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Abstract In recent years part of the literature on probabilistic causality concerned

notions stemming from Reichenbach’s idea of explaining correlations between not

directly causally related events by referring to their common causes. A few related

notions have been introduced, e.g. that of a ‘‘common cause system’’ (Hofer-Szabó

and Rédei in Int J Theor Phys 43(7/8):1819–1826, 2004) and ‘‘causal (N-)closed-

ness’’ of probability spaces (Gyenis and Rédei in Found Phys 34(9):1284–1303,

2004; Hofer-Szabó and Rédei in Found Phys 36(5):745–756, 2006). In this paper we

introduce a new and natural notion similar to causal closedness and prove a number

of theorems which can be seen as extensions of earlier results from the literature.

Most notably we prove that a finite probability space is causally closed in our sense

iff its measure is uniform. We also present a generalisation of this result to a class of

non-classical probability spaces.

1 Introduction

The so-called Principle of the Common Cause is usually taken to say that any

surprising correlation between two factors which are believed not to directly

influence one another is due to their (possibly hidden) common cause. The original

version of the Principle as introduced by Hans Reichenbach in his book The

Direction of time (1956) includes precise mathematical conditions connected to the

notion (see definition 4 below) and became a hot topic for philosophers of science in

the last decades of the previous century, after van Fraassen (1982) had linked it with

the issues regarding causality in the context of EPR correlations. The Principle was

widely criticised (see e.g. Arntzenius 1992 for a collection of its difficulties), but in

recent years a number of researchers explored various mathematical questions
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regarding it, in at least one case leading even to the statement that the principle is

‘‘unfalsifiable’’ (Hofer-Szabó et al. 2000). This paper contributes to the discussion

about the mathematical notions relevant to the Reichenbachian approach to

explaining correlations. We prove a number of results concerning the (types of)

probability spaces in which one can find Reichenbach-style explanations for

correlations between events given an independence relation.

Suppose a probability space contains a correlation between two events we believe

to be causally independent. Does the space contain a common cause for the

correlation? If not, can the probability space be extended to contain such a cause but

‘preserving’ the old measure? This question has been asked and answered in the

positive in Hofer-Szabó et al. (1999), where the notion of common cause

completability was introduced: speaking a bit informally, a probability space S is

said to be common cause completable with respect to a set A of pairs of correlated

events iff there exists an extension of the space containing statistical common causes

of all the correlated pairs in A. Gyenis and Rédei (2004) introduced the notion of

common cause closedness, which (in our slightly different terminology) is equivalent

to the following: a probability space S is common cause closed (or ‘‘causally closed’’)

with respect to a relation of independence Rind � S2 iff it contains statistical common

causes (see definition 4 below) for all pairs of correlated events belonging to Rind. The

authors have proven therein that a finite classical probability space with no atoms of

probability 0 is non-trivially common cause closed w.r.t. the relation of logical

independence iff it is the space consisting of a Boolean algebra with 5 atoms and the

uniform probability measure.1 In other words, finite classical probability spaces (big

enough to contain correlations between logically independent events) are in general

not common cause closed w.r.t. the relation of logical independence, i.e. they contain

a correlation between logically independent events for which no statistical common

cause in the space exists; the only exception to this rule is the space with precisely 5

atoms of probability 1
5

each. More spaces are common cause closed w.r.t. a more

stringent relation of logical independence modulo measure zero event (‘‘Lind
? ’’, see

definition 6 below): they are the spaces with 5 atoms of probability 1
5

each and any

number of atoms of probability 0.

Still, a (statistical) common cause is not the only entity which could be used as an

explanation for a correlation. Hofer-Szabó and Rédei (2004) generalized the idea of

a statistical common cause, arriving at statistical common cause systems (‘‘SCCSs’’;

see definition 5 below). SCCSs may have any countable size greater than 1;2 the

special case of size 2 reduces to the usual notion of common cause.

It was natural for corresponding notions of causal closedness to be introduced; a

probability space is said to be causally n-closed3 w.r.t. a relation of independence

Rind iff it contains an SCCS of size n for any correlation between A, B such that

1 The phrasing of the paper was in fact stronger, omitting the assumption about non-0 probabilities on the

atoms (due to a missed special sub-case in the proof of case 3 of proposition 4 on p. 1299). The issue is

connected to the distinction between proper and improper common causes and is discussed below in

Sect. 4.
2 See Wroński and Marczyk (2010) and Hofer-Szabó and Rédei (2006).
3 The notion was introduced in Hofer-Szabó and Rédei (2006).
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hA;Bi 2 Rind . It is one of the results of the present paper that with the exception of

the 5-atom uniform distribution probability space, no finite probability spaces

without 0 probability atoms are causally n-closed w.r.t. the relation of logical

independence, for any n > 2. Similarly, with the exception of the spaces with 5

atoms of probability 1
5

each and any number of atoms of probability 0, no finite

probability spaces with 0 probability atoms are causally n-closed w.r.t. Lind
? , for any

n > 2.

We are interested in a slightly different version of causal closedness. If the

overarching goal is to find explanations for correlations, why should we expect all

explanations to be SCCSs of the same size? Perhaps some correlations are explained

by common causes and others by SCCSs of a bigger size. We propose to explore the

idea of causal up-to-n-closedness—a probability space is causally up-to-n-closed

w.r.t. a relation of independence Rind iff it contains an SCCS of size at most n for

any correlation between events A, B such that hA;Bi 2 Rind .

It turns out that, in the class of finite classical probability spaces with no atoms of

probability 0, just as the space with 5 atoms and the uniform measure is unique with

regard to common cause closedness, the whole class of spaces with uniform

distribution is special with regard to causal up-to-3-closedness—see theorem 2: a

finite classical probability space with no atoms of probability 0 is causally up-to-3-

closed w.r.t. the relation of logical independence iff it has the uniform distribution.

We provide a method of constructing a statistical common cause or an SCCS of size

3 for any correlation between logically independent events in any finite classical

probability space with the uniform distribution.

We require (following Gyenis and Rédei) of a causally closed probability space

that all correlations be explained by means of proper—that is, differing from both

correlated events by a non-zero measure event—statistical common causes. This has

the consequence that a space causally closed w.r.t. the relation of logical

independence can be transformed into a space which is not causally closed w.r.t.

this relation just by adding a 0-probability atom. Perhaps, to avoid this unfortunate

consequence, the notion of logical independence modulo measure zero event should

be required? We discuss the matter in Sect. 4.

In this paper we also briefly consider other independence relations, and a

generalisation of our results to finite non-classical probability spaces.

2 Causal (up-to-n-)closedness

2.1 Preliminary Definitions

Throughout this paper the sample spaces of the probability spaces involved are

irrelevant. The crucial elements are the Boolean algebra (of which, due to Stone’s

theorem, we always think as of a field of sets and therefore compatible with set

theoretical operators) containing the events and the measure defined on that algebra.

This motivates the phrasing of the following definition in terms of pairs, instead of

triples:
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Definition 1 (Probability space) A (classical) probability space is a pair hS;Pi
such that S is a Boolean algebra and P is a function from S to ½0; 1� � R such that

• Pð1SÞ ¼ 1;

• P is countably additive: for a countable family G of pairwise disjoint members of

S; [G 2 S and Pð[GÞ ¼
P

A2G PðAÞ.

In the following the context will usually be that of a finite classical probability

space, i.e., a space hS;Pi in which S is finite. By Stone’s representation theorem, in

such a case S is isomorphic—and will be identified with—the algebra of all subsets

of the set f0; . . .; n� 1g for some n 2 N. In such a case the requirement of

countable additivity reduces to the simple condition that for two disjoint events

A; B 2 S; PðA [ BÞ ¼ PðAÞ þ PðBÞ. In Sect. 6 nonclassical spaces are considered,

in which the Boolean algebra is exchanged for a nondistributive orthomodular

lattice. The required definitions are presented therein.

