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Explanation in Neurobiology: An Interventionist Perspective
1
   

 

1. Introduction   
 

Issues about explanation in psychology and neurobiology have received a great 

deal of philosophical attention lately. To a significant degree this reflects the impact of 

discussions of mechanism and mechanistic explanation in recent philosophy of science. 

Several writers (hereafter mechanists), including perhaps most prominently, Carl Craver 

and David Kaplan (Craver 2000, 2006; Kaplan and Craver 2011, Kaplan 2011), have 

argued that at least in psychology and neuroscience, mechanistic theories or models are 

the predominant mode of explanation, with other sorts of theories or models often being 

merely “descriptive” or “phenomenological” rather than explanatory
2
. Other writers such 

as Chermero and Silberstein (2008) have disputed this, arguing that, e.g., dynamical 

systems models are not mechanistic but nonetheless explanatory. This literature raises a 

number of issues, which I propose to examine below. First, how should we understand 

the contrast between explanatory and descriptive or phenomenological models within the 

context of neuroscience? What qualifies a theory or model as “mechanistic” and are there 

reasons, connected to some (plausible) general account of explanation, for supposing that 

only mechanistic theories explain? Or do plausible general theories of explanation 

suggest that other theories besides mechanistic ones explain? In particular, what does a 

broadly interventionist account of causation and explanation suggest about this question? 

If there are plausible candidates for non-mechanistic forms of explanation in psychology 

or neurobiology, what might these look like? What should we think about the explanatory 

status of “higher level” psychological or neurobiological theories that abstract away from 

“lower level” physiological, neurobiological or molecular detail and are, at least in this 

respect, “non-mechanistic?” 

In what follows I will argue for the following conclusions. First, I will suggest 

that an interventionist framework like that developed in Woodward (2003) can be used to 

distinguish theories and models that are explanatory from those that are merely 

descriptive. This framework can also be used to characterize a notion of a mechanistic 

explanation, according to which mechanistic explanations are those that meet 

interventionist criteria for successful explanation and certain additional constraints as 

well. However, from an interventionist perspective, although mechanistic theories have a 

number of virtues, it is a mistake to think that mechanistic models are the exclusive or 

                                                 
1
 Thanks to Mazviita Chirimuuta and David Kaplan for helpful comments on an earlier 

draft.  
2
 David Kaplan has informed me that the intention in Kaplan and Craver, 2011 was not to 

exclude the possibility that there might be forms of non-mechanistic explanation that 

were different from the dynamical and other models the authors targeted as non-

explanatory. At Kaplan’s suggestion, I have adopted the formulation in this sentence 

(mechanism as “the predominant mode of explanation”) to capture this point.  
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uniquely  dominant mode of explanation in neuroscience and psychology. In particular, 

the idea that models that provide more mechanistically relevant  low-level  detail
3
  are, 

even ceteris paribus, explanatorily superior to those which do not is misguided. Instead, 

my contrasting view, which I take to be supported by the interventionist account as well 

as modeling practice in neuroscience, is that many explanatory models in neurobiology 

will necessarily abstract away from such detail At the same time, however, I think that 

                                                 
3
 As Kaplan has observed in correspondence  almost everyone agrees that the addition of 

true but irrelevant detail does not improve the quality of explanations; the real issue is 

what counts as “relevant detail” for  improving the quality of an explanation.  Kaplan  

(2011) thinks of relevant detail as a “mechanistically relevant detail” (my emphasis): 

  

3M [Kaplan’s and Craver’s requirements on mechanistic explanation—see below] 

aligns with the highly plausible assumption that the more accurate and detailed 

the model is for a target system or phenomenon the better it explains that 

phenomenon, all other things being equal (for a contrasting view, see Batterman 

2009). As one incorporates more mechanistically relevant details into the model, 

for example, by including additional variables to represent additional mechanism 

components, by changing the relationships between variables to better reflect the 

causal dependencies among components, or by further adjusting the model 

parameters to fit more closely what is going on in the target mechanism, one 

correspondingly improves the quality of the explanation.  

 

 One possible understanding of “relevant detail” is detail about significant difference-

makers for the explananda we are trying to explain—a detail is “relevant” if variations in 

that detail (within some suitable range) would “make a difference” for the explananda of 

interest (although possibly not for other explananda having to do with the behavior of the 

system at some other level of analysis). This is essentially the picture of explanation I 

advocate below.  I take it, however, that this is probably not what Kaplan (and Craver) 

have in mind when the speak of mechanistically relevant detail, since they hold, for 

example, that the addition of information about the molecular details of the opening and 

closing of individual  ion channels would improve the explanatory quality of the original 

Hodgkin-Huxley model even though (assuming my argument below is correct) this 

information does not describe difference-makers for the explanandum represented by the 

generation of the action potential.  (This molecular information is difference-making 

information for other explananda.) Similarly, Kaplan differentiates his views from 

Batterman in the passage quoted above, presumably on the grounds that the information 

that Batterman thinks plays an explanatory role in, e.g., explanations of critical point 

behavior in terms of the renormalization group (see below), is not mechanistically 

relevant detail. So while it would be incorrect to describe Kaplan and Craver as holding 

that the addition of just any detail improves the quality of explanations,  it seems to me 

that they do have a conception of the sort  of detail that improves explanatory quality that 

contrasts with other possible positions, including my own (and Batterman’s). I’ve tried to 

do justice to this difference by using the phrase “mechanistically relevant detail” to 

describe their position.  
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the mechanists are right, against some of their dynamicist critics, in holding that 

explanation is different from prediction (and from subsumption under a “covering law”) 

and that some of the dynamical systems-based models touted in the recent literature are 

merely descriptive rather than explanatory. This is not, however, because all such 

dynamical systems models or all models that abstract away from implementation detail 

are unexplanatory, but rather because more specific features of some models of this sort 

render them explanatorily unsatisfactory.  

The remainder of this chapter is organized as follows. Section 2 discusses some 

ideas from the neuroscience on the difference between explanatory and descriptive 

models. Sections 3 and 4 relate these ideas to the interventionist account of causation and 

explanation I defend elsewhere (Woodward, 2003). Section 5 discusses the idea that 

different causal or explanatory factors, often operating at different scales, will be 

appropriate for different models, depending on what we are trying to explain. Section 6 

illustrates this with some neurobiological examples. Section 7 asks what makes an 

explanation distinctively “mechanistic” and argues that, in the light of previous sections, 

we should not expect all explanation in neuroscience to be mechanistic. Section 8 argues 

that, contrary to what some mechanists have claimed, abandoning the requirement that all 

explanation be mechanistic does not lead to instrumentalism or other similar sins. Section 

9 illustrates the ideas in previous sections by reference to the Hodgkin-Huxley model of 

the generation of the action potential. Section 10 concludes the discussion.  

 

2. Explanatory versus Descriptive Models in Neuroscience 

 

 Since the contrast between models or theories that explain and those that do not 

will be central to what follows, it is useful to begin with some remarks from some 

neuroscientists about how they understand this contrast. Here is a representative 

quotation from a recent textbook: 

 

The questions what, how, and why are addressed by descriptive, mechanistic, and 

interpretive models, each of which we discuss in the following chapters. 

Descriptive models summarize large amounts of experimental data compactly yet 

accurately, thereby characterizing what neurons and neural circuits do. These 

models may be based loosely on biophysical, anatomical, and physiological 

findings, but their primary purpose is to describe phenomena, not to explain them. 

Mechanistic models, on the other hand, address the question of how nervous 

systems operate on the basis of known anatomy, physiology, and circuitry. Such 

models often form a bridge between descriptive models couched at different 

levels. Interpretive models use computational and information-theoretic principles 

to explore the behavioral and cognitive significance of various aspects of nervous 

system function, addressing the question of why nervous systems operate as they 

do. (Dayan and Abbott, 2001)  

 

In this passage, portions of which are also cited by Kaplan and Craver (2011), Dayan and 

Abbott draw a contrast between descriptive and mechanistic models, and suggest that the 

former are not (and by contrast, that the latter presumably are) explanatory. However, 

they also introduce, in portions of the above comments not quoted by Craver and Kaplan, 
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a third category of model—interpretative models—which are also described as explaining 

(and as answering why questions, as opposed to the how questions answered by 

mechanistic models). The apparent implication is that although mechanistic models 

explain, other sorts of models that are not mechanistic do so as well, and both have a role 

to play in understanding the brain.  

Dayan and Abbott go on to say, in remarks to which I will return to below, that: 

 

It is often difficult to identify the appropriate level of modeling for a particular 

problem. A frequent mistake is to assume that a more detailed model is 

necessarily superior. Because models act as bridges between levels of 

understanding, they must be detailed enough to make contact with the lower level 

yet simple enough to provide clear results at the higher level. 

