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We explore depth substitution invariance, or hyperformalism, and extend known
results in this realm to justification logics extending weak relevant logics. We then
examine the surprising invariance of justifications over formulas and restrict our
attention to the substitution of proofs in the original relevant logic. The results of
this paper indicate that depth invariance is a recalcitrant feature of the logic and that
proof structures in hyperformal logics are quite inflexible.

1 Introduction

Relevance is a notoriously tricky property to pin down. Early attempts to formalize the notion of
relevance in propositional logic focused on shared variables between premise and consequent
(Belnap (1960), Anderson and Belnap (1975)). A logic L is said to enjoy the variable sharing
property (vsp) if whenever A → B is a theorem of L, then A and B share an atom. vsp is an
oft-cited necessary condition for relevance, but it is not a sufficient condition.1 Furthermore, as
shown in Anderson and Belnap (1975) and thoroughly explored in Méndez and Robles (2012),
this property can be significantly strengthened (svsp, for strong vsp) over the domain of standard
relevant logics which already enjoy vsp, though one can construct (irrelevant) logics which enjoy
the standard vsp but not the svsp.

A yet stronger property, known as the depth relevance property (see Brady (1984)), has also
been extensively explored. In fact, Robles and Méndez (2014) suggest that depth relevance is a
potentially “fitter condition than the vsp to characterize relevant logics” (p. 125). Depth relevance
can be strengthened in a similar way to how the vsp was strengthened (Logan (2021)), but we
will be concerned in this paper primarily with the original formulation. Formulas A and B depth
share a variable if some atomic variable occurs in both A and B at the same depth.

Definition 1. A logic L enjoys the depth relevance property (drp) if A → B is a theorem of L
only if A and B depth share a variable.

A formal definition of depth is given further in the paper. Informally, the depth of a subformula in
a formula is the number of conditionals under which the subformula is nested in the formula.

1The fragment of classical logic that enjoys vsp, for example, admits disjunctive syllogism, which is a rejected
principle of relevance. See Szmuc (2021) for a sequent calculus and semantics for this fragment, with which it is
rather simple to show the validity of the offending principle. See Mares (2004) for a salient examination of this
deductive principle in the context of inconsistency.
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Strong relevant logics do not satisfy this condition. R is a fine counterexample, since it contains
instances of assertion: p→ ((p→ q)→ q) for example. The failure here can be seen by noting
that in the antecedent p, the variable p occurs at depth 0, since it occurs within the scope of no
other conditional, while the p in the consequent occurs at depth 2. Since p was the only contender
for a shared atom, this is enough to be a counterexample. drp is thus applicable to a smaller
subclass of logics under R than is vsp.2

In the course of building machinery to identify the logics that enjoy drp, Logan (2022) employs
substitution-like mappings drawn from a class of functions he calls depth substitutions. Like
uniform substitutions, depth substitutions map arbitrary atomic variables to sentences. Unlike
uniform substitutions, depth substitutions need not treat all occurrences of a given variable equally.
Instead, depth substitutions are functions which take each instance of a variable at a given depth to
a specified formula. In some logics this arbitrary mapping does not affect the space of theorems.

Definition 2. A logic is said to be hyperformal whenever it admits a theorem just if it also admits
every depth substitution of that theorem.

A sufficient condition for depth relevance is then established.

Theorem 1 (Logan (2022)). If a logic is hyperformal, then it also enjoys the depth relevance
property.

While the converse of this theorem is not true, there is a large overlap between depth relevant
logics and hyperformal logics. It was shown in Brady (1984) that sublogics of DR satisfy the drp
and in Logan (2022) that sublogics of DR− are hyperformal. It is clear then that for weak-enough
relevant logics, these notions coincide.

Depth substitutions are indeed strange. Nonuniform mappings would not typically be expected
to preserve theoremhood. The classical logician would accept p→ (q→ p) among their available
tautologies but would obviously reject its depth substitution instance p→ (q→ r). In particular,
we can construct a depth substitution which sends

p→ (q→ p)⇝ (p→ p)→ ((q→ q)→ r)

and with a small basis of logical power, namely identity and modus ponens, one gets that r is a
theorem. Since r was atomic and a logic should be closed under uniform substitution, it follows
that all formulas are theorems.

How then should we go about those nontrivial logics that are closed under such an unusual
class of functions? It’s not obvious at this juncture whether this feature is worth taking seriously,
since being closed under a property does not necessarily carry any philosophical weight. For
example, relevant logics are closed under the rule A∧¬A ⊢ B, but this observation doesn’t convey
much information about the logics themselves. We must then justify, so to speak, that closure
under depth substitutions is a feature worth us causing a scene.

2If taken as a necessary criteria for relevance, drp is also not a sufficient condition. An example from Robles and
Méndez (2014) gives a category of RM3 extensions which all respect drp while admitting principles incompatible
with relevance. An illustrative axiom scheme one could include among the theorems of, say, DR is the “intractable
principle” (ϕ→ ψ)→ (ψ→ ψ).
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The purpose of the present paper is to show that there is, in fact, good reason to cause a scene.
We do this by showing hyperformalism is embedded not simply into the theorems of hyperformal
logics but (in a sense made clear below) in the proofs of those theorems as well. To do so, we
employ the tools of justification logic and use the work done by Standefer (2022) on variable
sharing with justification to derive related results about depth relevance. Justification logics,
much like modal logics, augment a propositional logic with structure tracking whichever modal
behavior one is concerned with, e.g. belief, knowledge, obligation, and provability. Informally,
justification logics “represent the whys and wherefores of modal behavior quite directly, and from
within the formal language itself” (Artemov and Fitting, xii). We will concern ourselves with
the notion of proof and provability and will thus read formulas involving justifications as saying
something about the provability of the formulas to which they’re attached.