In the sequel we will sometimes consider spaces of the form hSþ;Pþi, where S?

and P? are as defined below:

Definition 2 Let hS;Pi be a finite classical probability space. S? is the unique

Boolean algebra whose set of atoms consists of all the non-zero probability atoms of

S. P? is the restriction of P to S?.

This paper concerns a certain approach to explaining correlations; loosely

speaking, this is to be done by events which screen off the correlated events and are

postively statistically relevant for them. We introduce all these important notions in

the following definition:

Definition 3 (Correlation, screening off, statistical relevance) Let hS;Pi be a

probability space and let A; B 2 S. We say that:

• A and B are (positively) correlated whenever P(AB) [ P(A)P(B);

• event C 2 S screens off A and B whenever P(AB |C) = P(A|C)P(B|C);

• an event C 2 S is positively statistically relevant for A if PðAjCÞ[ PðAjC?Þ;
• a partition of 1S fCigi2I is statistically relevant for A and B if, whenever i = j,

PðA j CiÞ � PðA j CjÞ
� �

PðB j CiÞ � PðB j CjÞ
� �

[ 0:

Notice that, according to the above definition, if C is positively statistically

relevant for both A and B, then fC;C?g is statistically relevant for A and B.

In The direction of time (1971) Hans Reichenbach offerred a causal theory of

time in which a central role was played by ‘‘conjunctive forks’’—triples of events

A, B, C in which C is positively statistically relevant for both A and B and both C

and C? screen off A and B (see def. 4 below). A part of the literature refers to events

defined as meeting Reichenbach’s conditions for the ‘‘C’’ in such a conjunctive fork

as (‘‘Reichenbachian’’) ‘‘common causes’’; see e.g. Hofer-Szabó and Rédei (2004).

Hofer-Szabó et al. (2000) and Hofer-Szabó and Rédei (2006) even go so far as to

state that Reichenbach himself defined common causes as the middle elements of

conjunctive forks with correlated extreme elements; in other words, that fulfilling
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the statistical requirements for being the middle element of a conjunctive fork is

sufficient to be a common cause for the correlated events. This is unfortunate

since Reichenbach himself noticed that common effects could also meet his

probabilistic requirements (Reichenbach 1971, p. 161–162) and also suggested

that if there is more than one common cause for a given correlation the

conditions are to be met by their disjunction, not by the causes themselves

(p. 159). Reichenbach’s ‘‘Principle of the Common Cause’’ maintains simply that

in the case of a correlation between A and B there is a common cause C such

that A, B and C meet the statistical requirements for a conjunctive fork (p. 163).

Nevertheless, the main results of this work pertain to problems posed in various

papers by the above-cited authors. Therefore, some slight terminological changes

are in order.

Definition 4 (Statistical common cause) Let hS;Pi be a probability space. Let

A;B 2 S. Any C 2 S different from both A and B such that

• C screens off A and B;

• C? screens off A and B;

• C is positively statistically relevant for both A and B;

is called a statistical common cause of A and B.

Statistical common causes (henceforth ‘‘SCCs’’) have at least two features

relevant from the perspective of explaining correlations. First, the screening off

conditions mean the correlation disappears after conditionalisation on the SCC.

Second (as noted by Reichenbach), from the fact that there exists an SCC for A and

B one can derive the correlation between A and B.

It is intuitive that a similar notion could be considered, with the difference that it

would permit the cause to be more complicated than a simple ‘‘yes’’ / ‘‘no’’ event.

This is indeed the path taken without further comment by van Fraassen (1982), but

only the screening off requirement is retained. A generalisation which also takes

into account the conditions of statistical relevance was developed by Hofer-Szabó

and Rédei (2004); the resulting constructs were originally called ‘‘Reichenbachian

common cause systems’’, but, for reasons given above, we will abstain from the

adjective ‘‘Reichenbachian’’.

Definition 5 (Statistical common cause system) Let hS;Pi be a probability space.

A partition of 1S is said to be a statistical common cause system (SCCS) for A and

B iff:

• all its members are different from both A and B;

• all its members screen off A and B;

• it satisfies the statistical relevance condition w.r.t. A and B.

The cardinality of the partition is called the size of the statistical common cause

system.

As remarked above, statistical common cause systems (henceforth ‘‘SCCSs’’)

come in different cardinalities; they may have any countable size greater than 1.
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SCCSs share the ‘‘deductive’’ explanatory feature of SCCs: from the assumption

that one exists for A and B, the correlation between A and B is derivable.4

Throughout this paper, by a ‘‘common cause’’ we always mean a ‘‘statistical

common cause’’. At the beginning we usually supply the additional adjective, but

then sometimes refrain from using it to conserve space, as the arguments

unfortunately become rather cluttered even without the additional vocabulary.

We will now define two relations of independence. Intuitively, we will regard

two events as logically independent if, when we learn that one of the events occurs

(or does not occur), we cannot infer that the other occurs (or does not occur), for all

four Boolean combinations.

Definition 6 (Logical independence) We say that events A;B 2 S are logically

independent (hA;Bi 2 Lind) iff all of the following sets are nonempty: A \ B; A \ B?;

A? \ B and A? \ B?.

We say that events A;B 2 S are logically independent modulo measure zero event

(hA;Bi 2 Lþind) iff all of the following numbers are positive: PðA \ BÞ; PðA \ B?Þ;
PðA? \ BÞ and PðA? \ B?Þ.

Equivalently, two events are logically independent if neither of the events is

contained in the other one, their intersection is non-empty and the union of the two

is less than the whole space. Two events are logically independent modulo measure

zero event if every Boolean combination of them has a non-zero probability of

occurring. It is always true that Lþind � Lind; if there are 0-probability atoms in the

space, the inclusion may be strict.

The following definition is a refinement of the SCC idea, expressing the

requirement that a common cause should be meaningfully different from both

correlated events.

Definition 7 (Proper SCC(S)) A statistical common cause C of events A and B is a

proper statistical common cause of A and B if it differs from both A and B by more

than a measure zero event. It is an improper SCC of these events otherwise.

An SCCS fCigi2I of events A and B is a proper SCCS of A and B if all its

elements differ from both A and B by more than a measure zero event. It is an

improper SCCS of these events otherwise.

We will sometimes say that a probability space contains an SCCS, which means

that the SCCS is a partition of unity of the event algebra of the space.

We now come to the main topic of this paper. Should someone prefer it, the

following definition could be phrased in terms of SCCSs only.

Definition 8 (Causal (up-to-n-)closedness) We say that a classical probability

space is causally up-to-n-closed w.r.t. to a relation of independence Rind if all pairs

of correlated events independent in the sense of Rind possess a proper statistical

common cause or a proper statistical common cause system of size at most n.

4 See Hofer-Szabó and Rédei (2004).
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A classical probability space is causally n-closed w.r.t. to a relation of

independence Rind if all pairs of correlated events independent in the sense of Rind

possess a proper statistical common cause system of size n.

If the space is causally up-to-2-closed, in other words causally 2-closed, we also

say that it is causally closed or common cause closed.

Note that, in terms of providing explanation for correlations, a space which is

causally up-to-3-closed (or up-to-n-closed for any other finite n) is as good (or as

bad) as a causally closed space. Namely, any correlation is provided with something

that screens the correlation off and from the existence of which the given correlation

can be deduced. This is the reason for which it is interesting to check whether we

might have luck finding up-to-3-closed spaces, as opposed to searching ‘‘just’’ for

causally closed spaces. Forgetting about the measure zero-related issues for a

second, it turns out that while among finite classical probability spaces there is only

one that is (non-trivially) causally closed, infinitely many are causally up-to-3-

closed.