 

 These remarks introduce a number of ideas that I discuss below: (1) Neuroscientists 

recognize a distinction between explanatory and merely descriptive theories and models
4
; 

(2) For purposes of explanation, more detail is not always better; (3) Different models 

may be appropriate at different “levels”
5
 of understanding or analysis, with it often being 

                                                 
4
 One possible response to the use of words like “explanation”, “understanding” and so 

on in these passages as well as those from Trappenberg immediately below, is that we 

should understand these words as mere honorifics, with the labeling of a theory as 

“explanatory” meaning nothing more than “I like it or regard it as impressive”, rather 

than anything of any deeper methodological significance. It is not easy, however, to 

reconcile this suggestion with the care these authors take in contrasting explanatory 

models with those that are merely descriptive or phenomenological. Another more radical 

response would be to acknowledge that these authors to mean what they say but claim 

that they are simply mistaken about what constitutes an explanation in neuroscience with 

the correct view being the position advocated by mechanists. I assume, however, that few 

philosophers would favor such a dismissive response, especially since, as noted below, 

there are normative accounts of explanation (such as interventionism) which support the 

quoted ideas. Let me also add that although it is true that one motive for abstraction away 

from detail is to enhance computational tractability, the passages quoted and many of the 

examples discussed below make it clear that this is not the only motive: sometimes such 

abstraction leads to better explanations, where this is not just a matter of improved 

computational tractability. 
5
 Talk of “levels” of explanation is ubiquitous in neuroscience, psychology, and 

philosophy, although many commentators (myself included—see Woodward, 2008) also 

complain about the unclarity of this notion. In order to avoid getting enmeshed in the 

philosophical literature on this subject, let me just say that the understanding of this 

notion I will adopt (which I think also fits with the apparent views of the neuroscientists 

discussed below) is a very deflationary one, according to which level talk is just a way of 

expressing claims about explanatory or causal relevance and irrelevance: To say that a 

multiple compartment model of the neuron (see section 6) is the right level for modeling   

dendritic currents (or an appropriate model at the level of such currents)  is just to say 

that such a model captures the factors relevant to the explanation of dendritic currents. 

This gives us only a very local and contextual notion of level and also makes it entirely 
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far from obvious which level of modeling is most appropriate for a given set of 

phenomena; and (4) It is nonetheless important to be able to relate or connect models at 

different levels.  

  A second set of remarks come from a discussion of computational neuroscience 

modeling in Trappenberg (2002).  

 

As scientists, we want to find the roots of natural phenomena. The explanations 

we are seeking are usually deeper than merely parameterizing experimental data 

with specific functions. Most of the models in this book are intended to capture 

processes that are thought of as being the basis of the information-processing 

capabilities of the brain. This includes models of single neurons, networks of 

neurons, and specific architectures capturing brain organizations. …. 

 

The current state of neuroscience, often still exploratory in nature, frequently 

makes it difficult to find the right level of abstraction to properly investigate 

hypotheses. Some models in computational neuroscience have certainly been too 

abstract to justify claims derived from them. On the other hand, there is a great 

danger in keeping too many details that are not essential for the scientific 

argument. Models are intended to simplify experimental data, and thereby to 

identify which details of the biology are essential to explain particular aspects of a 

system. 

 

…. What we are looking for, at least in this book, is a better comprehension of 

brain mechanisms on explanatory levels. It is therefore important to learn about 

the art of abstraction, making suitable simplifications to a system without 

abolishing the important features we want to comprehend. 

 

Here, as in the passage quoted from Dayan and Abbott, the notion of a finding an 

explanatory model is connected to finding the right “level” of “abstraction”, with the 

suggestion that this has to do with discovering which features of a system are “essential” 

or necessary for the explanation of those phenomena. Elsewhere Trappenberg connects 

this to the notion of a “minimal” model— “minimal” in the sense that the model includes 

just those features or details which are necessary or required to account for whatever it is 

that we are trying to understand and nothing more
6
. Trappenberg writes that “we want the 

model to be as simple as possible while still capturing the main aspects of the data that 

the model should capture” and that “ it can be advantageous to highlight the minimal 

features necessary to enable certain emergent properties in [neural] network [models]”. 

 

3. An Interventionist Account of Causation and Explanation 

                                                                                                                                                 

an empirical, aposteriori issue what level of theorizing is appropriate for understanding a 

given set of phenomena; it does not carry any suggestion that reality as a whole can be 

divided into “layers” of levels on the basis of size or compositional relations or that 

“upper level” causes (understood compositionally) cannot affect lower level causes.  
6
 For recent discussions of the notion (or perhaps notions) of a minimal model see 

Chirimuuta, 2014 and Batterman and Rice, 2014.  
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 How, if at all, might the ideas in these remarks be related to an interventionist 

account of causal explanation? I begin with a brief sketch of that account and then 

attempt to connect it to some issues about modeling and explanation in neuroscience 

suggested by the remarks quoted above. According to the interventional model, causal 

and causally explanatory claims are understood as claims about what would happen to the 

value of some variable under hypothetical manipulations (interventions
7
) on other 

variables. A causal claim of form X causes Y is true if (i) if some interventions that 

change the value of X are “possible” and (ii) under those interventions the value of Y 

would change. A more specific causal claim (e.g., that X and Y are causally related 

according to Y=F(X) where F is some specified function) will be true if, under 

interventions on X, Y responds in the way described by F. For our purposes, we may 

think of the following as a necessary condition for a structure H to count as a causal 

explanation of some explanandum E:  

 

H consists of true causal generalizations {Gi} (true according to the criteria just 

specified) and additional true claims C (often but not always about the values 

taken by initial and boundary conditions) in the systems for which H holds such 

that C U { Gi } entails E and alternatives to E would hold according to Gi if 

alternatives to C were to be realized (e.g. if those initial and boundary conditions 

were to take different values).  

 

For example (cf. Woodward, 2003), an explanation of why the electromagnetic field due 

to presence of a uniform current along a long straight wire is given by the expression  

 

(3.1) E = 1/2πeoL/r 

 

(where E is the field intensity, L the charge density along the wire, and r the distance 

from the wire) might consist of a derivation of expression (3.1) from Coulomb’s law, and 

facts about the geometry of the wire and the charge distribution along it, as well as 

information about how the expression describing the field would have been different if 

the geometry of the conductor or the charge distribution had been different, where (in this 

case) this will involve additional derivations also appealing to Coulomb’s law. In this 

way the explanation answers a set of what Woodward, 2003 calls what-if-things-had-

been-different-questions, identifying conditions under which alternatives to the 

explanandum would have occurred. This requirement that an explanation answer such 

questions is meant to capture the intuitive idea that a successful explanation should 

identify conditions that are explanatorily or causally relevant to the explanandum: the 

relevant factors are just those that “make a difference” to the explanandum in the sense 

that changes in these factors lead to changes in the explanandum. This requirement fits 

naturally with the notion of a minimal model on at least one construal of this notion: such 

a model will incorporate all and only those factors which are relevant to an explanandum 

in the sense described. The requirement also embodies the characteristic interventionist 

                                                 
7
 An intervention is an idealized, non-confounded experimental manipulation. See 

Woodward (2003). 
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idea that causally explanatory information is information that is in principle exploitable 

for manipulation and control. It is when this what-if things-had been different condition is 

satisfied that changing or manipulating the conditions cited in the explanans will change 

the explanandum. Finally, we may also think of this “what-if–things-had-been-different” 

condition as an attempt to capture the idea that successful explanations exhibit 

dependency relationships: exhibiting dependency relations is a matter of exhibiting how 

the explanandum would have been different under changes in the factors cited in the 

explanans.  

 Next a brief aside about non-casual forms of why explanations—another topic 

which I lack the space to discuss in the detail that it deserves. I agree that there are forms 

of why-explanation that are not naturally regarded as causal. One way of understanding 

these (and distinguishing them from causal explanations), defended in passing in 

Woodward, 2003,  is to take  causal explanations to involve dependency or difference-

making relationships (that answer what-if-things-had-been- different questions) that have 

to do with what would happen under interventions. Non-causal forms of why-explanation 

also answer what-if- things-had-been-different questions but by citing dependency 

relations  or information about difference-makers that does not have an interventionist 

interpretation. For example, the universal behavior of many systems near their critical 

point depends on certain features of their Hamiltonian but arguably this is not naturally 

regarded as a form of causal dependence—cf. footnote 10. The trajectory of an object 

moving along an inertial path depends on the affine structure of spacetime but again this 

is not plausibly viewed as a case of casual dependence. In what follows I will sometimes 

speak generically of dependency relations, where this is meant to cover both the 

possibility that these are causal and the possibility that they are non-causal.  

Many different devices are employed in science to describe dependency relations 

between explanans and explanandum, including directed graphs of various sorts (with an 

arrow from X to Y meaning that Y depends in some way on X) Such graphs are widely 

used in the biological sciences). However, one of the most common (and precise) such 

devices involves the use of equations. These can provide interventionist information (or 

more generally information about dependency relations) by spelling out explicitly how 

changes in the values of one or more variables depend on changes (including changes due 

to interventions) in the values of others. In contrast to the tendency of some mechanists 

(e.g. Bogen, 2005) to downplay the significance of mathematical relationships in 

explanation, the interventionist framework instead sees mathematical relationships as 

playing a central role in many explanations, including many neuroscientifc explanations
8
. 

Often they are the best means we have of representing the dependency relations that are 

crucial to successful explanation.  

In its emphasis on the role played by generalizations, including those taking a 

mathematical form, in explanation and causal analysis, the interventionist account has 

some affinities with the DN model. However, in other respects, it is fundamentally 

different. In particular, the interventionist account rejects the DN idea that subsumption 

under a “covering law” is sufficient for successful explanation; a derivation can provide 

                                                 
8
 This is certainly not true of all mechanists. Kaplan (2011) is a significant exception and 

Bechtel (e.g. Bechtel and Abrahamsen, 2013) has also emphasized the important role of 

mathematics in explanation in neuroscience and psychology.  
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such subsumption and yet fail to satisfy interventionist requirements on explanation, as a 

number of the examples discussed below illustrate. In addition, although the 

interventionist account requires information about dependency relations, generalizations 

and other sorts of descriptions that fall short of being laws can provide such information, 

so the interventionist account does not require laws for explanation. I stress this point 

because I want to separate the issue of whether the DN model is an adequate account of 

explanation (here I agree with mechanists in rejecting this model) from the issue of 

whether good explanations, including many in neuroscience, often take a mathematical or 

derivational form – a claim which I endorse. Interventionism provides a framework that 

allows for recognition of the role of mathematical structure in explanation without 

adopting the specific commitments of the DN model.  