In §2, the logics B and B.J0 are defined, and details surrounding how each justification is
meant to capture provability are discussed briefly. In §3, we define depth and introduce depth
substitutions. After that, constant specifications are defined and philosophically motivated in §4,
followed in §5 by the substantive content of the paper in which we show that, in hyperformal
logics, proof terms of a theorem are more or less attached to every depth substitution instance
of that theorem. Finally, §6 looks at a subset of the justification logic to motivate a natural
perspective for this behavior in light of the extant literature on depth substitutions, and we
summarize our results in the final remarks.

2 The Logic

We begin with a set JV of enumerably many justification variables, a yet unspecified (and possibly
empty) set JC of justification constants, and a set of connectives Con = {+, ·, a, b, c, ∗, !,¬,∧,∨,→}.
We form the set JT of justification terms inductively.

• If x ∈ JV, then x ∈ JT

• If c ∈ JC, then c ∈ JT

• Given t ∈ JT and s ∈ JT,

– (t + s) ∈ JT

– (t · s) ∈ JT

– a(t, s) ∈ JT

– b(t, s) ∈ JT

– ct ∈ JT

– ∗t ∈ JT

– !t ∈ JT

Now assume we have an enumerable set At of propositional constants. We form justification
formulas as follows.

• If p ∈ At, p is a justification formula.
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• If ϕ and ψ are justification formulas, so then are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ→ ψ.

• If ϕ is a justification formula, then [t] : (ϕ) is a justification formula for all t ∈ JT.

We will omit the brackets and parentheses in justification formulas whenever confusion should not
arise, as in a(t, s) : (ϕ ∧ ψ) and s : t :ϕ. We call the language so-defined L+, and we denote the set
of all formulas of the form t :ϕ, where t may be an empty placeholder, by JF. The propositional
fragment L of L+ is obtained by isolating the set WFF ⊂ JF of justification-less formulas and
the subcollection {¬,∧,∨,→} ⊂ Con. The logic B is presented in the language L with a minimal
Hilbert-style axiomatization and is taken as the smallest set that contains every instance of the
following axioms and is closed under the following inference rules.

(A1) ϕ→ ϕ

(A2) (ϕ ∧ ψ)→ ϕ, (ϕ ∧ ψ)→ ψ

(A3) ((ϕ→ ψ) ∧ (ϕ→ λ))→ (ϕ→ (ψ ∧ λ))

(A4) ϕ→ (ϕ ∨ ψ), ψ→ (ϕ ∨ ψ)

(A5) ((ϕ→ λ) ∧ (ψ→ λ))→ ((ϕ ∨ ψ)→ λ)

(A6) (ϕ ∧ (ψ ∨ λ))→ ((ϕ ∧ ψ) ∨ (ϕ ∧ λ))

(A7) ¬¬ϕ→ ϕ

(R1) ϕ→ ψ ϕ

ψ

(R2) ϕ ψ

ϕ ∧ ψ

(R3) ϕ→ ¬ψ

ψ→ ¬ϕ

(R4) ϕ→ ψ λ→ ρ

(ψ→ λ)→ (ϕ→ ρ)

We formulate the logic B.J0 over L+ by including among (A1)-(A7) and (R1)-(R4) the following
axioms and one additional rule.

(J0) t : ϕ→ [t + s] :ϕ, s : ϕ→ [t + s] :ϕ

(J1) t : (ϕ→ ψ)→ (s : ϕ→ [t · s] : ψ)

(J2) (t : ϕ) ∧ (s : ψ)→ a(t, s) : (ϕ ∧ ψ)

(J3) t : (ϕ→ ¬ψ)→ ct : (ψ→ ¬ϕ)

(J4) t :ϕ→ (!t : t :ϕ)

(JR5) t : (ϕ→ ψ) s : (λ→ ρ)
b(t, s) : ((ψ→ λ)→ (ϕ→ ρ))

If t :ϕ is a theorem, we will sometimes refer to t as a proof term for ϕ. (J0) and (J1) provide
access to the basic operators + and · among justification terms, which is why these terms are
sometimes called justification polynomials. When taken in isolation, (J1) and (J4) form an
epistemic analogue of K4, which includes as axioms both K(ϕ → ψ) → (Kϕ → Kψ) and
Kϕ→ KKϕ. The remaining axioms and rule involving explicit justification terms correspond to
more trivially satisfied modal statements or else to a rule in B. The other justification operators
(a, b, c, and !) combine justification terms, and they intuitively correspond to different ways of
combining actual justifications. Note that (JR5), which corresponds to (R4), is given as an
additional inference rule instead. This will cause us a minor headache in §5, but a brief discussion
of the rationale for this decision will follow there.

The main result will be proved for L.J0 where L = B, but we note here that this result will
apply to a broad enough range of relevant logics (see Lemma 6 below). Somewhere around the
supremum of this range is the logic DR−. Since we will make repeated mentions of this logic
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throughout the paper, an explicit axiomatization is laid out here. The logic DR− is the logic B,
minimally closed under the below additional axioms and rule.

(A8) ((ϕ→ ψ) ∧ (ψ→ λ))→ (ϕ→ λ)

(A9) (ϕ→ ¬ψ)→ (ψ→ ¬ϕ)

(A10) ϕ ∨ ¬ϕ

(R5) ϕ

¬(ϕ→ ¬ϕ)

An informed reader will notice how closely this logic resembles the well-studied and philo-
sophically important logic DJ, and indeed DJ is a sublogic of DR−. Of course, we will need to
add an additional justification axiom or rule to account for uses of (R5). To achieve this goal, we
will add the following rule to our system DR−.J0.

(JR6) t :ϕ
∗t :¬(ϕ→ ¬ϕ)

Here, ∗ encodes uses of (R5) in much the same way as the other justification connectives encode
their corresponding rules. In general, however, most extensions of B we will consider involve
fewer rules, rather than additional rules. To avoid unnecessary additional rules, we will consider
a restricted class of sublogics of DR−, here called subsystems, for the remainder of this paper.

Definition 3. A subsystem of a logic L is a sublogic of L whose axiomatization includes only
rules from (R1)-(R5).