2.2 Summary of Results

Theorem 1 will be our main tool in proving the lemmas featured in Table 1.

Theorem 1 Let hS;Pi be a finite classical probability space with S? having at

least 4 atoms of non-zero probability. Then P? is uniform if and only if hSþ;Pþi is

causally up-to-3-closed w.r.t. Lind
? .

Lemmas 1-3 tie uniformity of P and P? with causal up-to-3-closedness of hS;Pi
with respect to the two notions of independence introduced above.

Lemma 1 Let hS;Pibe a finite classical probability space with Shaving at least 4

atoms. If P is uniform, then hS;Pi is causally up-to-3-closed w.r.t. Lind and Lind
? .

Lemma 2 Let hS;Pibe a finite classical probability space with S?having at least 4

atoms. If P?is not uniform, then hS;Pi is not causally up-to-3-closed w.r.t. either

Lind or Lind
? .

Lemma 3 Let hS;Pibe a finite classical probability space with S?having at least 4

atoms. If P? is uniform, then hS;Pi is causally up-to-3-closed w.r.t. Lind
? . All

correlated pairs from Lind n Lþind have statistical common causes, but some only have

improper ones.

Table 1 The main results of the paper

hS;Pi is up-to-3-closed w.r.t.

Lind Lind
?

P is uniform ) (1) ) (1)

P? is uniform ( (2) , (2,3)

)* (3)

The numbers in parentheses correspond to lemmas below. The implications take the row heading as their

left argument and the column heading as their right argument
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3 Proofs

3.1 Some Useful Parameters

For expository reasons, we will not prove theorem 1 directly, but rather demonstrate

its equivalent, theorem 2 (p. 9). Before proceeding with the proof, we shall

introduce a few useful parameters one may associate with a pair of events A, B in a

finite classical probability space hS;Pi.
Let n be the number of atoms in the Boolean algebra S. The size of the set of

atoms lying below A in the lattice ordering of S will from now on be referred to as a,

and likewise for B and b. The analogous parameter associated with the conjunction

of events A and B is just the size of the intersection of the relevant sets of atoms and

will be called k.

It will soon become apparent that while a and b have some utility in the discussion to

follow, the more convenient parameters describe A and B in terms of the number of

atoms belonging to one, but not the other. Thus we let a0 = a - k and b0 = b - k. In

fact, if we set z = n - (a0 ? k ? b0), we obtain a set of four numbers precisely

describing the blocks of the partition of the set of atoms of S into the four classes which

need to be non-empty for A and B to be logically independent. It is clear that in the case

of logically independent events a0, b0, k and z are all non-zero.

Lastly, before we begin the proof of the main result of this paper, let us state the

following important lemma: when searching for statistical common causes,

screening off is enough. If both an event and its complement screen off a

correlation, then one of them is a statistical common cause for the correlation.

Lemma 4 Let hS;Pibe a probability space. Let A;B;C 2 S. Suppose A and B are

positively correlated. If both C and C? screen off A from B, then either C or C?is a

statistical common cause of A and B.

Proof As the reader may check, if events A and B are correlated, then for all events

C such that 0 \ P(C) \ 1

PðABjCÞ � PðAjCÞPðBjCÞ
Pð:CÞ þ PðABj:CÞ � PðAj:CÞPðBj:CÞ

PðCÞ
[ � ½PðAjCÞ � PðAj:CÞ�½PðBjCÞ � PðBj:CÞ�:

ð1Þ

Then, if both C and C? screen off A from B, the left-hand side of inequality 1 is 0.

Therefore ½PðAjCÞ � PðAj:CÞ�½PðBjCÞ � PðBj:CÞ� is positive, which means that

both differences have the same sign—so either C or C? meets the conditions for

being a statistical common cause for A and B. h

3.2 Proof of Theorem 1

In this section we will provide a proof of the main tool in this paper—theorem 1,

formulated on p. 7. The form in which it was stated in that section is dictated by its

use in the proofs of lemmas 1-3. However, when treated in isolation, it is better

phrased in the following way:
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Theorem 2 (Equivalent to theorem 1) Let hS;Pi be a finite classical probability

space with no atoms of probability 0. Suppose S has at least 4 atoms.5 The following

conditions are equivalent:

Measure uniformity: P is the uniform probability measure on S;

Causal up-to-3-closedness w.r.t. Lind : hS;Pi is causally up-to-3-closed w.r.t.

the relation of logical independence.

Before proceeding with the proof we will provide a sketch of the construction

and some requisite definitions. Instead of focusing on a particular n-atom algebra,

we will show how the problem presents itself while we ‘move’ from smaller to

bigger algebras. We assume without loss of generality that the set of atoms of an

n-atom Boolean algebra is f0; 1; . . .; n� 1g and that each event is a set of atoms.

Consider the sequence of all finite classical probability spaces with the uniform

probability measure, in which the number of atoms of the underlying Boolean

algebra of the space increases by 1 at each step, beginning with the algebra with a

single atom. We use the shorthand expression ‘‘at stage n’’ to mean ‘‘in the

probability space with uniform distribution whose underlying Boolean algebra has n

atoms’’. Observe that due to our convention whereby events are identified with sets

of atoms, an event present at stage m (one found in the algebra from that stage) is

also present at all further stages. In other words, a set of atoms defining an event at

stage m can also be interpreted as defining an event at any stage m0, with m0[ m.

Thus we can naturally say that a certain event belongs to many different probability

spaces; e.g. the event {1, 2, 11} is present at stages 12, 13 and so on. Similarly,

pairs of events can be present at many stages—and be correlated at some, but not at

others. If they are correlated at stage m, they are correlated at all stages n, for n [ m

(see below). The same is true of logical independence: a pair may not consist of

logically independent events at stage n, because their union is the whole set of n

atoms, but may become a pair of logically independent events at stage n ? 1, when

an additional atom is introduced, which does not belong to either of the events in

question.6

Some remarks on the shape of events considered are in order. We will always be

talking about pairs of events A, B, with numbers a, a0, b, b0, k, z and n defined

as above (see Sect. 3.1). We assume (without loss of generality) a > b. Also, since

we are dealing with the uniform measure, all relevant characteristics of a pair of

events A, B are determined by the numbers a0, b0, k, and z; therefore, for any

combination of these numbers it is sufficient only to consider a single example of a

pair displaying them. The rest is just a matter of renaming the atoms. For example,

if we are looking for an explanation for the pair {{8, 7, 3, 5}, {2, 8, 7}} at stage 10,

or the pair {{1, 3, 5, 6}, {1, 6, 4}} at the same stage, we shall search for an

5 It is easy to verify that if S has 3 atoms or less, then hS;Pi contains no correlations between logically

independent events.
6 Note that the space at stage n ? 1 is not to be thought of as an extension of the space at stage n in the

sense of the latter being embeddable in the former; we propose no measure-preserving homomorphism

providing such an embedding (and indeed no such homomorphism exists between any two adjacent stages

except stages 1 and 2). Thus when we speak of ‘‘the same’’ events being present at different stages, we

simply mean that they are equal as sets of natural numbers—a property useful in the proofs to follow.
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explanation for the pair {{0, 1, 2, 3}, {2, 3, 4}} at stage 10 and then just

appropriately ‘translate’ the result (explicit examples of this follow in Sect.

3.2.1). In general: the convention we adopt is for A to be a set of consecutive atoms

beginning with 0, and B a set of consecutive atoms beginning with a - k

For illustrative purposes we propose to examine the situation at the early stages.

The proof proper begins with definition 9 below. For the remainder of Sect. 3.2, by

‘‘common cause’’ we will always mean ‘‘proper common cause’’; similarly with

‘‘common cause system’’.