With these basic interventionist ideas in hand, now let me make explicit some 

additional features that will be relevant to the discussion below. First, in science we are 

usually interested in explaining regularities or recurrent patterns – what Bogen and 

Woodward (1988) call phenomena – rather than individual events. For example, we are 

usually interested in explaining why the field created by all long straight conductors with 

a uniform charge distribution is given by (3.1) rather than explaining why some particular 

conductor creates such a field. Or at least we interested in explaining the latter only 

insofar as the explanation we provide will also count as an explanation of the former. In 

other words, contrary to what some philosophical discussions of explanation suggest, it is 

wrong to think of explanation in science in terms of a “two stage” model in which one (i) 

first explains why some singular explanandum E (e.g. that a particular wire produces a 

certain field) by appealing to some low-level covering generalization G (e.g. 3.1) saying 

that E occurs regularly and then, in a second, independent step, (ii) explains why G itself 

holds via an appeal to some deeper generalization (e.g., Coulomb’s law). Usually in 

scientific practice there is no separate step conforming to (i)
9
. Or, to put the point slightly 

differently, the low level generalization (G) is treated as something to be explained – a 

claim about a phenomenon – rather than as potential explainer of anything, despite the 

fact that many such Gs (including (3.1)) qualify as “law-like”, on at least some 

conceptions of scientific law.  

 Because claims about phenomena describe repeatable patterns they necessarily 

abstract away from some of the idiosyncrasies of particular events that fall under those 

patterns, providing instead more generic descriptions, often characterized as “stylized” or 

“prototypical”. For example, the Hodgkin- Huxley model, described below, takes as its 

explanandum the shape of the action potential of an individual neuron, but this 

explanandum amounts to a generic representation of important features of the action 

potential rather than a description of any individual action potential in all of its 

idiosyncrasy. This in turn has implications for what an explanatory model of this 

explanandum should look like – what such a model aims to do is to describe the factors 

on which the generic features of this repeatable pattern depend, rather than to reproduce 

all of the feature of individual instances of the pattern. Put differently, since individual 

neurons will differ in many details, what we want is an account of how all neurons 

meeting certain general conditions are able to generate action potentials despite this 

variation. 

                                                 
9
  See Woodward, 1979 for additional argument in support of this claim.  
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 This framework may also be used to capture one  natural notion of a (merely) 

“phenomenological” model (but not the only one; see section 8 below): one may think of 

this as a model or representation that consists just of a generalization playing the role of 

G above – in other words, a model that merely describes some “phenomenon” understood 

as a recurrent pattern. Trappenberg (2002) provides an illustration
10

: the tuning curves of 

neurons in the LGN (lateral geniculate nucleus) may be described by means of class of 

functions called Gabor functions, which can be fitted to the experimental data with 

parameters estimated directly from that data. Trappenberg describes the resulting curves 

as a “phenomenological model” of the response fields in the LGN, adding that “ of course 

this phenomenological model does not tell us anything about the biophysical mechanisms 

underlying the formation of receptive fields and why the cells respond in this particular 

way” (p. 6). The tuning curves describe phenomena in the sense of Bogen and 

Woodward; they are generalizations which describe potential explananda but which are 

not themselves regarded as furnishing explanations. An “explanation” in this context 

would explain why these neurons have the response properties described by the tuning 

curves—that is, what these response properties depend on. Obviously, merely citing the 

fitted functions does not do this. As this example illustrates, this contrast between a 

merely phenomenological model and an explanatory one falls naturally out of the 

interventionist framework, as does the contrast between DN and interventionist 

conceptions of explanation. The fitted functions describe and predict neuronal responses 

(they show the neuronal responses to particular stimuli “were to be expected” and do so 

via subsumption under a “covering” generalization, which many philosophers are willing 

to regard as locally “lawlike” ), but they do not explain those responses on the 

interventionist account of explanation.  

 This idea that explanations are directed at explaining phenomena naturally 

suggests a second point. This is that what sorts of factors and generalizations it is 

appropriate to cite in an explanans (and in particular, the level of detail that is 

appropriate) depends on the explananda E we want to account for, where (remember) this 

will be characterization at a certain level of detail or abstractness. In providing an 

explanation we are looking for just those factors which make a difference to whatever 

explananda are our target, and thus it will be at least permissible (and perhaps desirable) 

not to include in our explanans those factors S* which are such that variations or changes 

in those factors make no difference for whether E holds. (Of course, as illustrated below, 

an explanans that includes S* may well furnish an explanation of some other 

explanandum E* which is related to E—for example by describing the more detailed 

behavior of some particular set of instances of E.)
11

  

                                                 
10

 Kaplan (2011) also uses this illustration.  
11

 There is a very large philosophical literature on abstraction, idealization, and the use of 

“fictions” in modeling which I will largely ignore for reasons of space. However, a few 

additional orienting remarks may be useful. First, a number of writers (e.g. Thomson-

Jones, 2005)   distinguish  between idealization, understood as the introduction of false or 

fictional claims into a model, and abstraction, which involves omitting detail, but without 

introducing falsehoods or misrepresentation. I myself do not believe that thinking about 

the sorts of examples philosophers have in mind when they talk about “idealization” in 

terms of categories like “false” and “fictional” is very illuminating , but in any case it is 
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 A physics example illustrates this point with particular vividness. Consider the 

“universal” behavior exhibited by a wide variety of different materials including fluids of 

different material composition and magnets near their critical points, with both being 

characterized by the same critical exponent b. In the case of fluids, for example, behavior 

near the critical point can be characterized in terms of an “order” parameter S given by 

the difference in densities between the liquid and vapor forms of the fluid S = óliq - óvap. 

As the temperature T of the system approaches the critical temperature Tc, S is found to 

depend upon a power of the “reduced” temperature t= T-Tc/T 

 

S~ |t|
b
 

 

 Where b is the critical exponent referred to above. Remarkably, the same value of 

b characterizes not just different fluids but also the behavior of magnets in the transition 

from ferromagnetic to paramagnetic phases.  

Suppose one is interested in explaining why some particular kind of fluid has the 

critical point that it does. Since different kinds of fluids have different critical points, the 

value of Tc for any particular fluid will indeed depend on microphysical details about its 

material composition. However, if one is instead interested in explaining the universal 

behavior just described (the phenomenon or generic fact that S ~ |t|
b
 with fixed b for 

many different materials), then (as particularly emphasized by Batterman in a series of 

papers—e.g. 2009) information about the differing microphysical details of different 

fluids is irrelevant: within the interventionist framework it is non-difference-making 

information. That is, this universal behavior does not depend on these microphysical 

details since, as we have just noted, variations in those details do not make a difference 

for whether this universal behavior occurs. In other words, the universality of this 

                                                                                                                                                 

worth emphasizing that the goal of including in one’s model only those features that 

make a difference to some explanandum need not, in itself, involve the introduction of 

falsehood or misrepresentation; instead it involves the omission of non –difference-

making detail.  However, I will also add that I do not think that most of the cases of 

modeling of upper level systems discussed below are usefully viewed as involving only 

the omission of detail present in some lower level model—i.e. such upper level models 

do not just involve abstraction from a lower level model. Instead, such modeling typically 

introduces new detail/explanatory features not found in models of lower level systems—

that is, it adds as well as removes. Of course if, like Strevens (2008), one begins with the 

idea that one has available a fundamental level theory T that somehow represents or 

contains “all” explanatorily relevant factors at all levels of analysis for a system (a neural 

“theory of everything”) , then models of higher level behavior will involve only dropping 

various sorts of detail from T. But actual examples of lower level models in science are 

not like T—instead they include detail which is difference-making for some much more 

restricted set of explananda, with the consequence that when we wish to explain other 

higher level explananda, we must include additional difference-making factors. To take 

an example discussed in more detail below, one doesn’t get the Hodgkin-Huxley model 

for the action potential just by omitting detail from a lower level multi-compartment 

model; instead the H-H model introduces a great deal of relevant information that is 

“new” with respect to any actual lower level model.  
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behavior shows us that its explanation must be found elsewhere than in details about the 

differences in material composition of different fluids. In fact, as Batterman argues, the 

explanation for universal behavior is provided by renormalization group techniques 

which in effect trace the behavior to very generic qualitative features (e.g., certain 

symmetries) that are shared by the Hamiltonians governing the interactions occurring in 

each of the systems, despite the fact these Hamiltonians differ in detail for each system
12

. 

This example provides a concrete illustration of the point made more abstractly by 

Abbot and Dayan and by Trappenberg: it is not always correct that adding additional 

accurate detail (for example, details about the different Hamiltonians governing the 

different systems above) improves the quality of one’s explanation. Instead, this can 

detract from the goodness of the explanation if the target explanandum does not depend 

on the details in question. Or at the very least, it is not mandatory in constructing an 

explanation that one provide such detail.   Arguably a similar point follows if the detail in 

question is “mechanistically relevant  detail”—the explanatory import of the 

renormalization groups account of critical point behavior would not be improved by the 

provision of such detail.  