A final desideratum for this new structure would be something analogous to necessitation in
normal modal logic, that if ϕ is a theorem, then so too is Kϕ. There is an analogous class of results
in the literature called internalization theorems. These take the form “if ϕ is a theorem, there is a
t so that t :ϕ is a theorem.” Internalization is a desirable feature for our logic to have. Standefer
(2022) demonstrates that his formulation of a justification logic over B, under certain further
constraints (see §4), satisfies internalization. We will rederive this result in our formulation and
in a separate context.

3 Depth

The notion of depth underlying the depth relevance principle (see Brady (1984)) is extended in
the following for formulas in the full language L+.3 We will first state the standard definition for
depth and depth substitution over the propositional fragment L of our language. After this, we
will consider how to extend this definition to cover the larger language L+.

Definition 4. Let ϕ ∈ L and ψ ∈ L. Denote by ψϕ a particular occurrence of ϕ in ψ. The depth of
an occurrence of ϕ in ψ is a non-negative integer given inductively by the following.

• If ϕ is ψ, the depth of ψϕ is 0.

3Anderson and Belnap (Anderson and Belnap (1975)) conceptualize an early consideration of depth in terms of a
formula’s degree in the study of their token relevant logics. The standard formulation, however, is due to Brady
(1984).
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• If the depth of ψϕ is n, then

– The depth of (¬ψ)ϕ corresponding to ψϕ is n.

– The depth of (ψ ∨ λ)ϕ and of (λ ∨ ψ)ϕ corresponding to ψϕ is n.

– The depth of (ψ ∧ λ)ϕ and of (λ ∧ ψ)ϕ corresponding to ψϕ is n.

– The depth of (ψ→ λ)ϕ and of (λ→ ψ)ϕ corresponding to ψϕ is n + 1.

Recall that in the construction of our language L+, we specified a set of atomic constants At.

Definition 5. A depth substitution is a function d− : At × Z → L.4 This extends to a function
(which we will, as an abuse of terminology, also call a depth substitution) d : L × Z → L as
follows:

• d(p, n) = d−(p, n) for p ∈ At

• d(¬ϕ, n) = ¬d(ϕ, n)

• d(ϕ ∨ ψ, n) = d(ϕ, n) ∨ d(ψ, n)

• d(ϕ ∧ ψ, n) = d(ϕ, n) ∧ d(ψ, n)

• d(ϕ→ ψ, n) = d(ϕ, n + 1)→ d(ψ, n + 1)

Whenever we refer to an arbitrary depth substitution d, the extension is our intention. A
uniform substitution is a degenerate depth substitution, one in which d(ϕ, n) = d(ϕ, 0) for all
n ∈ Z. An interesting result alluded to earlier is due to Logan (2022).

Theorem 2. Let L be a sublogic of DR− and ϕ ∈ L. Given a depth substitution d and n ∈ Z,
d(ϕ, n) ∈ L.

How then should a depth substitution treat justification terms in these weak logics, in light of
Theorem 2? We argue that depth and depth substitutions should be blind about justification terms,
just as they are blind to formulas combined with other non-conditional connectives. That is, we
extend Definitions 4 and 5 to range over formulas of L+ with the following respective conditions.

• The depth of (t :ψ)ϕ corresponding to ψϕ is n.

• For a depth substitution d : L+ × Z→ L+, d(t :ϕ, n) = t :d(ϕ, n)

Arbitrary depth substitutions through the remainder of this paper will be named instances of
this final extension. The effect of this imposition is that proofs of a formula are also proofs of their
depth substitutions. We must take a small measure of this epistemological choice, as it may appear
arbitrary on first viewing. Depth is, as defined, a property tracking the number of occurrences of
one particular connective. The term depth is itself suggestive of which connective we’re interested

4In Logan (2022), depth spans over N since negative depth does not occur when considering propositional logics of
this flavor. However, we need to have a contingency for negative depth due to the depth-shifting nature of (J1)
and (JR5), even if we don’t know what it means for ϕ to occur at depth -3 in ψ. The philosophical significance of
negative depth will not be explored here.
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in tracking, but we could have just as easily defined the behavior of our substitutions so that they
only track the number of occurrences of negations, conjunctions, or disjunctions under which a
formula is nested within a broader formula.5 The inert nature of depth and depth substitutions
over all other connectives is itself an authorial choice, whereas the fact that this choice aligns
with quite interesting results, such as Theorem 2 above, is a consequence of this choice.

Justification terms, however, stand in some middle ground between object language connectives
and metainferential objects. Theorems containing justification terms are in essence object-level
representations of our logical rules, telling us precisely which, and in what order, rules were
employed in deriving the attached formula, and can be deconstructed, much like parsing a
proof tree. Further, justification terms have intensional content—in the formal language, each
justification term gives rise to a connective that is just as intensional as a conditional. It is thus
reasonable to request that proof terms have some non-trivial effect on a formula’s depth. Why
then ignore this intensionality? Well, the choice to ignore alternative intensional structure was
already made when we decided to ignore the intensional nature of negations. We have thus
chosen to treat attached justification terms as any other non-conditional connective. In doing
so, we acknowledge that alternative interpretations of depth may credibly be given but find our
interpretation most compelling in light of the above.

A hyperformal logic then, in accordance with Theorem 1, should be expected to fail to
distinguish between proofs of statements of the same form, since it fails to distinguish between
the statements already. Thus we’d expect a similar characteristic for justification logics, but we
need just a little bit more tooling to see whether this is the case.

4 Constant Specifications

So far, the justificational superstructure we’ve adjoined to B does not generate genuine justifi-
cational theorems, i.e. there is no theorem in B.J0 that is of the form t :ϕ. The subscripted “0”
in the logic’s name is used to indicate precisely this fact. We can ensure theorems of this form
by specifying the set JC in L+ and indicating to which theorems of B.J0 these atomic proof
terms will attach. The resulting set is called a constant specification and will be treated carefully
throughout the remainder of this paper.