There are no correlated pairs of logically independent events at stage 1; similarly

for stages 2, 3 and 4. (Remember the measure is uniform and so at stage 4 e.g. the

pair {{0, 1}, {1, 2}}, while composed of logically independent events, is not

correlated.)

First correlated pairs of logically independent events appear at stage 5. These are

of one of the two following types: either a0 = b0 = k = 1, or a0 = b0 = 1 and

k = 2. Proposition 3 from Gyenis and Rédei (2004) says that all pairs of these types

have statistical common causes at stage 5. As noted above, we can without loss of

generality consider just two tokens of these types—the pairs {{0, 1}, {1, 2}} and

{{0, 1, 2}, {1, 2, 3}}. In the first case, the events already formed a logically

independent pair at stage 4, but were not correlated—we will say that the pair

appears from below at stage 5 (see definition 9 below). In the second case, stage 5 is

the first stage where the events form a logically independent pair, and they are

already correlated at that stage. We will say that the pair {{0, 1, 2}, {1, 2, 3}}

appears from above at stage 5. There are no other correlated pairs of logically

independent events at stage 5. It will turn out that we can always find statistical

common causes for pairs which appear from above or from below at a given stage.

Let us move to stage 6. A new (type of) pair appears from above—

{{0, 1, 2, 3}, {1, 2, 3, 4}}. No pairs appear from below, but both pairs which

appeared at stage 5 are still correlated and logically independent at stage 6 (as well

as at all later stages), so they are again in need of an explanation at this higher stage.

It turns out that if a correlated pair of logically independent events at stage n is

‘inherited’ from the earlier stages, i.e. it appears neither from above nor from below

at stage n, we can modify the common cause which we know how to supply for it at

the stage where it originally appeared to provide it with an explanation adequate at

stage n. This takes the form of a statistical common cause or, in some cases, an

SCCS of size 3.

Definition 9 (Appearing from above or below) A pair {A, B} of events of the form

{0, ..., a - 1}, {a - k, ..., a - k ? b - 1} appears from above at stage n if it is

(1) logically independent at stage n, (2) not logically independent at stage n - 1 and

(3) correlated at stage n.

A pair {A, B} of events of the same form appears from below at stage n if it is

(1) logically independent at stage n, (2) logically independent at stage n - 1 and

(3) correlated at stage n, but (4) not correlated at stage n - 1.

We will divide common causes into types depending on whether the occurrence

of a given common cause makes the occurrence of at least one member of the
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correlation it explains necessary, impossible or possible with probability less

then 1.7

Definition 10 (1-, 0-, and #-type statistical common causes) A proper statistical

common cause C for a correlated pair of logically independent events A, B is said to

be:

• 1-type iff PðA j CÞ ¼ 1 or PðB j CÞ ¼ 1;

• 0-type iff PðA j C?Þ ¼ 0 or PðB j C?Þ ¼ 0;

• #-type iff it is neither 1-type nor 0-type.

Notice that no proper statistical common cause C for some two logically

independent, correlated events A and B can be both 1-type and 0-type at the same time.

Definition 11 (0-type statistical common cause system) A proper statistical

common cause system of size n fCigi2f0;...;n�1g is a 0-type statistical common cause

system (0-type SCCS) for the correlation iff PðA j Cn�1Þ ¼ 0 or PðB j Cn�1Þ ¼ 0.

We do not need to worry about the fact that rearranging the elements of a 0-type

SCCS necessarily makes it lose the 0-type status, because during the proof the

SCCSs will be explicitly construed so that their ‘‘last’’ element gives conditional

probability 0 to both correlated events to be explained. Were this notion to be used

in general, its definition should be rephrased as an existential condition: ‘‘there

exists m O n - 1 such that PðA j CmÞ ¼ 0 and PðB j CmÞ ¼ 0’’.

We will prove the following:

• if a pair appears from above at stage n, it has a statistical common cause at that

stage (lemma 6);

• if a pair appears from below at stage n, it has a statistical common cause at that

stage (lemma 7);

• if a pair of logically independent events is correlated at stage n and has a

statistical common cause or a 0-type SCCS of size 3 at that stage, it has a

statistical common cause or a 0-type SCCS of size 3 at stage n ? 1 (lemma 8).

It should be straightforward to see that this is enough to prove theorem 2 (p. 9) in

its ‘downward’ direction. Consider a correlated pair of logically independent events

A, B at stage n. If it appears from above, we produce a common cause using the

technique described in lemma 6. If it appears from below, we use the method from

lemma 7. If it appears neither from above nor from below, it means that it was

logically independent at stage n - 1 and was correlated at that stage, and we repeat

the question at stage n - 1. This descent terminates at the stage where our pair first

appeared, which clearly must have been either from below or from above. This

allows us to apply either lemma 6 or lemma 7, as appropriate, followed by lemma 8

to move back up to stage n, where we will now be able to supply the pair with an

SCC or an SCCS of size 3. As said before, the SCCs and SCCSs we will construct

will always be proper SCCs and SCCSs.

7 We believe the conceptual difference between necessity and probability 1 is not important for the

present topic.
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Put Corr(A, B) : = P(AB) - P(A)P(B). Corr(A, B) can always be expressed as a

fraction with denominator n2. Of special interest to us will be the numerator of this

fraction. Let us call this number SCn(A, B). (For example, if A = {0, 1, 2} and

B = {2, 3}, SC5(A, B) = - 1.) If SCn(A, B) O 0, the events are not correlated at

stage n. If SCn(A, B) [ 0, A and B are correlated at stage n and we need to find

either a common cause or a common cause system of size 3 for them. The following

lemma will aid us in our endeavour (remember the definitions from Sect. 3.1):

Lemma 5 Let hSn;Pi be a finite classical probability space, Sn being the Boolean

algebra with n atoms and P the uniform measure on Sn. Let A;B 2 Sn. Then

SCn(A, B) = kz - a0b0.

Proof CorrðA;BÞ ¼ PðABÞ�PðAÞPðBÞ ¼ k
n
� kþa0

n
kþb0

n
¼¼ kðn�k�a0�b0Þ�a0b0

n2 ¼ kz�a0b0

n2 .

Therefore SCn(A, B) = kz - a0b0. h

An immediate consequence of this lemma is that any pair of logically

independent events will eventually (at a high enough stage) be correlated—it is

just a matter of injecting enough atoms into z. For example, consider events

A = {0, 1, 2, 3, 4, 5, 6}, B = {6, 7, 8, 9, 10, 11}. At any stage n, SCn(A, B) is

equal to z - 30. This means that the pair is correlated at all stages in which z [ 30;

in other words, at stages 43 and up. At some earlier stages (from 13 to 42) the pair is

logically independent but not correlated; at stage 12 it is not logically independent;

and the events constituting it do not fit in the algebras from stages lower than that.

Notice that since for any A, B: SCn?1(A, B) = SCn(A, B) ? k, it follows that at

the stage m where the pair first appears (either from above or from below)

SCm(A, B) is positive but less than or equal to k.

We now have all the tools we need to prove theorem 2.

Proof (of theorem 2) Measure uniformity ) Causal up-to-3-closedness w.r.t.
Lind

Lemma 6 Suppose a pair A, B appears from above at stage n. Then there exists a

1-type common cause for the correlation at that stage.

