and Possibility in Some Intuitionistic Modal Logics”, Notre Dame Journal of Formal Logic 27, 533-546.

    Google Scholar 

  18. FUHRMANN, A., 1989, “Models for Relevant Modal Logics”, Studia Logica 49, 502-514.

    Google Scholar 

  19. JANKOV, V., 1968, “Constructing a sequence of strongly independent superintuitionistic propositional calculi”, Soviet Mathematics Doklady 9, 806-807.

    Google Scholar 

  20. JÓnsson, B., 1967, “Algebras whose congruence lattices are distributive”, Math. Scand. 21, 110-121.

    Google Scholar 

  21. KRACHT, M., 1990, “An almost general splitting theorem for modal logic”, Studia Logica 49, 455-470.

    Google Scholar 

  22. KRACHT, M., 1995, Tools and Techniques in Modal Logic, manuscript.

  23. MAKINSON, D., 1971, “Some embedding theorems for modal logic”, Notre Dame Journal of Formal Logic 12, 252-254.

    Google Scholar 

  24. ONO, H., 1977, “On some intuitionistic modal logics”, Publ. Kyoto Univ. 13, 687-722.

    Google Scholar 

  25. RAUTENBERG, W., 1979, Klassische und nichtklassische Aussagenlogik, Wiesbaden.

  26. ROUTLEY, R., & R. MEYER, 1972, “The semantics of entaiment II”, Journal of Philosophical Logic 1, 53-73.

    Google Scholar 

  27. SOTIROV, V., 1984, Modal theories with intuitionistic logic. Proceedings of the Conference on Mathematical Logic, Sofia, Bulgarian Acadamy of Sciences.

    Google Scholar 

  28. VAKARELOV, D., 1981, “Intuitionistic Modal Logics Incompatible with the law of excluded middle”, Studia Logica 40, 103-111.

    Google Scholar 

  29. VAKARELOV, D., 1985, “An application of the Rieger-Nishimura Formulas to the Intuitionistic Modal Logics”, Studia Logica 44, 79-85.

    Google Scholar 

  30. WIJSEKERA, D., 1990, “Constructive modal logic 1”, Annals of Pure and Applied Logic 50, 271-301.

    Google Scholar 

  31. WOLTER, F., 1993, Lattices of Modal Logics, Dissertation, FU Berlin.

  32. WOLTER, F., 1995, “The finite model property in tense logic”, Journal of Symbolic Logic 60, 757-774

    Google Scholar 

  33. WOLTER, F., & M. ZAKHARYASCHEV, 1996, Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics, forthcoming in Ewa Orlowska (editor), Logic at Work, Essays in honour of Helena Rasiowa.

  34. WOLTER, F., & M. ZAKHARYASCHEV, 1996, “On the relation between intuitionistic and classical modal logics”, to appear in Algebra and Logic.

  35. ZAKHARYASCHEV, M., 1992, “Canonical Formulas for K4, Part I”, Journal of Symbolic Logic 57, 377-402.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolter, F. Superintuitionistic Companions of Classical Modal Logics. Studia Logica 58, 229–259 (1997). https://doi.org/10.1023/A:1004916107078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004916107078

Navigation