Definition 6. A constant specification for a justification logic L.J0 is a set CS ⊆ JF that satisfies
the following.

• Elements of CS are of the form cn :cn−1 : . . . :c1 :ϕ, where ci is a justification constant for
0 < i ≤ n and ϕ is an axiom of L.J0.

• If cn :cn−1 : . . . :c1 :ϕ is in CS where n > 1, then so is cn−1 : . . . :c1 :ϕ.

If we add the members of a constant specification CS to a justification logic L.J0 as axioms, the
resulting system is usually labelled L.JCS, and we adopt this notation in this paper. There are

5We could even redefine our substitutions and tweak the underlying notion (here, depth) so that both track the use
of multiple connectives and the order in which they occur. Alas, these substitutions have just in the last year
been examined and probed in earnest, as in the forthcoming Ferguson and Logan, with promising early results.
The current paper restricts its attention to depth substitutions, though a note on extending to broader classes of
substitutions will be given in Section 7.
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many flavors of constant specifications, and these can be tweaked to fit the logician’s purpose. A
few candidates are outlined here.

Schematic If ϕ and ψ are both instances of the same axiom scheme, c :ϕ ∈ CS if and only if
c :ψ ∈ CS, for every justification constant c.

Axiomatically appropriate (AACS) If ϕ is an instance of an axiom and n > 0, there are
constants ci ∈ JC for 1 ≤ i ≤ n so that cn : . . . :c1 :ϕ ∈ CS.

As mentioned in §2, a first desideratum for a plausible constant specification CS over a given
justification logic L.J0 is that the logic L.JCS should satisfy internalization. As we will see, an
AACS easily grants us this criterion. A second wish is that justifications for theorems in the
base logic (what will later be called first-degree proof terms) somehow mirror the structure of
derivations of the theorem. That is, we wish for single-length proof terms t of theorems ϕ ∈ B to
correspond bijectively with proofs of ϕ.

We could specify a specialized constant specification that seems to meet both these criteria,
but as we will see, a surprising result is that this feature follows simply from internalization, the
definition of depth substitution, and the hyperformal characteristic of the given base logic. Thus,
given the above comment, we will explore an axiomatically appropriate constant specification for
the time being.

5 Hyperformal Justification Logics

Now we show that there is a deeply encoded invariance of justifications for theorems of B.JCS,
provided CS is axiomatically appropriate. To see this, however, we need to first establish a similar
result to Theorem 2 and demonstrate internalization.

Lemma 3. Given any constant specification CS, if ϕ ∈ B.JCS, then for any depth substitution d
and any n ∈ Z, d(ϕ, n) ∈ B.JCS.

Proof. Let d be a depth substitution and n ∈ Z. We proceed by induction on complexity of the
derivation of ϕ. For axioms and rules of B, we capitulate to Theorem 2, which covers precisely
this case. For the remaining axioms and rule, we argue as follows.

(J1) ϕ is of the form t : (ϕ1 → ϕ2)→ (s :ϕ1 → [t · s] :ϕ2). Then

d(ϕ, n) = d(t : (ϕ1 → ϕ2)→ (s :ϕ1 → [t · s] :ϕ2), n)

= d(t : (ϕ1 → ϕ2), n + 1)→ d(s :ϕ1 → [t · s] :ϕ2, n + 1)

= t :d(ϕ1 → ϕ2, n + 1)→ (d(s :ϕ1, n + 2)→ d([t · s] :ϕ2, n + 2))

= t : (d(ϕ1, n + 2)→ d(ϕ2, n + 2))→ (s :d(ϕ1, n + 2)→ [t · s] :d(ϕ2, n + 2))

which is again an instance of axiom (J1).
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(J2) ϕ is of the form (t :ϕ1 ∧ s :ϕ2)→ a(t, s) : (ϕ1 ∧ ϕ2).

d(ϕ, n) = d((t :ϕ1 ∧ s :ϕ2)→ a(t, s) : (ϕ1 ∧ ϕ2), n)

= d(t :ϕ1 ∧ s :ϕ2, n + 1)→ d(a(t, s) : (ϕ1 ∧ ϕ2), n + 1)

= (d(t :ϕ1, n + 1) ∧ d(s :ϕ2, n + 1))→ d(a(t, s) : (ϕ1 ∧ ϕ2), n + 1)

= (t :d(ϕ1, n + 1) ∧ s :d(ϕ2, n + 1))→ a(t, s) :d(ϕ1 ∧ ϕ2, n + 1)

= (t :d(ϕ1, n + 1) ∧ s :d(ϕ2, n + 1))→ a(t, s) : (d(ϕ1, n + 1) ∧ d(ϕ2, n + 1))

Thus d(ϕ, n) is an instance of axiom (J2).

The remaining axioms have similar arguments.
Now assume the lemma holds for derivations of length m − 1 and that ϕ is derived over m steps

with the last step using (JR5). Then ϕ is of the form b(t, s) : ((λ12 → λ21) → (λ11 → λ22)), and
the derivation of ϕ looks like this:

t : (λ11 → λ12) s : (λ21 → λ22)
b(t, s) : ((λ12 → λ21)→ (λ11 → λ22))

Note that

d(ϕ, n) = b(t, s) : ((d(λ12, n + 2)→ d(λ21, n + 2))→ (d(λ11, n + 2)→ d(λ22, n + 2)))

and this is derivable by (JR5) from the following theorems.

t : (d(λ11, n + 2)→ d(λ12, n + 2)), and

s : (d(λ21, n + 2)→ d(λ22, n + 2))

But by IH, we have that d(t : (λ11 → λ12), n + 1) ∈ B.JCS and d(s : (λ21 → λ22), n + 1) ∈ B.JCS.
These theorems are precisely the ones we need to prove the result. For instance,

d(t : (λ11 → λ12), n + 1) = t :d(λ11 → λ12, n + 1)

= t : (d(λ11, n + 2)→ d(λ12, n + 2))

and similarly for the s formula. Thus by (JR5), we have a derivation of d(ϕ, n). □

The next result is proved in Standefer (2022) but in a different presentation for B, in which
additional inference rules and more connectives are present in the logic and language. We reprove
it here and show the differing cases for the inductive step.