Proof We are at stage n. Since the pair A, B appears from above at this stage, z = 1

and so (by lemma 5) SCn(A, B) = k - a0b0. (If z was equal to 0, the events would not

be logically independent at stage n; if it was greater than 1, the events would be

logically independent at stage n - 1 too, and so the pair would not appear from

above at stage n.) Notice that since A, B are logically independent (so both a0 and b0

are non-zero) but correlated at stage n, 0 \ SCn(A, B) = k - a0b0\ k. Let C

consist of exactly SCn(A, B) atoms from the intersection A \ B. Such a C will

be a screener-off for the correlation, since PðAB j CÞ ¼ 1 ¼ PðA j CÞPðB j CÞ.
What remains is to show that C? is a screener-off as well. This follows

from the observation that PðAB j C?Þ ¼ k�ðk�a0b0Þ
n�ðk�a0b0Þ ¼ a0b0

n�kþa0b0 ¼
a0b0ðn�kþa0b0Þ
ðn�kþa0b0Þ2 ¼

a0b0ð1þa0þb0þkÞ�a0b0kþa
02b
02

ðn�kþa0b0Þ2 ¼ a0b0þa0b
02þa

02b0þa
02b
02

ðn�kþa0b0Þ2 ¼ a0þa0b0

n�kþa0b0 � b0þa0b0

n�kþa0b0 ¼
kþa0�ðk�a0b0Þ

n�kþa0b0 �
kþb0�ðk�a0b0Þ

n�kþa0b0 ¼
kþa0�SCnðA;BÞ

n�kþa0b0 �
kþb0�SCnðA;BÞ

n�kþa0b0 ¼ PðA j C?ÞPðB j C?Þ. h
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Lemma 7 Suppose a pair A, B appears from below at stage n. Then there exists a

1-type common cause or a 0-type common cause for the correlation at that stage.

Proof Case 1: k [ b0 and a0[ z.

In this case we will construct a 1-type common cause. Let C consist of k - b0

atoms from A \ B and a0 - z atoms from A n B. Since C � A, it screens

off the correlation: PðAB j CÞ ¼ PðB j CÞ ¼ 1 � PðB j CÞ ¼ PðA j CÞPðB j CÞ. We

need to show that C? screens off the correlation as well. This follows from the fact

that PðAB j C?Þ ¼ b0

n�ðk�b0Þ�ða0�zÞ ¼ b0

2b0þ2z
¼ 2b

02þ2zb0

ð2b0þ2zÞ2 ¼
ðb0þzÞ2b0

ð2b0þ2zÞ2 ¼
b0þz

2b0þ2z
� 2b0

2b0þ2z
¼

b0þz
n�ðk�b0Þ�ða0�zÞ � 2b0

n�ðk�b0Þ�ða0�zÞ ¼ PðA j C?ÞPðB j C?Þ.

Case 2: z [ b0 and a0[ k.

In this case we will construct a 0-type common cause. Let C? consist of a0 - k

atoms from A n B and z - b0 atoms from ðA [ BÞ?. Since C? � B?, it screens

off the correlation: PðAB j C?Þ ¼ 0 ¼ PðA j C?Þ � 0 ¼ PðA j C?ÞPðB j C?Þ.
We need to show that C too screens off the correlation. This follows from the

fact that PðAB j CÞ ¼ k
n�ða0�kÞ�ðz�b0Þ ¼ k

2kþ2b0 ¼ 2k2þ2kb0

ð2kþ2b0Þ2 ¼
2kðkþb0Þ
ð2kþ2b0Þ2 ¼

2k
2kþ2b0 � kþb0

2kþ2b0 ¼
2k

n�ða0�kÞ�ðz�b0Þ � kþb0

n�ða0�kÞ�ðz�b0Þ ¼ PðA j CÞPðB j CÞ.

Case 3a: z > a0; k > a0 and a0[ b0.
As can be verified easily, in this case k = z = a0 and b0 = a0 - 1. We can

construct both a 0-type common cause and a 1-type common cause. Suppose we

choose to produce the former. An appropriate C? would consist just of a single atom

from ðA [ BÞ?. C? screens off the correlation because PðAB j C?Þ ¼ 0 ¼
PðA j C?ÞPðB j C?Þ. That C is also a screener-off is guaranteed by the fact that

PðAB j CÞ � PðA j CÞPðB j CÞ ¼ k
kþa0þb0þz�1

� kþa0

kþa0þb0þz�1
� kþb0

kþa0þb0þz�1
¼ k

4k�2
�

2k
2ð2k�1Þ � 2k�1

4k�2
¼ 0. To produce a 1-type common cause instead, let C consist just of

a single atom from A \ B. C screens off the correlation because PðAB j CÞ ¼
1 ¼ PðA j CÞPðB j CÞ. That C? is also a screener-off follows from the fact that

PðAB j C?Þ ¼ k�1
k�1þa0þb0þz

¼ b0

2b0þ2a0 ¼ 2b
02þ2a0b0

ð2b0þ2a0Þ2 ¼
ða0þb0Þ2b0

ð2b0þ2a0Þ2 ¼
a0þb0

2b0þ2a0 � 2b0

2b0þ2a0 ¼
k�1þa0

2b0þ2a0 � k�1þb0

2b0þ2a0 ¼ PðA j C?ÞPðB j C?Þ.

Case 3b: z = a0 ? 1 and k = a0 = b0.

In this case we will construct a 0-type common cause. Let C? consist of just a

single atom from ðA [ BÞ?. C? screens off the correlation because PðAB j C?Þ ¼
0 ¼ PðA j C?ÞPðB j C?Þ. C screens off the correlation because PðAB j CÞ ¼ k

4k
¼

4k2

16k2 ¼ 2k
4k
� 2k

4k
¼ kþa0

kþa0þb0þz�1
� kþb0

kþa0þb0þz�1
¼ PðA j CÞPðB j CÞ.

Case 3c: k = a0 ? 1 and z = a0 = b0.
In this case we will construct a 1-type common cause. Let C consist of

just a single atom from ðA \ BÞ. As in case 3a, C screens off the correlation. That
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C? is also a screener-off follows from PðAB j C?Þ ¼ a0

4a0 ¼ 4a
02

16a
02 ¼ 2a0

4a0 � 2a0

4a0 ¼
k�1þa0

k�1þa0þb0þz
� k�1þb0

k�1þa0þb0þz
¼ PðA j C?ÞPðB j C?Þ. h

Notice that the five cases used in the proof above are exhaustive. To see this,

consider that a0 > b0 (by our convention) and SCn(A, B) = kz - a0b0[ 0 (because A

and B are correlated). The latter inequality rules out the possibility that k, zOa0, b0.
Also, if b0OkOzOa0, then the leftmost inequality must be strict, since b0 = kOzOa0

clearly violates the condition on SCn(A, B). The remaining possibilities are as follows:

1. k O b0O a0\ z,

2. z O b0O a0\ k,

3. b0\ k O z \ a0,
4. b0\ k O z = a0.

1. is further subdivided into the following cases:

• k = b0 = a0\ z—this is Case 3b (if additionally z [ a0 ? 1, then the pair

A, B would have been already logically independent and correlated at the

prior stage and would not appear from below at stage n),

• k = b0\ a0\ z—this matches the conditions in Case 2,

• k \ b0O a0\ z—likewise.

2. is further subdivided into the following cases:

• z = b0 = a0\ k—this is Case 3c (a remark similar to that on the first

subcase of 1. applies),

• z = b0\ a0\ k—this matches the conditions in Case 1,

• z \ b0O a0\ k—likewise.

3. matches the conditions in Case 2.

4. is further subdivided into two cases depending on whether the inequality kO z

is strict:

• k \ z—this matches the conditions in Case 2,

• k = z—this matches the conditions in Case 3a.

Lemma 8 Suppose A, B form a pair of logically independent events correlated at

stage n. Suppose further that they have a common cause or a 0-type SCCS of size

3 at that stage. Then they have a common cause or a 0-type SCCS of size 3 at stage

n ? 1.

Proof (Note that the cases are not exclusive; they are, however, exhaustive, which

is enough for the present purpose.)

Case 1: A, B have a 0-type common cause at stage n.