 

4. “Levels” of explanation and independence 

  

 The general idea of an explanandum “not depending” on “lower level” or 

implementational/compositional/realizational detail deserves more development that I 

can give it here, but a few additional comments may be helpful in fleshing out the picture 

I have in mind. First, when we speak of non-dependence on such detail, what we have in 

mind is non-dependence within a certain range of variation of such detail, rather than 

complete independence from all facts about realization. For example, in the example 

discussed above, the value of the critical exponent b does not depend on variations in the 

composition of the fluid being investigated—whether it is water, liquid helium etc. This 

is not to say, however, that “lower-level facts” about such fluids play no role in 

determining the value of b. But the facts that are relevant are very generic features of the 

Hamiltonians characterizing these particular fluids – features that are common to a large 

range of fluids – rather than features that distinguish one fluid from another. To the extent 

there are materials that do not meet these generic conditions, the model will not apply to 
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 I gloss over a number of important issues here. But to avoid a possible 

misunderstanding let me say that the similarity between explanation of critical point 

behavior in terms of the renormalization group and the neurobiological explanations I 

consider is that in both cases certain behaviors are independent of variations in lower 

level details. However there is also an important difference: in the neurobiological cases, 

it often seems reasonable to regard the explanations as causal, in the case of the 

explanation of critical point behavior the explanation is (in my view and also in 

Batterman’s) not causal.  As suggested above, I would be inclined to trace this difference 

to the fact that in the neurobiological examples the explanatorily relevant factors are 

possible objects of intervention or manipulation. This is not the case for the 

renormalization group explanation. In this case, one can still talk of variations making or 

failing to make a difference, but “making a difference” should not be understood in 

causal or interventionist terms.    
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them. In a similar way, whether a relatively “high level” neural network model correctly 

describes, say, memory recall in some structure in the temporal lobe may be independent 

of various facts about the detailed workings of ion channels in the neurons involved in 

this structure—“independent” in the sense that the workings of these channels might have 

been different, within some range of variation (e.g., having to do with biologically 

normal possibilities), consistently with the network structure behaving in the same way 

with respect to phenomena having to do with memory recall. Again, this does not mean 

that the behavior of the structure will be independent of all lower level detail—for 

example, it certainly matters to the behavior of the network that the neurons are not made 

of copper wire or constituted in such a way that they disintegrate when connected. Just as 

with critical point behavior, the idea is that lower level facts about neuronal behavior will 

impose constraints on what is possible in terms of higher level behavior, but that these 

constraints often will be relatively generic in the sense that a number of different low 

level variants will satisfy them. In this respect what we have, is a picture involving, so to 

speak, partial or constrained autonomy of the behavior of upper level systems from lower 

level features of realization, but not complete autonomy or independence.  

A second point worth making explicit is this: the picture just sketched requires 

that it be possible for a model or theory to explain some explananda having to do with 

some aspects of the behavior of a system without the model explaining explaining all 

such aspects. It is thus opposed to an alternative picture according to which to a theory 

that explains any explanandum satisfactorily must be a “theory of everything” that 

explains all aspects of the behavior of the system of interest, whatever the scale or level 

at which this is exhibited. In the neural case, for example, such a theory of everything 

would appeal to a single set of factors or principles that could be used to explain the 

detailed behavior of dendritic currents and ion channels in individual neurons, the overall 

behavior of large networks of neurons and everything in between. The alternative view 

which is implicit in the remarks from Dayan and Abbott and Trappenberg above is that in 

addition to being completely computationally intractable such a theory is not necessary to 

the extent that behavior at some levels does not depend on causal details at other levels. 

Instead, it is acceptable to operate with different models, each appropriate for explaining 

explananda at some level but not others. There will be constraint relationships among 

these models—they will not be completely independent of each other—but this is 

different from saying that our goal should be one big ur-model with maximal lower level 

detail encompassing everything
13

. 
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 Two additional points:   First, I do not mean to imply that “mechanists” like Kaplan 

and Craver are committed to such “a theory of everything” view.  The point of my 

remarks above  is  just  to make explicit some of the commitments of the picture I favor . 

Second, another way of putting matters is that on my view a model can, so to speak, 

designate a set of target explananda and say, in effect, that it is interested in explaining 

just these, rather than all behaviors at all scales exhibited by the system of interest. A 

model M that represents neurons as dimensionless points is, obviously, going to make 

radically false or no predictions concerning any phenomena P that depend on the fact that 

neurons are spatially extended, but it is legitimate for M to decline to take on the task of 

explaining P, if its target is some other set of explananda.  In other words, M should be 
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5. The Separation of Levels/Scales 

 

   The ideas just described would be less interesting and consequential if it were not 

for another broadly empirical fact. In principle, it is certainly possible that a huge number 

of different factors might turn out, empirically, to make a difference (and perhaps roughly 

the “same” difference, if we were able to devise some appropriate measure for this) to 

some set of target explananda. It is thus of great interest (and prima-facie surprising, as 

well as extremely fortunate for modeling purposes) that this is often not the case. Instead, 

it often turns out that there is some relatively small number of factors that make a 

difference or at least a substantial or non-trivial difference to a target set of explananda. 

Or, to express the idea slightly differently, it often turns out that we can group or 

segregate sets of explananda in such a way that different sets can be accounted for by 

different small sets of difference-making factors.  In physics,  these sets (of explananda 

and their accompanying difference-makers) are sometimes described as “domains” or  

“regimes” or “protectorates”   -- the idea being that certain explanatory factors and not 

others are “drivers” or represent the “dominant physics” for  certain domains while other 

explanatory factors are the primary drivers for explananda in other domains. In physics, 

the possibility of separating domains and dominant explanatory factors in this way is  

often connected to differences in the “scale”  (e.g., of length, time or energy) at which 

different factors are dominant or influential. That is, there often turn out to be factors that 

are very important to what happens physically at, say, very short length scales or at high 

energies but which we can entirely or largely ignore at longer length scales, where 

instead different factors (or at least factors characterized by different theories) become 

important. To take a very simple example, if we wish to understand what happens within 

an atomic nucleus, the strong and weak forces, which fall off very rapidly with distance 

are major determinants of many processes, and gravitational forces, which are very weak, 

are inconsequential. The opposite is true if one is interested in understanding the motion 

of galaxies, where gravity dominates. A similar point seems to hold for many biological 

phenomena, including phenomena involving the brain. Here too, considerations of scale –

both temporal and length scale – seem to operate in such a way that certain factors are 

important to understanding phenomena at some scales and not others, while models 

appealing to other factors are relevant at other scales
14

. For example, the detailed 

behavior of ion channels in a neuron requires modeling at length and temporal scales that 

are several orders of magnitude less than is appropriate for models of the behavior of an 

entire neuron in generating an action potential. This suggests the possibility of models 

                                                                                                                                                 

assessed in terms of whether it succeeds in explaining the explananda in its target 

domain.  
14

 One generic way in which this can happen is that factors that change very slowly with 

respect to the explananda of interest can be treated as effectively constant and hence (for 

some purposes) either ignored or modeled in a very simple way—by means of a single 

constant parameter. Another possibility is that some factor goes to equilibrium very 

quickly in comparison with   the time scale of the explanandum  of interest, in which case 

it may also be legitimate to treat it as constant.  
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that account for the latter without accounting for the former and vice-versa – a possibility 

described in more detail immediately below.  

 

6. Levels of Modeling in Neurobiology  

 

To illustrate the ideas in the preceding section in more detail, I turn to recent 

review paper entitled “Modeling Single-Neuron Dynamics and Computations: A Balance 

of Detail and Abstraction” (Herz et al. 2006). In this paper, the authors describe five 

different “levels” (there’s that word again) of single neuron modeling. At “level one” are 

“detailed compartment models” (in some cases consisting of more than 1000 

compartments
15

) which are “morphologically realistic” and “ focus on how the spatial 

structure of a neuron contributes to its dynamics and function”. The authors add, 

however, that “[a]lthough detailed compartmental models can approximate the dynamics 

of single neurons quite well, they suffer from several drawbacks. Their high 

dimensionality and intricate structure rule out any mathematical understanding of their 

emergent properties.” By contrast, “reduced [compartment] models [level two] with only 

one or few dendritic compartments overcome these problems and are often sufficient to 

understand somatodendritic interactions that govern spiking or bursting”. They add that 

“a well-matched task for such [reduced compartment] models is to relate behaviorally 

relevant computations on various time scales to salient features of neural structure and 

dynamics”, mentioning in this connection the modeling of binaural neurons in the 

auditory brainstem.  

 Level three comprises “single compartment models” with the Hodgkin-Huxley 

model being explicitly cited as an example. Herz et al. write: 

  

Single-compartment models such as the classic Hodgkin-Huxley model neglect 

the neuron’s spatial structure and focus entirely on how its various ionic currents 

contribute to subthreshold behavior and spike generation. These models have led 

to a quantitative understanding of many dynamical phenomena including phasic 

spiking, bursting, and spike-frequency adaptation (p. 82) 

 

They add that models in this class “explain why, for example, some neurons resemble 

integrate-and-fire elements or why the membrane potential of others oscillates in 

response to current injections enabling a ‘‘resonate-and-fire’’ behavior”, as well as other 

explananda (p. 82).  

Cascade models (level four) involving linear filters, non-linear transformations 

and explicit modeling of noise abstract even further from physiological details but “allow 

one to capture additional neural characteristics” such as those involved in adaptation to 

light intensity and contrast. Finally, “black box models” (level five) which may 

                                                 
15

 “Compartment” refers to the number of sections, represented by distinct sets of 

variables, into which the neuron is divided for modeling purposes—for example, the HH 

model is a “single compartment” model since the modeling is in terms of a single 

variable, voltage, which characterizes the behavior of the entire neural membrane. A 

multiple compartment model would have many different voltage variables for different 

parts of the membrane. 
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characterize the behavior of a neuron simply in terms of a probability distribution 

governing its an input/out relationships may be most appropriate if we “want to 

understand and quantify the signal-processing capabilities of a single neuron without 

considering its biophysical machinery. This approach may reveal general principles that 

explain, for example, where neurons place their operating points and how they alter their 

responses when the input statistics are modified.” (p. 83) Models at this level may be 

used to show, for example, how individual neurons shift their input-output curves in such 

a way as to achieve efficient coding.  