Lemma 4 (Internalization). Given an axiomatically appropriate constant specification CS, if
ϕ ∈ B.JCS, then there is a justification term t so that t :ϕ ∈ B.JCS.

Proof. Proceed by induction on the length of the derivation of ϕ. If ϕ is an instance of an axiom,
then by our choice of constant specification there is a constant c so that c :ϕ ∈ B.JCS. Suppose
now that ϕ is derived over m inference steps and that the theorem is proved for theorems with
derivation length m − 1. A selection of cases is presented here; the remaining cases are left to the
reader.
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(R1) ϕ is derived as follows.
ψ ψ→ ϕ

ϕ

By IH, there are justification terms u, v so that u :ψ and v :ψ→ ϕ are theorems. But then
we can derive our result via R1 and J1.

u :ψ
v : (ψ→ ϕ) v : (ψ→ ϕ)→ (u :ψ→ [u · v] :ϕ)

u :ψ→ [u · v] :ϕ
[u · v] :ϕ

Thus there is t—i.e. [u · v]—so that t :ϕ ∈ B.JCS.

(R4) ϕ is of the form (λ12 → λ21)→ (λ11 → λ22) with derivation
λ11 → λ12 λ21 → λ22

(λ12 → λ21)→ (λ11 → λ22)
By IH, there are u, v so that u : (λ11 → λ12), v : (λ21 → λ22) ∈ B.JCS. We receive our result
immediately by JR5.

u : (λ11 → λ12) v : (λ21 → λ22)
b(u, v) : ((λ12 → λ21)→ (λ11 → λ22))

(JR5) ϕ is of the form b(t1, t2) : ((λ12 → λ21)→ (λ11 → λ22)) and is derived by the following.
t1 : (λ11 → λ12) t2 : (λ21 → λ22)
b(t1, t2) : ((λ12 → λ21)→ (λ11 → λ22))

Note that we do not need the full power of the inductive hypothesis here, since we included
enough epistemic power in our justification axiom scheme to account for this scenario. Use
(R1) and (J4) as appropriate, where A = (λ12 → λ21)→ (λ11 → λ22).

b(t1, t2) : A b(t1, t2) : A→!b(t1, t2) :b(t1, t2) : A
!b(t1, t2) :b(t1, t2) : A

□

Of note is the last case considered in the above proof. What if we didn’t add positive intro-
spection into our system? Then the derivation seems out of reach and ultimately unsuccessful.
One well-meaning attempt would have us produce a separate proof of the formula by introducing
Fitting’s c operator via the axiom schema s : t : ϕ → [s c t] : ϕ (see Fitting (2017) on the logic
JX4). So given the theorems (by IH) u : t1 : (λ11 → λ12) and v : t2 : (λ21 → λ22), we would have
another derivation of the base formula:

b([u c t1], [v c t2]) : ((λ12 → λ21)→ (λ11 → λ22))

But this isn’t where we need to be! This and similar approaches using the tools at our disposal
allow us only to manipulate the first proof term in a chain of possibly many, without looking a
step beyond. Though we do not find this restriction a philosophical challenge as much as a formal
constraint, an alternative presentation of the justification logic will grant us the tools needed to
avoid this epistemic pigeonhole.

The case of the proof revolves around the rule (JR5). Altering the rule to be an analogous axiom
would solve this problem, but we would have an immediate counterexample to drp, since any
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such axiom form one could propose does not adhere to this criteria, and thus a counterexample to
hyperformalism.6 One possible resolution is to remove (J4) and replace the single rule (JR5) with
the schemes below, where (JR5) is now just the n = 1 case.

(JRn) tn : . . . : t1 : (ϕ→ ψ) sn : . . . : s1 : (λ→ ρ)
b(tn, sn) : . . . :b(t1, s1) : ((ψ→ λ)→ (ϕ→ ρ))

, n ≥ 1

With these new rule schemes, the induction goes through using the full power of the induction
hypothesis and an additional induction on the length of the justification chain. For a given
derivation by (JRn), appeal to (JR(n+1)) and IH in the proof. Whichever presentation of B.JCS

one adopts, internalization holds.
Finally, we make a simple but powerful observation.

Corollary 5. Given an axiomatically appropriate constant specification CS, if ϕ ∈ B.JCS, there
is a justification term t such that for any depth substitution d and any n ∈ Z, t :d(ϕ, n) ∈ B.JCS.

Proof. Let ϕ ∈ B.JCS, d be a depth substitution, and n ∈ Z. By Lemma 4, there is t so
that t : ϕ ∈ B.JCS. By Lemma 3, d(t : ϕ, n) ∈ B.JCS. By the definition of depth substitution,
d(t :ϕ, n) = t :d(ϕ, n), and we are done. □

Note first the order of the quantifiers here: there is a t so that for all d and n... Note also that
the choice of t did not rely on the choice of d or n. It’s then an immediate observation that if
t is any justification of a formula, then t is also a justification of any depth substitution of that
formula at any depth. Thus, as a specific subcase, any available proof term for a theorem of B is
also a proof term for every possible depth mapping of that theorem, which is again a theorem
of B. And this may be expected, as depth substitutions (as with uniform substitutions) do not
change the structure of their input formula. As we will see below, this result makes sense as it is
a parallel notion to actual proofs of theorems in the base logic, which should be indistinguishable
among theorems in which atoms have been simply swapped around (with respect to depth).

Finally, note that we could generalize to arbitrary logics L, as long as the following criteria are
met.

(1) L.JCS satisfies internalization,

(2) L is hyperformal, and

(3) Depth substitutions d are defined in such a way that they associate with proof terms:
d(t :ϕ, n) = t :d(ϕ, n).