Let C be a 0-type common cause for the correlation. When moving from stage n

to n ? 1, a new atom ({n ? 1}) is added. Let C0? ¼ C? [ fnþ 1g. Notice that C

and C0? form a partition of unity of the algebra at stage n ? 1. C contains

exclusively atoms from the algebra at stage n and so continues to be a screener off.
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Notice that since C was a 0-type common cause at stage n, at that stage PðA j
C?Þ ¼ 0 or PðB j C?Þ ¼ 0. Since the atom n ? 1 lies outside the events A and B, at

stage n ? 1 we have PðA j C0?Þ ¼ 0 or PðB j C0?Þ ¼ 0, and so C0? is a screener-off

too. Thus C and C0? are both screener-offs and compose a partition of unity at stage

n ? 1. By lemma 4 (p. 8), this is enough to conclude that A, B have a 0-type

common cause at stage n ? 1.

Case 2: A, B have a common cause which is not a 0-type common cause at
stage n.

Let C be a non-0-type common cause for the correlation at stage n. Notice that

both PðAB j CÞ and PðAB j C?Þ are non-zero. In this case the ‘new’ atom cannot be

added to C or C? without breaking the corresponding screening-off condition.

However—as we remarked in the previous case—the atom n ? 1 lies outside the

events A and B, so the singleton {n ? 1} is trivially a screener-off for the pair.

Since conditioning on {n ? 1} gives probability 0 for both A and B, the statistical

relevance condition is satisfied. Therefore our explanation of the correlation at stage

n ? 1 will be a 0-type SCCS of size 3: C0 ¼ fC;C?; fnþ 1gg.8

Case 3: A, B have a 0 -type SCCS of size 3 at stage n.

Let the partition C ¼ fCigi2f0;1;2g be a 0-type SCCS of size 3 at stage n for the

correlation, with C2 being the zero element (that is PðA j C2Þ ¼ 0 or PðB j C2Þ ¼ 0

(or possibly both), with the conditional probabilities involving C0 and C1 being

positive). Let C0 = {C0, C1, C2 [ {n ? 1}}. Appending the additional atom to C2

does not change any conditional probabilities involved, so the statistical relevance

condition is satisfied. Since nþ 1 62 A [ B; C2 [ fnþ 1g screens off the correlation

at stage n ? 1 and C0 is a 0-type SCCS of size 3 at stage n ? 1 for the correlation. h

As mentioned above, lemmas 6–8 complete the proof of this direction of the

theorem since a method is given for obtaining a statistical common cause or an

SCCS of size 3 for any correlation between logically independent events in any

finite probability space with uniform distribution.

We proceed with the proof of the ‘upward’ direction of theorem 2.

Causal up-to-3-closedness w.r.t. Lind ) Measure uniformity
In fact, we will prove the contrapositive: if in a finite probability space with no 0-

probability atoms the measure is not uniform, then there exist logically independent,

correlated events A, B possessing neither a common cause nor an SCCS of size 3.9

In the remainder of the proof we extend the reasoning from case 2 of proposition 4

of Gyenis and Rédei (2004), which covers the case of common causes.

Consider the space with n atoms; arrange the atoms in the order of decreasing

probability and label them as numbers 0; 1; . . .; n� 1. Let A = {0, n - 1} and

B = {0,n - 2}. Gyenis and Rédei (2004) prove that A, B are correlated and do not

8 The fact that a correlation has an SCCS of size 3 does not necessarily mean it has no statistical common

causes.
9 Recall that we assume the probability space under consideration has at least 4 atoms.
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have a common cause. We will now show that they do not have an SCCS of size 3

either.

Suppose C ¼ fCigi2f0;1;2g is an SCCS of size 3 for the pair A, B. If for some

i 2 f0; 1; 2gA � Ci; C violates the statistical relevance condition, since for the

remaining j; k 2 f0; 1; 2g; j 6¼ k; i 6¼ j; i 6¼ k; PðA j CjÞ ¼ 0 ¼ PðA j CkÞ. Similarly

if B is substituted for A in the above reasoning. It follows that none of the elements

of C can contain the whole event A or B. Notice also that no Ci can contain the

atoms n - 1 and n - 2, but not the atom 0, as then it would not be a screener-off.

This is because in such a case PðAB j CiÞ ¼ 0 despite the fact that PðA j CiÞ 6¼ 0 and

PðB j CiÞ 6¼ 0. But since C is a partition of unity of the space, each of the three

atoms forming A [ B has to belong to an element of C, and so each Ci contains

exactly one atom from A [ B. Therefore for some j; k 2 f0; 1; 2gPðA j CjÞ[ PðA j
CkÞ but PðB j CjÞ\PðB j CkÞ, which means that C violates the statistical relevance

condition. All options exhausted, we conclude that the pair A, B does not have an

SCCS of size 3; thus the probability space is not causally up-to-3-closed. h

The reasoning from the ‘upward’ direction of the theorem can be extended to

show that if a probability space with no 0-probability atoms has a non-uniform

probability measure, it is not causally up-to-n-closed for any n > 2. The union of the

two events A and B described above only contains 3 atoms; it follows that the pair

cannot have an SCCS of size greater than 3, since it would have to violate the

statistical relevance condition (two or more of its elements would, when conditioned

upon, give probability 0 to event A or B). This, together with proposition 3 of

Gyenis and Rédei (2004) justifies the following claims:

Theorem 3 No finite probability space with a non-uniform measure and without

0-probability atoms is causally up-to-n-closed w.r.t. Lind for any n > 2.

Corollary 9 No finite probability space with a non-uniform measure and without

0-probability atoms is causally n-closed w.r.t. Lind for any n > 2.

The proofs of lemmas 2 and 3 in Sect. 3.3 will make it clear how to generalize

both theorem 3 and corollary 9 to arbitrary finite spaces (also those possessing some

0-probability atoms) with a non-uniform measure. We omit the tedious details.

3.2.1 Examples

We will now present a few examples of how our method of finding explanations for

correlations works in practice, analysing a few cases of correlated logically

independent events in probability spaces of various sizes (with uniform probability

distribution).

Example 1 n = 7, A = {0, 2, 3, 5, 6}, B = {1, 2, 5, 6}.

We see that a0 = 2, b0 = 1 and k = 3, so we will analyse the pair

A1 = {0, 1, 2, 3, 4}, B1 = {2, 3, 4, 5}. We now check whether A1 and B1 were

independent at stage 6, and since at that stage A?1 \ B?1 ¼ ; we conclude that they

were not. Therefore the pair A1,B1 appears from above at stage 7. Notice that

SC7(A1,B1) = 1. By construction from lemma 6 we know that an event consisting of
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just a single atom from the intersection of the two events satisfies the requirements

for being a common cause of the correlation. Therefore C = {2} is a common cause

of the correlation between A and B at stage 7.

Example 2 n = 10, A = {2, 3, 8}, B = {2, 8, 9}.

We see that a0 = 1, b0 = 1 and k = 2, so we will analyse the pair

A1 = {0, 1, 2}, B1 = {1, 2, 3}. Since SC10(A1,B1) = 11, we conclude that the

lowest stage at which the pair is correlated is 5 (as remarked earlier, SC changes by

k from stage to stage).A1 and B1 are logically independent at that stage, but not at

stage 4, which means that the pair appears from above at stage 5. We employ the

same method as in the previous example to come up with a 1-type common cause of

the correlation at that stage—let it be the event {1}. Now the reasoning from case 2

of lemma 8 is used to ‘translate’ the explanation to stage 6, where it becomes the

following 0-type SCCS: {{1}, {0, 2, 3, 4}, {5}}. Case 3 of the same lemma allows

us to arrive at an SCCS for A1, B1 at stage 10: {{1}, {0, 2, 3, 4}, {5, 6, 7, 8, 9}}.