Several features of this discussion are worth particular emphasis. First, and most 

obviously there is explicit countenancing of models at number of “levels”, where the 

notion of level is tied to differences in spatial and temporal scale (a representation of the 

neuron as spatially extended, with different potentials in different spatial regions is 

required for understanding dendritic currents, but this scale of spatial representation may 

be not required for other purposes). Models at each level are explicitly recognized as 

being capable of providing “explanations”, “understanding” and the like, rather than 

models at some levels being regarded as merely descriptive or phenomenological in a 

way that contrasts with the genuinely “explanatory” models at other (presumably 

“lower”) levels. Moreover, these models are seen as complementary rather than in 

competition with each other, at least in part because they are seen aiming at different sets 

of explananda. There is no suggestion that we have to choose between modeling at a very 

fine-grained, detailed level (e.g., level one) or a more coarse-grained level (e.g., level 

four or five). Second, it is also recognized that which modeling level is most appropriate 

depends on the phenomena one wants to explain and that is not true that models with 

more details (or even more mechanistically relevant details) are always better, regardless 

of what one is trying to explain, although for some purposes highly detailed models are 

just what is called for
16

. For example, if one’s goal is to understand how the details of the 

anatomy and spatial structure of an individual neuron influence its detailed dynamics, a 

model at level one may be most appropriate. If one wants a “quantitative understanding” 

of spike train behavior, a model at a higher level (e.g., level three) may be better.   This 

would be better in the sense that the details invoked in a level one model may be such 

that they are irrelevant to (make no difference for) this phenomenon. Again, the goal is 

taken to be the inclusion of just enough detail to account for what it is one is trying to 

explain but not more:  

  

 All these [modeling] tasks require a delicate balance between incorporating 

sufficient details to account for complex single-cell dynamics and reducing this 

complexity to the essential characteristics to make a model tractable. The 

appropriate level of description depends on the particular goal of the model. 

Indeed, finding the best abstraction level is often the key to success. (p. 80)  

 

 7. Mechanistic Explanation  

                                                 
16

  Once again, my goal in these remarks is the positive one of highlighting a feature of 

good explanatory practice in neuroscience. I do not mean to imply that mechanistic 

approaches  are unable to incorporate this feature, but rather to emphasize that they 

should.   
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  So far I have discussed “explanation” but have said nothing about distinctively 

“mechanistic” explanations and how these relate to the ideas just described. Although, for 

reasons that will emerge below, I don’t think that “mechanistic explanation” is a notion 

with sharp boundaries, I fully agree that these are one important variety of explanation in 

many areas of biology and neuroscience. Roughly speaking, I see these as explanations 

meeting certain specific conditions M (described immediately below) that lead us to think 

of them as “mechanistic”, where satisfying M is one way of meeting the general 

interventionist conditions on explanation. However, I also think that it is possible for a 

theory or model to fail to satisfy conditions M and still qualify as explanatory in virtue of 

meeting these more general conditions.  

 At the level of methodology, if not underlying metaphysics, my general picture 

of mechanisms and mechanistic explanation is fairly close to that advanced by other 

writers, such as Machamer, Darden and Craver (2000) and Bechtel and Abrahamsen 

(2005). Consider a system S that exhibits behavior B – the phenomenon we want to 

explain. A mechanistic explanation involves decomposing S into components or parts 

(“entities” in the parlance of Machamer, Darden and Craver (2000)), which exhibit 

characteristic patterns of causal interaction with one another, describable by 

generalizations Gi (describing “activities”). Explanation then proceeds by showing how B 

results from these interactions, in a way that satisfies the interventionist conditions on 

causal explanation. This in turn involves showing how variations or changes in the parts 

or in the generalizations governing them would result in alternatives to B, thereby 

allowing us to see how the behaviors of the parts and the way in which they interact make 

a difference for (or are relevant to) whether B holds. Part of the attraction of explanations 

that are mechanistic in this sense is that this information about the parts and their 

interactions can guide more fine-grained interventions that might affect behavior B – a 

point that is spelled out in detail in Woodward (2002) and Kaplan and Craver (2011).  

 Explanations having this general character often, and perhaps even typically, 

satisfy several other related conditions. One of these, which I have discussed elsewhere 

(Woodward 2003) is a modularity condition: modularity requires that the different causal 

generalizations Gi describing the causal relations among the parts should at least to some 

degree be capable of changing independently of each other. Versions of modularity are 

often explicitly or implicitly assumed in the “box (or node) and arrow” representations 

that are adopted in many different disciplines for the representation of mechanisms, with 

modularity corresponding to the idea that arrows into one node can be disrupted without 

disrupting arrows into other nodes. Arguably, satisfaction of a modularity condition is 

also required if we are to make sense of the idea that mechanistic explanation involves 

decomposition of S into distinct “parts” with distinctive generalizations characterizing the 

behavior of parts and the interactions into which they enter. If the alleged parts can’t be 

changed or modified (at least in principle) independently of each other or if no local 

changes can affect the pattern of interaction of some of the parts without holistically 

altering all of the parts and their interactions, then talk of decomposing the behavior of 

the system into interactions among its “parts” seems at best metaphorical. In practice, the 

most straightforward cases in which modularity conditions are satisfied seem to be those 

in which a mechanical explanation provides information about spatio-temporally separate 

parts and their spatio-temporal relations, since distinctness of spatio-temporal location is 
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very closely tied to the possibility of independent modifiability. For example, the spatio-

temporal separation of the different classes of ion channels (Na and K channels)  in the 

Hodgkin-Huxley model discussed in section 9 is one reason why it is natural to think of 

that model as involving a representation of independently modifiable parts that interact to 

produce the action potential and thus to think of the HH model as in this respect a 

“mechanical” model
17

. 

 A second feature possessed by explanations that we most readily regard as 

mechanistic (or at least a feature that, reasonably enough, philosophers favorable to 

mechanism often take to be characteristic of mechanistic explanations) is a kind of 

sensitivity of behavior to details (material and organizational) of implementation/ 

realization/composition. Consider some ordinary machine (e.g., a clock). For such a 

machine to function as it was designed to, these components must be connected up to one 

another in a relatively spatio-temporally precise way. Moreover, the details of the 

behavior of the parts also matter – we do not expect to be able to replace a gear in a clock 

with a gear of different size or different spacing to teeth and get the same result. Indeed, 

this is why we need to invoke such details to explain the behavior of these systems: the 

details make a difference for how such systems behave. It is systems of this sort for 

which “mechanistic” explanation (or at least the kind of mechanistic explanation that 

invokes considerable implementational detail) seems particularly appropriate.
18

  

Putting these requirements together, we get the claim that mechanical 

explanations are those that satisfy the interventionist requirements in section 2, which 

involve decomposition into parts (where the notion of part is usually understood spatio-

temporally), and which are appropriate to systems whose behavior is sensitive to details 

of material realization and organization. Since satisfaction of this last condition, in 

                                                 
17

 My claim here is that modularity and decomposition into independently changeable 

parts are conditions that are most readily satisfied when “part” is understood in spatio-

temporal terms, but for purposes of this paper, I leave open the question of whether 

decomposition (and hence mechanistic explanation) might also be understood in a way 

that does not require spatio-temporal localizability of parts. (Bechtel and Richardson 

(1993) were among the first to talk about this kind of decomposition, which they called 

functional decomposition.) Cognitive psychology employs a number of different 

strategies that seek to decompose overall cognitive processes into distinct cognitive 

processes, components or modules (e.g., Sternberg 2001), but typically without providing 

information about the spatial location of those parts, although usually there is appeal to 

information about temporal relationships. Assessment of these strategies is beyond the 

scope of this paper, although I will say that the strategies require strong empirical 

background assumptions and that proposals about decompositions of cognitive processes 

into components often face severe under-determination problems in the absence of 

information about neural realization (which does provide relevant spatial information).  

(See also Piccinini and Craver 2011 for a discussion of closely related issues.] 
18

 These features of sensitivity to details of organization and composition as characteristic 

of mechanical explanation are also emphasized in Levy (forthcoming) and in Levy and 

Bechtel (forthcoming). Woodward (2008) also distinguishes systems that are realization 

sensitive from those that are not, although not in the context of a discussion of 

mechanistic explanation.  
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particular, is a matter of degree, we should not expect sharp boundaries between 

mechanistic and non-mechanistic forms of explanation, although there will be clear 

enough cases. (The absence of such sharp boundaries is itself one reason for thinking that 

is misguided to suppose that only theories meeting mechanistic constraints explain—the 

notion of mechanisticl explanation is not sufficiently sharply bounded to play this sort of 

demarcational role.)  

We have already noted many cases in which, in contrast to the mechanistic 

possibilities just described, we need to invoke only very limited information about the 

details of material realization or spatio-temporal organization to explain aspects of the 

behavior of a system. For example, the explanation of universal behavior near critical 

points in terms of the renormalization group does not appeal to the details of the 

composition of the particular materials involved, for the very good reason that such 

behavior does not depend on these details. In part for this reason, it seems unintuitive to 

describe the renormalization group explanation as a “mechanistic”. Certainly it is not 

mechanistic in the sense of that notion employed by writers like Craver. Nonetheless the 

renormalization group analysis seems explanatory. Previous sections have also noted the 

existence of many “higher level” explanatory neurobiological models and theories that 

abstract away from many neural details. To the extent such models are relatively 

insensitive to material or organizational details of implementation or to the extent they do 

not involve decomposition of the system modeled into distinct parts with characteristic 

patterns of interaction, the models will seem also seem comparatively less mechanistic.  