Of the three available parameters, we will not budge on the definition of a depth substitution. Thus
our result should apply to all hyperformal logics L, as long as we can guarantee condition (1).
Fortunately, Standefer (2022) does much of the work for us in this regard, having proven that
justification logics extending B up through R, with an AACS specified, maintain internalization.
This leads us naturally to:

6Take t : (ϕ → ψ) → (s : (λ → ρ) → b(t, s) : ((ψ → λ) → (ϕ → ρ))) for an example. If we track the depth of every
atom appearing on either side of the conditional, we find that the depth of all shared atoms in the antecedent are
off by two from the corresponding atoms in the consequent. Switching formula order, parentheses order, and
connectives doesn’t resolve this issue.
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Lemma 6. For subsystems L of DR− at least as strong as B, given an AACS, if ϕ ∈ L.JCS, there
is a justification term t so that for any depth substitution d and n ∈ Z, t :d(ϕ, n) ∈ L.JCS.7

The proof for each logic thus reduces to proofs of internalization. Hyperformalism is easily
taken care of, as strengthening the subsystem L within this range involves the removal or addition
of inference rules and thus the removal or addition of justification axioms and rules to B.JCS,
as noted in Section 2. The only additional case we did not cover in Theorem 4 is that of (JR6),
but this rule is also easily seen to not violate depth relevance, as the premises and conclusion
ultimately involve justifications of formulas which already depth share variables, being themselves
members of a base logic that enjoys drp. Thus nothing new is needed except to show that the
additional base logic axioms are invariant under depth substitutions, which as before was shown
in Logan (2022) up through DR−. The internalization proof is mildly different than Standefer’s
since our presentation of B eschews intensional connectives and the Ackermann constant, but it is
nevertheless just as simple and no more groundbreaking.

6 First-Degree Proof Terms

The sentence t : ϕ may be read as one of many analogous natural language statements, but we
will take “t records a proof of ϕ” as the preferred reading. The variables that make up t similarly
record subproofs involved in the proof of ϕ. Naturally, one may wish to switch between results
about proofs as objects over the base language B and results about justifications of theorems in
B. We will call a justification term t a first-degree proof term (corresponding to a given constant
specification CS) if, and only if, there is some ϕ ∈ B for which t :ϕ ∈ B.JCS. Here we present
some notation for what a proof is and establish a correspondence between proofs and proof terms.

Definition 7. A formula tree over the language L+ is a directed graph that consists of edges
attaching source nodes to destination nodes, subject to the following conditions.

• Source nodes can be L-formulas, rule symbols, or justification constants

• Destination nodes can either be L-formulas or rule symbols

• All source nodes have only one corresponding destination node

• If a destination node is a formula, it has exactly one corresponding source node

• If a destination node is a rule symbol, it has at least one corresponding source node

• All terminal nodes are formulas

• All initial nodes are either justification constants or subtrees

7We remind the reader here that the lemma is given for subsystems, and as given in Definition 3, these logics can be
formulated only with a subset of the rules (R1)-(R5). It is clear that this restriction has some ad hoc flavor, but alas,
we’re doing proof theory in Hilbert systems. Some weirdness is bound to happen.
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c3 c12 c40

ϕ ψ λ

BOB

(ϕ→ ρ)→ ¬¬¬ϕ

Figure 1: A formula tree with arbitrary rule node “BOB”

By TR, we refer to the set of all formula trees. A subtree corresponding to a formula tree Π is an
abbreviated formula tree occurring within Π. A subtree may be empty, a justification-formula pair,
a more complex formula tree, or the entire tree to which the subtree corresponds. For instance,
the tree c→ ϕ has empty subtrees. An example of a formula tree is seen in Figure 1.

Formula trees glue together chains of formulas and rules, but an arbitrary formula tree does not
necessarily record valid proofs in a given logic. The notation Λϕ will be used to indicate that Λ is
a formula tree with the single terminal node ϕ.

Definition 8. Let L be a subsystem of DR− that contains B, and let CS be a constant specification.
A proof corresponding to CS is a formula tree Π defined as follows.

• If Π = c → ϕ, where ϕ is an instance of an axiom in L and c :ϕ ∈ CS, then the formula
tree Π is a proof.

• If Λ1 and Λ2 are proofs, then the following are also proofs, provided the subproofs satisfy
the given conditions.

Λ1

��

Λ2

��
(R1)

��
ϕ

Λ1 = Λψ→ϕ
Λ2 = Λψ

Λ1

��

Λ2

��
(R2)

��
ϕ ∧ ψ

Λ1 = Λϕ
Λ2 = Λψ

Λ1

��
(R3)

��
ψ→ ¬ϕ

Λ1 = Λϕ→¬ψ

Λ1

��

Λ2

��
(R4)

��
γ

Λ1 = Λϕ→ψ
Λ2 = Λλ→ρ
γ = (ψ→ λ)
→ (ϕ→ ρ)

Λ1

��
(R5)

��
¬(ϕ→ ¬ϕ)

Λ1 = Λϕ

If a proof Π terminates at ϕ and ϕ is a theorem of L, we will say that Π is a proof of ϕ. By the
length of the proof, we will mean the number of rule nodes that appear within it.
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The syntax of a proof implies that proofs contain their subproofs. This behaves in roughly the
same way that we have described proof terms. For a generic proof Π of a formula ϕ, we will
interchange the notation [Λ1,Λ2 |R ϕ], where Λ1 and Λ2 are (possibly empty) subtrees of Π and
R is the (possibly empty) rule symbol connecting the subtrees to the formula.

Lemma 7. Let L be a subsystem of DR− that contains B and let ϕ ∈ L. ϕ ∈ L if, and only if,
there is a proof of ϕ.