Its structure is as follows: one element contains a single atom from the intersection

of the two events, another the remainder of A1 [ B1 as well as one atom not

belonging to any of the two events, while the third element of the SCCS contains the

rest of the atoms of the algebra at stage 10. We can therefore produce a 0-type SCCS

for A and B at stage 10: {{2}, {0, 3, 8, 9}, {1, 4, 5, 6, 7}}.

Example 3 n = 12, A = {2, 4, 6, 8, 9, 10, 11}, B = {1, 3, 6, 10, 11}.

We see that a0 = 4, b0 = 2 and k = 3, so we will analyse the pair

A1 = {0, 1, 2, 3, 4, 5, 6}, B1 = {4, 5, 6, 7, 8}. We also see that A1 and B1 were

logically independent at stage 11, but were not correlated at that stage. Therefore the

pair A1,B1 appears from below at stage 12. Notice that z = 3. Therefore we see that

z [ b0 and a0[ k, which means we can use the method from case 2 of lemma 7 to

construct a 0-type common cause, whose complement consists of 1 atom from

A1 n B1 and 1 atom from ðA1 [ B1Þ?. Going back to A and B, we see that the role of

the complement of our common cause can be fulfilled by C? ¼ f0; 2g. Therefore

C = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11} is a 0-type common cause of the correlation

between A and B at stage 12.10

3.3 Proofs of Lemmas 1–3

Proof (of lemma 1) If P is uniform, then hS;Pi has no 0-probability atoms, which

means that S = S? and P = P?. Therefore P? is uniform, so (by theorem 1)

hSþ;Pþi (and, consequently,hS;Pi) is causally up-to-3-closed w.r.t. Lind
? . But in a

space with no 0-probability atoms Lind = Lind
? , therefore hS;Pi is also causally up-

to-3-closed w.r.t. Lind. h

10 Incidentally, if we wanted to find a 1-type common cause for A and B at stage 12, we could put

C = {2,11}, in which case PðA j CÞ ¼ 1. However, this is not always possible and there are cases in

which only 0-type common causes (or only 1-type common causes) are possible. For a concrete example,

take the pair {{0, 1, 2, 3, 4}, {4, 5}}, which appears from below at stage 11 and has only 0-type common

causes at that stage.
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The next two proofs will require ‘‘jumping’’ from hSþ;Pþi to hS;Pi and vice

versa. We will now have to be careful about the distiction between proper and

improper SCC(S)s. Some preliminary remarks are in order.

Let A 2 S. As before, we can think of A as a set of atoms of S. Let A? be the set

of non-zero probability atoms in A:

Aþ :¼ A n faja is an atom of S and PðaÞ ¼ 0g:

Notice that

PðAÞ ¼
X

a2A

PðaÞ ¼
X

a2Aþ

PðaÞ ¼ PðAþÞ ¼ PþðAþÞ: ð2Þ

Suppose A;B;C 2 S. From (2) it follows that if A, B are correlated in hS;Pi; Aþ;Bþ

are correlated in hSþ;Pþi. Similarly, for any D 2 S; PðD j CÞ ¼ PþðDþ j CþÞ. So,

if C screens off the correlated events A, B in hS;Pi, then C? screens off the cor-

related events A?, B? in hSþ;Pþi. Also, if a family C ¼ fCigi2I satisfies the sta-

tistical relevance condition w.r.t. A, B in hS;Pi, then the family Cþ ¼ fCþi gi2I

satisfies the statistical relevance condition w.r.t. A?, B? in hSþ;Pþi. If C ¼
fCigi2f0;...;n�1g is a proper SCCS of size n for the correlation between events A, B in

hS;Pi, then all its elements differ from both A and B by more than a measure zero

event. It follows that in such a case Cþ ¼ fCþi gi2f0;...;n�1g is a proper SCCS of size n

for the correlation between events A?, B? in hSþ;Pþi.

Proof (of lemma 2) Since P? is not uniform, by theorem 1 hSþ;Pþi is not causally

up-to-3-closed w.r.t. Lind
? (and, consequently, Lind). Then there exist logically

independent, correlated events A?, B? in S? which do not have a proper SCCS of

size at most 3 in hSþ;Pþi. The two events are also logically independent and

correlated in hS;Pi; it is easy to show that in hS;Pi the pair hAþ;Bþi also belongs

both to Lind
? and to Lind. We will show that hS;Pi also contains no proper SCCS of

size at most 3 for these events. For suppose that for some m 2 f2; 3g; C ¼
fCigi2N;i\m was a proper SCCS of size m for the correlation between A? and B? in

hS;Pi. Then Cþ :¼ fCþi gi2N;i\m would be a proper SCCS of size m for the

correlation between A? and B? in hSþ;Pþi, but by our assumption no such SCCSs

exist. We infer that the correlated events A?, B? have no proper SCCS of size up to

3 in hS;Pi, so the space hS;Pi is not causally up-to-3-closed w.r.t. either Lind or Lind
? .

h

Proof (of lemma 3) Since P? is uniform, by theorem 1 hSþ;Pþi is causally up-to-

3-closed w.r.t. Lind
? . We will first show that also hS;Pi is causally up-to-3-closed

w.r.t. Lind
? . Notice that if A;B 2 S are correlated in hS;Pi and hA;Bi 2 Lþind , then

Aþ;Bþ 2 Sþ are correlated in hSþ;Pþi and hAþ;Bþi 2 Lþind . We know that in that

case there exists in hSþ;Pþi a proper SCCS of size 2 or 3 for A? and B?. If we add

the 0-probability atoms of S to one of the elements of the SCCS, we arrive at a

proper SCCS of size 2 or 3 for A;B 2 S.

It remains to consider correlated events A;B 2 S such that hA;Bi 2 Lind but

hA;Bi 62 Lþind . In such a case at least one of the probabilities from definition 6 has to
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be equal to 0. It is easy to show that, since we know the two events are correlated, it

can only be the case that PðA \ B?Þ ¼ 0 or PðB \ A?Þ ¼ 0; equivalently, Aþ � Bþ

or Bþ � Aþ. It may happen that A? = B?. Let us first deal with the case of a strict

inclusion; suppose without loss of generality that Aþ � Bþ. If jBþ n Aþj[ 1, take

an event C such that Aþ � C � Bþ. Since both inclusions in the last formula are

strict, in such a case C is a proper statistical common cause for A and B. Notice that

since hA;Bi 2 Lind, from the fact that Aþ � Bþ it follows that A = A?. Therefore,

if jBþ n Aþj ¼ 1, put C = A?. Such a C is an improper statistical common cause of

A and B.

The last case is that in which A? = B?. From the fact that A and B are logically

independent it follows that A n Bþ 6¼ ; and B n Aþ 6¼ ;. Therefore A = A? and

B = B?. We can thus put C = A? (=B?) to arrive at an improper statistical

common cause of A and B.