As an additional illustration, consider the very common use of models involving 

recurrent networks with auto-associative features to explain phenomena like retrieval of 

memories from partial cues. Such models represent neurons (or perhaps even populations 

of neurons) as individual nodes, the connections of which form directed cycles, with 

every node being connected to every other node in a fully recurrent network. In a separate 

training phase, the network produces, via a process of Hebbian learning, an output which 

resembles (imperfectly) some previously acquired trained pattern. This output is then fed 

back into the network, resulting in a pattern that is closer to the trained pattern. During 

the retrieval phase, presentation of just part of the input pattern will lead, via the auto-

associative process just described, to more and more of the learned pattern. The process 

by which the network settles into a state corresponding to this previously learned pattern 

can be understood as involving movement into an attractor state in an attractive 

landscape, the shape of which is specified by the dynamical equations describing the 

operation of the network. Networks of this sort have been used to model a number of 

psychological or neurobiological processes including the recall of complete memories 

from partial cues (See, e.g. Trappenberg, 2002). Processing of this kind is often 

associated with brain structures such as the hippocampus. Such models obviously abstract 

away from many neural details, and in this respect are relatively non-mechanistic in 

Craver’s sense.
19

 On my view, however, we should not conclude that they are 

                                                 
19

 To the extent that such models explain in terms of generic facts about the structure of 

attractive landscapes and so on, they also involve abstraction away from the details of 

individual trajectories taken by the system in reaching some final state. That is, the 

explanation for why the system ends up in some final state has to do with, e.g. this being 

in a basin of attraction for the landscape, with the details of the exact process by which 
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unexplanatory for this reason alone. Instead their explanatory status depends on whether 

they accurately capture the dependency relations in real neural structures. This depends in 

turn on whether the modeled neural structures have the connectivity of a recurrent 

network, whether they involve Hebbian associative learning, whether there is empirical 

support for separate training and retrieval phases, and so on
20

.    

  

 8. Mechanism, Predictivism and Instrumentalism 

 

   So far I have not addressed an important set of objections, due to Craver and 

others, to the ideas just defended. These objections turn on the claim that if we abandon 

the idea that explanation (at least in neuroscience) must be mechanistic, we lose the 

ability to make various important distinctions. For example, we lose the distinction 

between, on the one hand, purely descriptive or phenomenological models, and, on the 

other hand, explanatory models. We also lose the related distinction between the use of 

models, construed instrumentally merely for predictive purposes, and their use under 

realistic construals to explain. Craver argues, for example, that without the mechanistic 

constraints on explanation that he favors, we will be forced to regard Ptolemaic 

astronomy or models that merely postulate correlations as explanatory. Although it 

should be obvious from my discussion above that I disagree with many of these claims, I 

also think that they raise many interesting issues that are especially in need of discussion 

with the interventionist framework, since they often turn on what can be a possible target 

of intervention, when a model can be thought of as telling us what would happen under 

interventions, and when a model provides information about dependency relations in the 

relevant sense. In what follows I explore some of the different ways in which, from an 

interventionist perspective, a model may be merely descriptive or phenomenological 

rather than explanatory. This will give us a sort of catalog of different ways in which 

models can be explanatorily deficient, but, as we shall also see, a model can avoid these 

deficiencies without being mechanical.  

(1) Obviously one straightforward way in which the interventionist requirements 

can be violated is that the factors cited in some candidate explanans correspond to “real” 

features F in the world, but the model should not be understood as even attempting to  

describe how explanandum E responds to interventions on those features or as describing 

a dependency relation (in the relevant sense) between F and E. This will be the case, for 

example, for models in which the relationship between F and E is (and is understood to 

be) purely correlational rather than causal. For example, a model might represent the 

correlation between barometer readings B and the occurrence S of a storm, and this 

representation may be descriptively accurate and predictively useful even though the B- S 

relationship is not causal. The non-causal, non-explanatory status of such a model 

follows, within the interventionist framework, from the fact that the model does not tell 

us how (or even whether) S will change under interventions on B or about a dependency 

                                                                                                                                                 

the system falls into that state being omitted from the model. This is arguably another 

respect in which the system departs from some of the expectations we have about 

mechanical explanations, since specific trajectories are often taken to matter for these.  
20

 For additional relevant discussion concerning  a different neural network model (the 

Zipser- Andersen  Gain Field model) see Kaplan, 2011,Section 7.  
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relation between B and S.  Note that reaching this judgment does not require acceptance 

of the idea that only models that are mechanistic in the sense of section 7 above or that 

provide lots of implementational detail explain: a model that abstracts away from such 

detail can nonetheless describe relationships that are causal in the interventionist sense 

(or that are explanatory in the sense of describing dependency relationships) and a purely 

correlational model might include lots of detail about the material composition of the 

modeled system and the spatio-temporal organization of its parts.  

(2) A different, and in some respects more interesting, kind of case arises when a 

theory or model is interpreted as (or purports to) describe dependency relationships that 

but these completely fail to track the actual dependency relations operative  the system 

whose behavior the theory purports to explain. Of course models of this sort can 

nonetheless be descriptively accurate and predictively useful to the extent that they 

correctly represent correlational patterns among variables 

 A plausible example of this possibility, discussed by Kaplan and Craver (2011) is 

Ptolemaic astronomy. According to this theory (at least in the cartoon version we 

consider here) the planets move as they do because they are carried around in their orbits 

by revolving crystalline spheres centered on the earth, or by additional crystalline spheres 

(“epicycles”) whose centers move on the geocentric revolving spheres.   It is 

uncontroversial that nothing like such spheres exists and that the motions of the planets 

do not depend on their being carried around on such spheres. There is thus no legitimate 

interventionist interpretation of Ptolemaic astronomy as correctly telling us what would 

happen to the planetary orbits if interventions were to occur on such spheres (e.g., by 

changing their rates of revolution or disrupting them in some way.)  Nor does this theory 

provide other sorts of explanatorily relevant information about dependency relationships.   

not exist
21

.   It follows that Ptolemaic astronomy does not qualify as an explanatory 

theory within the interventionist framework. It is a purely phenomenological (or 

descriptive) theory, although for somewhat different reasons than the barometer 

reading/storm “theory” discussed under section 1 above.  

  The case of Ptolemaic astronomy seems clear enough but there are many other 

examples involving  models with “unrealistic” elements that raise subtle and interesting 

questions regarding their explanatory status. Although I lack the space for detailed 

discussion, my general view is that a model can contain many features that do not directly 

correspond to  or mirror features of a target system  but  nonetheless be explanatory in 

virtue of correctly characterizing dependency relations governing that system.  On my 

                                                 
21

 I would thus reject (as a general condition on explanation) condition (a) in Kaplan and 

Craver’s 3M requirement, which holds in that “[i]n successful explanatory models in 

cognitive and systems neuroscience (a) the variables in the model correspond to 

components, activities, properties, and organizational features of the target mechanism 

that produces, maintains, or underlies the phenomenon…” (p. 611).  I am much more 

sympathetic to their second condition (b), when properly interpreted: “(b) the (perhaps 

mathematical) dependencies posited among these variables in the model correspond to 

the (perhaps quantifiable) causal relations among the components of the target 

mechanism”. I will add, though, that condition (a) may have more plausibility when 

construed more narrowly as a requirement on what it means for an explanation to be 

“mechanistic”.    
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view, what matters most for purposes of explanation is that the model correctly 

characterizes dependency relations relevant to the explananda we  are trying to explain.   

That  the model may misrepresent  other dependency relations relevant to other 

explananda  that the model does not attempt to explain or that it mischaracterizes in some 

respects (or cannot be taken literally in what it says regarding) the entities or properties 

standing in those relations often matters less much from the point of view of explanation. 

To take a simple example, a network model in which neurons are represented as 

interconnected dimensionless points may nonetheless correctly describe what would 

happen to the network or how it would behave under various changes in the inputs 

delivered to those neurons (so that the model is explanatory with respect to these 

explananda),  even though it is of course true that neurons are not dimensionless points 

and some predictions based on this assumption will be obviously mistaken. As another 

illustration,  it is arguable Bohr’s model of the atom had some explanatory force in virtue 

of correctly representing the dependency of the emission spectrum for hydrogen on 

transitions between electronic energy levels (and the dependency of the latter on the 

absorption of photons), even though in other respects the model was representationally 

quite inaccurate.  For this reason, I do not think that it is correct to claim that if model is 

to provide satisfactory explanations all of the variables   in the model must correspond 

directly to entities or properties that are present in the target system
22

. Models can 

successfully convey dependency information in surprisingly indirect ways that do not 

require this sort of  mirroring or correspondence of  individual elements in  the model to 

elements in the world. I acknowledge that this introduces a certain vagueness or 

indeterminacy into assessments of explanatory status (when is a model so far “off” in 

what it claims about the target system that we should regard it as unexplanatory) but I 

believe this to be unavoidable.   

3) Yet another possibility is that a theory or model might be merely descriptive in 

the sense that it describes or summarizes a pattern in some body of data in terms of 

variables X, Y etc, but without any suggestion that these variables are related causally in 

the interventionist sense. For example, a model according to which the distribution of 

velocities of molecules in a gas is Gaussian is merely descriptive in this sense, as is a 

model according to which the receptive fields of neurons can be represented by the 

difference between two Gaussians—an example considered in Kaplan and Craver (2011). 

A closely related possibility is that the model simply describes some regularly occurring 

phenomenon but without telling us anything about the factors on which the occurrence of 

that phenomenon depends, as was the case for the “phenomenological” representation of 

neural tuning curves discussed in section 2.  