Proof. If ϕ ∈ L, then ϕ has a derivation. Proceed by induction on the complexity of this derivation.
If ϕ is an axiom, then the formula tree ϕ is a proof. For the induction step, suppose now that all
formulas in L with derivations of length n − 1 have proofs, and that ϕ has derivation of length
n. If the last derivation step was (R1), then there are some ψ→ ϕ ∈ L and ψ ∈ L. By induction
hypothesis, these have respective proofs Π1 and Π2. Thus the formula tree [Π1,Π2 |(R1) ϕ] is a
proof of ϕ by Definition 8. The cases for (R2)-(R5) are proved similarly.

In the other direction, proceed by induction on the length of the proof Π of ϕ. If Π has length 0,
it is the single-node formula tree ϕ and is an axiom of L by definition of proof. For the inductive
step, assume the result holds for proofs of length n − 1 and that the proof of ϕ is of length n. In
one case, there are subproofs Π1 of ψ → ϕ and Π2 of ψ so that Π is the proof [Π1,Π2 |(R1) ϕ].
By induction hypothesis, ψ → ϕ ∈ L and ψ ∈ L. By (R1), ϕ ∈ L. Derivations are constructed
similarly from the remaining forms of a proof. □

Lemma 7 establishes a correspondence between theorems of a logic and their proofs. It should
be clear that this is not a bijective correspondence, as there can be many different proofs of any
given theorem. One may, however, naturally conjecture that such a correspondence does connect
proofs to proof terms, as opposed to formulas. It does seem plausible, at least, that rule nodes
in formula trees encode a particular way of combining its subtrees, and that these encodings
can be uniquely represented by the constants that appear in the tree’s roots. We may then be
able to translate between proofs and proof terms. We define a translation function f : TR→ JT
recursively.

• f (c→ ϕ) = c

• If Λ1,Λ2 are proofs, then f is defined as follows

– f (
[
Λ1,Λ2 |(R1) ϕ

]
) =
[
f (Λ1) · f (Λ2)

]
– f (
[
Λ1,Λ2 |(R2) ϕ

]
) = a( f (Λ1), f (Λ2))

– f (
[
Λ1 |(R3) ϕ

]
) = c f (Λ1)

– f (
[
Λ1,Λ2 |(R4) ϕ

]
) = b( f (Λ1), f (Λ2))

– f (Λ1 |(R5) ϕ) = ∗ f (Λ1)

• Otherwise, for arbitrary formula trees of length m,

f (
[
Λ1, . . . ,Λm |R ϕ

]
) = f (Λ1) + . . . + f (Λm)

The function f builds a proof term responsible for a given proof and forgets the formula it
proves. We want to investigate how this function interacts with substitutions under composition,
but first we need to extend our present definition of depth substitution.
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Definition 9. A proof substitution corresponding to a depth substitution d is a function dp : TR ×
Z → TR defined as follows. Let Π = [Λ1,Λ2, . . . ,Λm |R ϕ], L be a subsystem of DR− with
B ⊆ L, and n ∈ Z.

• If Π = c→ ϕ, then dp(Π, n) = c→ d(ϕ, n)

• If R represents a rule in L and Π is a proof of ϕ, then 1 ≤ m ≤ 2 and R corresponds with
one of the following.

– (R1): dp(Π, n) = [dp(Λ1, n−1), dp(Λ2, n) |(R1) d(ϕ, n)], where Λ1 is a proof of ψ→ ϕ

and Λ2 is a proof of ψ for some ψ

– (R2): dp(Π, n) = [dp(Λ1, n), dp(Λ2, n) |(R2) d(ϕ, n)], where Λ1 is a proof of λ1, Λ2 is
a proof of λ2, and ϕ = λ1 ∧ λ2

– (R3): dp(Π, n) = [dp(Λ1, n) |(R3) d(ϕ, n)], where Λ1 is a proof of λ1 → ¬λ2 and
ϕ = λ2 → ¬λ1

– (R4): dp(Π, n) = [dp(Λ1, n + 1), dp(Λ2, n + 1) |(R4) d(ϕ, n)], where Λ1 is a proof of
λ11 → λ12, Λ2 is a proof of λ21 → λ22, and ϕ = (λ12 → λ21)→ (λ11 → λ22)

– (R5): dp(Π, n) = [dp(Λ1, n + 1) |(R5) d(ϕ, n)], where Λ1 is a proof of λ and
ϕ = ¬(λ→ ¬λ)

• Otherwise, substitute subtrees in place:

dp(Π, n) = [dp(Λ1, n), dp(Λ2, n), . . . , dp(Λm, n) |R d(ϕ, n)]

Lemma 8. Given a depth substitution d, proof substitutions corresponding to d are unique.

Proof. By induction on the length of a proof to which two proof substitutions corresponding to d
are applied.

□

Lemma 9. Let L be a subsystem of DR− such that B ⊆ L and dp be a proof substitution. If Π is
a proof of a theorem ϕ ∈ L, then for any n ∈ Z, dp(Π, n) is a proof of d(ϕ, n) ∈ L.

Proof. Proceed by induction on the length of the proof. If Π is a proof of an axiom ϕ, then
dp(Π, n) = d(ϕ, n). By Theorem 2 and our choice of logic, d(ϕ, n) ∈ L. Moreover, depth
substitutions of axioms are themselves axioms, and an axiom taken as a formula tree is a proof of
itself. Thus dp(Π, n) is a proof.

Suppose now that Π is a proof containing m rule nodes and the theorem is true of proofs
containing fewer than m. We give two cases and leave the rest to the reader. If R = (R2), then for
some formula λ1 and λ2, ϕ = λ1 ∧ λ2 and Π is of the form [Λλ1 ,Λλ2 |R λ1 ∧ λ2], where Λλ1 and
Λλ2 are proofs. By the induction hypothesis, dp(Λλ1 , n) and dp(Λλ2 , n) are proofs of, say, d(λ1, n)
and d(λ2, n) respectively. Thus

dp(Π, n) =
[
dp(Λλ1 , n), dp(Λλ2 , n) |(R2) d(λ1 ∧ λ2, n)]

]
=
[
[. . . |S d(λ1, n)], [. . . |T d(λ2, n)] |(R2) d(λ1 ∧ λ2, n)]

]
=
[
[. . . |S d(λ1, n)], [. . . |T d(λ2, n)] |(R2) d(λ1, n) ∧ d(λ2, n)]

]
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is a proof of d(ϕ, n), where the ellipses indicate nested subtrees of the subtrees within which they
appear and S and T are other rule symbols.