                                                 
22

 To put the point in a slightly different way, whether a model gets the underlying 

ontology of the target system right and whether it conveys correct information abut 

dependency relations and the answers to what-if things- had been –different questions are 

much more independent of one another than many philosophers suppose.  On my view, it 

is the latter (getting the appropriate relationships rather than the relata) that matter for 

explanation. A version of the wave theory of light that conveys correct information about 

relationships (including intervention supporting relationships) involved in reflection, 

refraction, diffraction and so on should be regarded as explanatory even if the theory 

represents waves themselves as mechanical displacements in an ether.  
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(4) The model might describe a predictively useful relationship which involves one or 

more variables that are not, for logical or conceptual reasons, possible targets for 

intervention. An illustration (due to Kaplan 2011) is provided by the Balmer formula 

which gives the wavelength ( ) of lines in the absorption/emission spectrum of hydrogen  

in terms of the relation:  = B (m
2
/m

2
-4) where B is a constant and m an integer greater 

than two. This relationship is not a causal relationship, at least according to the 

interventionist account, since the notion of intervening to change the value of m from one 

integral value to another does not make sense. We cannot interpret the Balmer formula as 

telling us what would happen to  under interventions on the number m. Nor does this 

seem to be a case of a dependency relationship of any other kind relevant to explanation.  

(5) Another possible way in which the interventionist requirements can fail is that 

a theory or model can be so unclear or non-committal about how some of the terms or 

variables in the theory are to be interpreted (or what features they correspond to in the 

world) that we have no conception of what would constitute an intervention on those 

features, what would happen under such an intervention, or even what would be involved 

in those features varying or being different. (This possibility contrasts with the case of 

Ptolemaic astronomy described under 2)  since it seems clear in a general way what 

crystalline spheres would be were they to exist, and what would be involved in their 

varying in diameter and position and so on.) An extreme case is a theory which is just a 

mathematical structure or an entirely uninterpreted set of equations relating certain 

variables. To the extent that the theory does not specify at al what structures or relations 

in the world are supposed to correspond to the dependency relationships postulated in the 

theory, then, according to the interventionist framework, it is not even a candidate for an 

explanatory theory. (For example, the HH model, considered simply as a set of equations 

without any physical interpretation, is not even a candidate for an explanation.) Another, 

less extreme possibility along these lines is that the theory does not contain completely 

uninterpreted variables and relationships but instead provides some characterization of 

these, perhaps giving them a semantic label or even assigning a number to them, 

estimated from other measured quantities, but nonetheless leaves their physical or wordly 

interpretation sufficiently underspecified that we lack any clear conception of what would 

be involved in intervening on them or what corresponds in the target system to the 

dependency relations in which they figure.   The “gating’ variables fitted by Hodgkin and 

Huxley to the expressions describing the voltage and time dependencies of sodium and 

potassium channels in their model of the generation of the action potential had something 

of this character, as discussed below (Section 9)
 
.  

Another related possibility is represented by the treatment of bimanual 

coordination by Haken et al. 1985 (the HKB model), which is championed by Chemero 

and Silberstein,  2008  as an alternative to more standard mechanistic or computational 

accounts of psychological and neuroscience explanation. When subjects attempt to move 

their left and right index fingers in phase in time with a metronome, their movements are 

found to be related by  

 

   (8.1) dØ/dt= - a sinØ -2b sin 2 Ø  

 

where Ø is the relative phase angle between the two fingers and b/a reflects the finger 

oscillating frequencies. It is readily seen that this equation permits just two stable 
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outcomes, when either Ø = 0 or Ø= 180 degrees, corresponding to the movement of 

fingers either in-phase (parallel, like windshield wipers) or in anti-phase. As b/a 

decreases (corresponding to faster finger oscillation), subjects are unable to maintain the 

antiphase movement and switch to the in-phase movement, with this being regarded as a 

“phase transition”. This behavior is reflected in the basins of attraction associated with 

(8.1); there are two attractors (at Ø = 0 or Ø= 180) when b/a is relatively large and just 

one when this ratio is small. 

I agree with Kaplan and Craver (2011) that it is difficult to see this as a causal or 

as an explanatory model
23

. To begin with, it does not purport to tell us anything about the 

neural features on which the described behavior depends—in this respect, it seems like a 

non-starter as an example of neuroscientific or psychological explanation and, contrary to 

what Chemero and Silberstein claim, a dubious candidate for a replacement for such 

explanations. Because there is no accompanying neural account (indeed, as far as the 

model itself goes, no claim about whether such an account even exists), it is unclear how, 

if at all, to interpret the HKB model as a causal or explanatory model. As far as the model 

and the accompanying experimental data go, the restricted possible states of coupled 

finger movement and the “phase transition” might be due to some common 

neural/nervous system cause, in which case these aspects of the phenomenon will have 

more of the character of a correlation among joint effects than a causal relationship. 

Indeed, Kelso himself in his 1984 paper proposes that the relation (8.1) may be regarded 

as “constrain[ing] possible neural explanations” (p. 93) of the facts about finger 

movement he describes, which suggests that (8.1) has more of the status of a potential 

explanandum for a genuinely explanatory theory (or an empirical constraint on such a 

theory) grounded in more general features of the brain or nervous system, rather than 

something which should itself be regarded as explanatory
24

.  

The cases 1-5 are all cases in which the interventionist requirements for 

explanation are not met. Note, however, that none are cases in which a theory or model 

fails to be explanatory simply because it fails to provide extensive mechanistic or 

implementational detail. Instead, at least from an interventionist perspective, the models 

under 1-5 fail to be explanatory for other, independent reasons – because they invoke 

merely correlational relationships or non-existent or woefully underspecified dependence 

                                                 
23

 Although I do not regard the HKB model as a plausible example of an explanatory 

psychological/neuroscientific model rooted in dynamic systems theory, I emphasize, as 

argued above, that in my view it would be a mistake to suppose that all dynamic systems 

accounts of brain function in terms of attractor landscapes and the like are non-

explanatory. In addition to the theories of memory retrieval mentioned above, other 

plausible candidates for explanatory models involving dynamic systems theory include 

accounts of categorization and decision-making of the sort described in Rolls and Deco, 

2010.  
24

  I will also add that the motivation for (1) in Haken et al’s (1985) paper also does not 

seem to have much to do with distinctively causal considerations. Instead (8.1) is 

motivated by perceived “analogies” (rooted in “synergetics”) with the behavior of other 

sorts of physical systems exhibiting phase transitions, with (1) described as the 

“simplest” equation (p. 47) of a certain general form subject to certain symmetry 

constraints that fits the observed data describing finger movements.  
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relations and so on. In other words, we can explain what is explanatorily defective about 

such models in terms of violations of basic interventionist/dependency requirements on 

explanation without invoking the idea that all explanations must be mechanistic. To the 

extent that a model avoids the problems described under 1-5 above, and satisfies the 

interventionist constraints on explanation, it will count as explanatory even if it fails to be 

mechanistic. For example, depending on the details of the case, a recurrent network 

model for auto-associative memory may describe genuine dependence relations in a 

target system  (a brain) in the interventionist sense, rather than just correlations and the 

items related via these dependence relations—neurons, connections among neurons and 

neural activity – may be “real” and possible objects of intervention. It may also be clear 

enough what would be involved in intervening on such a structure (e.g. by changing its 

input or more dramatically by lesioning it) so the model is not one in which it is left 

completely unclear or unspecified what in the world corresponds to relevant variables.  

Similarly it may be clear enough what the relationships postulated in the model imply 

about what would happen in the target system under various manipulations or 

perturbations. On the other hand, the model lacks implementational or mechanistic detail, 

thus illustrating the independence of this feature from the kinds of deficiencies 

represented by 1-5.  

 

9. The Hodgkin-Huxley Model  

 Many of the themes discussed above are illustrated by the Hodgkin-Huxley 

(hereafter HH) model, to which I now turn. This has been the subject of a considerable 

recent discussion, with some (e.g., Craver 2008 and Bogen 2008) regarding the model as 

unexplanatory (or in Craver’s case, at best an explanation sketch) because of its failure to 

provide various sorts of mechanistic detail and others (Weber 2008, Levy, forthcoming) 

defending the explanatory status of the model. As will be seen, my own assessment is 

very close to that of Weber and Levy, and I will draw on both of their discussions in what 

follows.  

 I take the goal of HH’s 1952 paper to be the presentation of a model of the 

generation of the action potential in an individual neuron. The experiments HH report 

were conducted on the giant axion of the squid, although it is assumed that many of the 

features of the model apply much more generally. The explanandum of the model is a 

phenomenon or stylized fact (in the sense described in section 3) having to do with shape 

of the action potential— what Trappenberg calls the “prototypical form of the action 

potential” (p. 33). This involves a change in the potential across the neuron’s membrane 

which follows a characteristic pattern: first rising sharply to a positive value from the 

resting potential of the neuron (depolarization) and then decreasing sharply to below the 

resting potential, followed by a recovery to the resting potential. The action potential 

results from changes in the conductance of the membrane to sodium and potassium ions, 

with the rise in potential being due to opening of Na channels in the membrane leading to 

the influx in Na ions and the subsequent fall being due to the inactivation of the sodium 

channels approximately 1ms after their opening and the opening at this point of the 

potassium channels. These ionic currents are responsible for the patterns of change in 

membrane potential. Furthermore the channels themselves are “voltage-gated” with the 

channel resistances/ conductances being influenced by the membrane potential.  
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The basic idea of the H-H model is that structural features of the neuron 

responsible for the action potential may be represented by a circuit diagram with the 

following structure: 

 

 

Figure 1 here 

 

 

This is a circuit in parallel with (reading from left to right) a capacitor which stores 

charge (the potential across the membrane functions as a capacitor), a channel
25

 that 

conducts the sodium current INa, with an associated time and voltage dependent 

conductance gNa, a channel that conducts a potassium current IK with time and voltage 

dependent conductance gK, and a leakage current Il which is assumed to be time and 

voltage independent. The relationships governing these quantities are represented by HH 

by means of a set of differential equations. First, the total membrane current I is written 

as the sum of the capacitor current and the total ionic current Ii: 

 

 I= CmdV/dT+ Ii (This is just a version of Kirchoff’s law for the conservation of charge.) 

 

The ionic current in turn is the sum Ii = INa + IK +Il  

 

These last three currents can be written as INa = gNa (V-VNa) , IK = gK (V-VK) , and Il =gl 

(V-Vl) where VNa, Vk, Vl are the equilibrium membrane potentials. These are just versions 

of Ohm’s law, with the currents being equal to the products of the conductances and the 

difference between the membrane potential and the equilibrium potential. The ionic 

conductances in turn are expressed as the product of the maximum conductances (which I 

will write as G*Na etc. for the channels) times “gating” variables n, m, and h:  

 

G k = G*K n
4
  

GNa= G*Nam
3
h 

 

The underlying picture is that the passage of ions through a channel requires the opening 

of a number of distinct hypothetical structures or “gates”, with the gating variables 

representing the probability that these are open. For example, n represents the probability 

that a gate in the potassium channel is open, it is assumed that four distinct gates must be 

open for the passage of the potassium current, and also that these gates open 

independently, so that n
4
 is in effect the probability that the potassium channel is open. 

G*K n
4
 thus yields an expression for the active or available conductive as a function of 

the maximum conductance. Variables m and h have similar interpretations: the Na current 

requires that three gates, each with probability m, be open and that a distinct gate also be 

open with probability h. Other equations, not reproduced here, describe the time 
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 As noted above,  the channels which these variables in the H-H model  describe are  

really (from a molecular perspective)  aggregates or classes of channels of various types 

(Na etc.) rather than individual ion currents.  
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derivatives of the gating variables n etc. as functions of other variables such as the 

voltage dependent opening and closing rates of the gates.  

 

Combining these equations yields:  

 

(9.1) I = CMdV/dt + G*Kn
4
(V − VK) + G*Na m

3
h(V − VNa) + Gl(V − Vl) 

 

 G*Na and G*K are directly measured variables but, by HH’s own account, the gating 

variables (and the variables occurring in the differential equations describing how these 

change with time) were chosen on the basis that they fit the experimental data reasonably 

well and were simple. Lacking information about the details of the molecular 

mechanisms governing the operation of the channels, HH in effect settled for expressions 

(the quantities m, n and h, the powers to which these are raised, and the equations 

specifying the time course of these) that accurately empirically described the channel 

conductances, and, although they speculated on possible physical interpretations for these 

expressions, they did not claim that they had successfully identified the mechanisms 

responsible for them. They write “ the success of the equations
26

 is no evidence in favor 

of the mechanism of permeability changes [i.e. changes in membrane conductance] that 

we tentatively had in mind when formulating them” (p.  541). On the other hand, the 

passage just quoted is immediately followed by this remark (also quoted by Weber and 

by Levy):  

  

The point that we do consider to be established is that fairly simple permeability 

changes in response to alterations in membrane potential, of the kind deduced 

from the voltage clamp results, are a sufficient explanation of the wide range of 

phenomena that have been fitted by solutions of the equations. (p. 541) 

 

Indeed, their entire 1952 paper is full of language strongly suggesting that they think of 

themselves as having provided a causal explanation or a causal account of the action 

potential. Their introductory paragraph says that their model “will account for 

conductance and excitation in quantitative terms” (p. 500) and the first page of their 

paper contains language like the following: 

 

Each component of the ionic current is determined by a driving force which may 

conveniently be measured as an electrical potential difference and a permeability 

coefficient. (p.500, emphasis added)  

 

The influence of membrane potential on permeability can be summarized by 

stating: first, that depolarization causes a transient increase in sodium 

conductance and a slower but maintained increase in potassium conductance; 

                                                 
26

 I follow Weber in interpreting the reference to “the equations” in this passage to the 

equations HH propose describing the dependence of the channel conductances on m, n, 

and h and to the equations describing the time dependence of the latter, rather than to the 

equation (9.1)  
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secondly, that these changes are graded and that they can be reversed by 

repolarizing the membrane. (p. 500, emphasis added) 

 

 They go on to say that:  

 

In order to decide whether these effects are sufficient to account for complicated 

phenomena such as the action potential and refractory period, it is necessary to 

obtain expressions relating the sodium and potassium conductances to time and 

membrane potential (page 500-1, emphasis added) 

 

 The judgment that the HH model is explanatory is repeated in many if not most of 

the papers and texts I consulted that contain explications of the model. For example, in 

the passage quoted from Herz et al. above (Section 6), the HH model is described as 

“explaining” and providing “quantitative understanding”. McCormack (2003) writes that 

the experiments and model in the 1952 paper “explained qualitatively and quantitatively 

the ionic mechanism by which the action potential is generated” (p. 145). Koch (1999) 

writes that “the biophysical mechanisms and underlying action potential generation in the 

cell body of both vertebrates and invertebrates can be understood and modeled by the 

formalism Hodgkin and Huxley introduced..” (p. 144).
27

 Similarly, Trappenberg (2002, 

pp 34ff) repeatedly characterizes the HH model as describing the “mechanism” (or 

“minimal mechanism’) for the generation of the action potential. 

I follow both Weber and Levy in holding that the obvious way of reconciling 

HH’s various remarks about the explanatory status of their model is to distinguish the 

question of whether HH provided (i) an explanation of the generation of the action 

potential from the issue of whether they provided (ii) a satisfactory explanation of the 

operation of the ion channels and the molecular mechanisms involved in gating. Both by 

their own account and judged in the light of subsequent understanding of the operation of 

the ion channels, they do not provide (ii). However, as argued in previous sections, this is 

consistent with their having provided an explanation of (i) the generation of the action 

potential. Put at a very general level, this is because the equation (9.1) and the associated 

model identifies the factors (or at least many of the factors) on which the generation of 

the action potential depends, although it does not successfully identify (or at least very 

fully or adequately identify) the factors on which the operation of the ion channels 

depends. The possibility of explaining (i) without explaining (ii) can be thought of as 

reflection of the general point, made in previous sections in connection with modeling 

strategies, that models work at different levels or scales, and a model can explain some 

explananda at a particular scale or level (the overall behavior of behavior of a neuron in 
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 I should also acknowledge, though, that this remark by Koch is followed shortly by a 

reference to the “phenomenological model.. of the events underlying the generation of the 

action potential” (144-5) postulated by HH, which seems to mix together the claim that 

the model provides causal information (“generation”) with a description of it as 

“phenomenological”. This makes sense if “phenomenological” in this context just means 

“lacking lower level mechanistic detail” (which is not taken to imply that the account is 

non-causal or non-explanatory). This is perhaps the sense in which classical 

thermodynamics is a “phenomenological” theory.  
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generating an action potential) without explaining aspects of neural behavior at other 

scales or levels (the molecular mechanisms associated with the ion channels).  

 As Trappenberg suggests, one way of thinking of the HH model is as a kind of 

minimal model of the generation of the action potential. The HH model shows that the 

generation of the action potential depends on (or requires at a minimum), among other 

things, the existence of at least two voltage gated and time-dependent ion channels, as 

well as an additional static or leakage channel and a membrane that is otherwise 

sufficiently insulated to act as a capacitor. However, given that such a structure is present 

and behaves appropriately, the presence of the specific mechanism by which the ion 

channels in the giant squid operates is not required for the generation of the action 

potential, as long as some mechanism or other that plays this role is present. This in effect 

allows for the separation of explanatory tasks (i) and (ii) in the manner that I have 

described.  

  This assessment of the explanatory status of the HH model also follows from the 

interventionist requirements on explanation described in section 2 – a point that is also 

developed by Weber (2008). For example, the HH model correctly describes what will 

happen to the total current I under interventions on the transmembrane voltage V (which 

can be accomplished experimentally via the voltage clamp device), and under changes in 

the maximum sodium and potassium channel conductances, which can be accomplished 

by techniques for molecular manipulation of these. Although the HH model does not 

correctly describe the molecular mechanisms involved in the operation of ion channels, it 

does claim, correctly, that it should be possible to intervene on these classes of channels 

independently and to change the individual currents, INa and IK, independently of each 

other and independently of the other terms in equation. The equation and associated 

correctly describes what would happen to the total current under such interventions. The 

HH model is thus (at least in this respect) modular and effects a decomposition of the 

structure responsible for the membrane current into components, each of which is 

governed by generalizations which operate independently of the generalizations 

governing the other components. In this sense it seems fairly natural to characterize the 

HH model as describing the “mechanism” of the action potential, as a number of the 

writers quoted above do.  

   We may also note that, putting aside the role of the gating terms and the 

equations governing them, the HH model does not exhibit any of the pathologies 

described in section 8 which render a model merely descriptive or phenomenological 

rather than explanatory. In particular, the HH model does not (i) describe a relationship 

(between I and terms like V, INa,..) that is purely correlational rather than causal in the 

interventionist sense. Moreover, with the partial exception of the gating terms, the 

relations among other terms conveys information about dependency relations in the target 

system. For instance, V, the various currents, the membrane capacitance, and the sodium 

and potassium conductances all refer to features of the world that are   “real” in the sense 

that they can be measured and manipulated and the model correctly describes how these 

features are related (via intervention-supporting dependency relations)  to one another in 

the target system. In these respects, the HH model is very different from the Ptolemaic 

model.  

 

10. Conclusion. 
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In this paper I have attempted to use an interventionist framework to argue that 

theories and models in neurobiology that abstract away from lower level or 

implementational detail can nonetheless be explanatory. I have tried to show that this 

conclusion does not require that one abandon the distinction between models that are 

explanatory and those that are merely descriptive or predictively accurate, but non-

explanatory. Instead interventionism provides a natural framework for capturing this 

distinction. I have also argued that mechanistic models are just one possible form of 

explanatory model; they are explanations that meet certain additional conditions that 

qualify them as “mechanistic”. Models that are not mechanistic can nonetheless count as 

explanatory if they correctly capture dependency relations that support  interventions.  
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