If instead R = (R1), then Π = [Λψ→ϕ,Λψ |(R1) ϕ] where Λψ→ϕ and Λψ are proofs. By induction
hypothesis, dp(Λψ→ϕ, n − 1) is a proof of d(ψ→ ϕ, n − 1) and dp(Λψ, n) is a proof of d(ψ, n).

dp(Π, n) =
[
dp(Λ1, n − 1), dp(Λ2, n) |(R1) d(ϕ, n)

]
=
[
[. . . |S d(ψ→ ϕ, n − 1)], [. . . |T d(ψ, n)] |(R1) d(ϕ, n)]

]
=
[
[. . . |S d(ψ, n)→ d(ϕ, n)], [. . . |T d(ψ, n)] |(R1) d(ϕ, n)]

]
Hence dp(Π, n) is a proof of d(ϕ, n).

□

The statement of Lemma 8 indicates that the choice of depth substitution completely determines
the behavior of the corresponding proof substitution, i.e. that this function is well-defined. But,
moreover, Lemma 9 implies that, given a fixed theorem, our initial choice of proof doesn’t really
matter—we end up with a proof of the same depth substitutiton instance, regardless of which
proof we selected. However, what this lemma fails to address is the structure of the proofs we
start and end with. How can we ascertain that these two proofs don’t drastically differ from each
other?

We’ll show just this. Recall that our function f isolates first-degree proof terms in a justification
formula corresponding to a proof of that formula.

Lemma 10. Let d be a depth substitution and dp be the unique proof substitution associated with
d. Then f ◦ dp and f are pointwise identical on formula trees for any n ∈ Z.

Proof. Proceed by induction on the length of the formula tree Π. If Π = c → ϕ, then
f (dp(c → ϕ, n)) = f (c → d(ϕ, n)) = c = f (c → ϕ). Assume now that the lemma holds
for formula trees of length k − 1 and that Π has length k.

If Π =
[
Λ1, . . . ,Λm |R ϕ

]
is not a proof, then

f (dp(Π, n)) = f
([

dp(Λ1, n), . . . , dp(Λm, n) |R d(ϕ, n)
])

= f (dp(Λ1, n)) + . . . + f (dp(Λm, n))

= f (Λ1) + . . . + f (Λm) (by IH)

= f (Π)

If Π is a proof, however, then several cases follow. We highlight just one case and leave the rest
to the reader. If Π =

[
Λ1,Λ2 |(R1) ϕ

]
,

f (dp ([Λ1,Λ2 |(R1) ϕ
]
, n
)
) = f

([
dp(Λ1, n − 1), dp(Λ2, n) |(R1) d(ϕ, n)

])
=
[
f (dp(Λ1, n − 1)) · f (dp(Λ2, n))

]
=
[
f (Λ1) · f (Λ2)

]
(by IH)

= f (Π)

□
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What we have just seen then is that, indeed, first-degree proof terms are invariant under proof
substitutions, and this generally reveals that, while formulas of the base logic are taken to depth
substitution instances of themselves, the structure of the proofs underlying the original formula
and its substitution does not change one bit.

7 Final Remarks

In this paper, we showed that we can make a minimal, reasonable set of assumptions about
proof terms over a relevant logic and effortlessly recover the hyperformal characteristic of the
original logic. The crux of this examination is found in Corollary 5, in which we determined
for each theorem of the justification logic, there is at least one proof term which justifies every
depth substitution instance of it. We then examined the correspondence between first-degree
justifications and proofs of theorems, which allowed us to draw reasonable corollaries about the
nature of proofs in logics weaker than DR− and that any depth substitution of a theorem can be
proved through the same exact proof structure as the proof of the original theorem, no matter how
arbitrarily atoms may be mapped. Thus whenever we commit to an axiomatically appropriate
constant specification, we obtain a rich modal structure over hyperformal logics in which prior
results about hyperformalism are mirrored in the structures of proofs.

The invariance of theoremhood in B (and other logics considered in this paper) under depth
substitution can be seen as a feature of the theorems in B and the strength of the relevant
conditional. Formulas on either side of the conditional do not show up by surprise, as it were,
but rather the positions in which they appear have some predictable relation to their conditional
counterpart. That proof substitutions are also invariant can be seen to communicate the strength
and restriction of inference in B, and it indicates that depth substitutions do not take theorems
with a given connective structure “very far” from that structure. This structural robustness is
intriguing, but it may alas be a symptom of a stronger phenomenon taking place in the limitations
placed on inference in the logic.

Finally, we make a small note on a recent class of substitutions introduced in a forthcoming
article from Ferguson and Logan. These provide a stronger relevance property—dubbed there as
cn-relevance—than that of depth relevance and are defended on the grounds of topic transparency.
The analogous substitutions act on atomic formulas and sequences of operators, as opposed to
integers representing depth. It is found there that the logics B and BM enjoy cn-relevance, in
a similar sense to our definition for the enjoyment of depth relevance, yet marginally stronger
logics such as DW provide immediate counterexamples that do not enjoy this novel relevance
criterion. It is quite simple to take the scaffolding of this paper and adopt it instead to this other
class of substitutions, of which depth is just a subclass. The main idea is then that reduced
sequence substitutions and justification terms do not interact, passing through each other just as
transparently as depth substitutions and justification terms did. This is again an epistemic choice
which we find justified in light of a proper choice of constant specification. The exploration of
the interactions between these substitution classes and justifications, however, remains outside
the scope of this paper, and the present author would encourage such exploration if the reader
should be interested.
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