When Aþ � Bþ, it is also impossible to find (even improper) SCCSs of size 3

for A and B. For suppose C ¼ fCigi2f0;1;2g was an SCCS for A and B. If for

some j 6¼ l; j; l 2 f0; 1; 2g it is true that Cj \ A? = Cl \ A? = [, then

P(A | Cj) = 0 = P(A | Cl) and so C cannot be an SCCS of A and B due to the

statistical relevance condition being violated. Thus at least two elements of C have to

have a nonempty intersection with A?. Every such element Cj screens off A from

B. Since by our assumption Aþ � Bþ, it follows that P(AB | Cj) = P(A|Cj). Therefore

the screening off condition takes the form of P(A|Cj) = P(A|Cj)P(B|Cj); and so

P(B|Cj) = 1. Since we already established that C contains at least two elements

which can play the role of Cj in the last reasoning, it follows that in this case the

statistical relevance condition is violated too; all options exhausted, we conclude that

no SCCSs of size 3 exist for A and B when Aþ � Bþ. The argument from this

paragraph can also be applied to show that if Aþ � Bþ and jBþ n Aþj 6 1, no proper

statistical common causes for the two events exist. h

4 The ‘‘proper’’ / ‘‘improper’’ common cause distinction and the relations
of logical independence

A motivating intuition for the distinction between proper and improper common

causes is that a correlation between two events should be explained by a different

event. The difference between an event A and a cause C can manifest itself on two

levels: the algebraical (A and C being not identical as elements of the event space)

and the probabilistic (PðA \ C?) or PðC \ A?Þ being not equal to 0). As per

definition 7, in the case of improper common causes the difference between them

and at least one of the correlated events (say, A) is only algebraical. For some this is

intuitively enough to dismiss C as an explanation for any correlation involving A.

One could, however, have intuitions to the contrary. First, events which differ by

a measure zero event can be conceptually distinct. Second, atoms with probability 0

should perhaps be irrelevant when it comes to causal features of the particular

probability space, especially when the independence relation considered is defined

without any reference to probability. If the space is causally up-to-n-closed w.r.t.
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Lind, adding 0-probability atoms should not change its status. But consider what

happens when we add a single 0-probability atom to a space which is up-to-2-closed

(common cause closed) w.r.t. Lind by Proposition 3 from Gyenis and Rédei (2004):

the space hS5;Pui, where S5 is the Boolean algebra with 5 atoms f0; 1; . . .; 4g and Pu

is the uniform measure on S5. Label the added 0-probability atom as the number 5. It

is easy to check that the pair hf3; 4g; f4; 5gi belongs to Lind, is correlated and has no

proper common cause. The only common cause for these events, {4}, is improper.

Therefore the space is not common cause closed w.r.t. Lind in the sense of Gyenis

and Rédei (2004) and our definition 8; this change in the space’s status has been

accomplished by adding a single atom with probability 0.

It should be observed that the pair of events belongs to Lind, but not to Lind
? ; and

that the bigger space is still common cause closed with respect to Lind
? (although not

Lind).

In general, suppose hS;Pi is a space without any 0 probability atoms, causally up-

to-n-closed w.r.t. Lind, and suppose some ‘‘extra’’ atoms were added, so that a new

space hS0;P0i is obtained, where for any atom a of S0,

P0ðaÞ ¼ PðaÞ for a 2 S

0 for a 2 S0 � S

�

It is easy to prove, using the techniques employed in the proof of lemma 3, that all

‘‘new’’ correlated pairs in hS0;P0i belonging to Lind have (sometimes only improper)

SCCSs of size up to n. This is also true in the special case of hS5;Pui augmented

with some 0 probability atoms. Perhaps, then, we should omit the word ‘‘proper’’

from the requirements for a probability space to be causally up-to-n-closed (defi-

nition 8)?

This, however, is only one half of the story. Suppose the definition of causal up-

to-n-closedness were relaxed in the above way, so that explaining correlations by

means of improper SCC(S)s would be admissible. Consider a space hSþ;Pþi,11 in

which S? has at least 4 atoms and P? is not the uniform measure on S?. This space,

as we know, is not causally up-to-3 closed in the sense of definition 8, but it is also

not causally up-to-3 closed in the ‘‘relaxed’’ sense, since the difference between

proper and improper common causes can only manifest itself in spaces with 0

probability atoms.12 When a new 0 probability atom m is added, every hitherto

unexplained correlation between some events A and B gains an SCC in the form of

the event C :¼ A [ fmg. All such SCCs are, of course, improper.

In short, the situation is this: if proper SCC(S)s are required, this leads to

somewhat unintuitive consequences regarding causal up-to-n-closedness w.r.t. Lind.

Omitting the requirement results, however, in unfortunate effects regarding causal

up-to-n-closedness no matter whether Lind or Lind
? is considered. We think the natural

solution is to keep the requirement of proper SCC(S)s in the definition of causal up-

to-n-closedness, but, of the two independence relations, regard Lind
? as more

11 Recall that by our convention such a space has no 0 probability atoms.
12 This is because the spaces we are dealing with are finite—so that we can be sure the Boolean algebras

considered do, indeed, have atoms—and we already require an SCC for two events A and B to be distinct

from both A and B, see definition 4, p. 5.
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interesting. It is the rightmost column of Table 1 that contains the most important

results of this paper, then; this is fortunate, since they are a ‘‘pure’’ implication and

an equivalence, without any special disclaimers.

5 Other Independence Relations

So far, the relation of independence under consideration—determining which

correlations between two events require explanation—was either the relation of

logical independence or its derivative Lind
? . Let us consider using a ‘broader’ relation

Rind � Lind , which apart from all pairs of logically independent events would also

include some pairs of logically dependent events. (The spaces under consideration

are still finite.) For clarity, assume the space does not have any 0-probability atoms

(so that e.g. Lind = Lind
? ), but make no assumptions regarding the uniformity of the

measure. Will we have more correlations to explain? If so, will they have common

causes?

First, observe that if A or B is 1S, and so P(A) or P(B) equals 1, there is no

correlation. In the sequel assume that neither A nor B equals 1S.

Second, note that if A \ B = ;, then P(AB) = 0 and no (positive) correlation

arises.

Third, if A? \ B? ¼ ;, there is again no positive correlation. This is because in

such a case PðABÞ þ PðAB?Þ þ PðA?BÞ ¼ 1, and since PðAÞPðBÞ ¼ PðABÞ
½PðABÞ þ PðAB?Þ þ PðA?BÞ� þ PðAB?ÞPðA?BÞ > PðABÞ, the events are not

correlated.

Considerthe last possible configuration in which the events A, B are logically

dependent: namely, that one is a subset of the other. Suppose A � B. Since by our

assumption both P(A) and P(B) are strictly less than 1, the events will be correlated.

It can easily be checked13 that when A � B but B 6¼ 1S, any C which screens off the

correlation and has a non-empty intersection with A (and so PðA j CÞ 6¼ 0) has to be

a subset of B (because PðB j CÞ ¼ 1). And since it cannot be that both C and C? are

subsets of B, then if C is a common cause, it is necessary that C? \ A ¼ ;. In the

other direction, it is evident that if A � C � B, both C and C? screen off the

correlation and the statistical relevance condition is satisfied. The only pitfall is that

the definition of a common cause requires it be distinct from both A and B, and so

none exist when b0 = 1.

To summarise, the only correlated pairs of logically dependent events A, B are

those in which one of the events is included in the other. Assume A � B. Then:

• if b = 1, there is no common cause of the correlation;

• otherwise the common causes of the correlation are precisely all the events

C such that A � C � B.

Lastly, notice that in a space hSn;Pui (Sn being the Boolean algebra with n atoms

and Pu being the uniform measure) we could proceed in the opposite direction and

restrict rather than broaden the relation Lind. If we take the independence relation

13 See the last paragraph of the proof of lemma 3, p. 20.
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Rind to be the relation of logical independence restricted to the pairs which appear

from above or below at stage n, then our probability space is common cause closed

w.r.t. Rind.

6 A Slight Generalisation

In this section we will show that the results of this paper, which have only

concerned classical probability spaces so far, are also meaningful for finite non-

classical spaces. We go back to our former practice: by ‘‘common cause’’ we will

always mean ‘‘proper common cause’’; similarly with ‘‘common cause system’’.

Definition 12 (Non-classical probability space) An ortholattice L is orthomodular

if 8a;b2L a 6 b) b ¼ a _ ða? ^ bÞ.

Two elements a and b of L are orthogonal iff a 6 b?.

An additive state on an orthomodular lattice (OML) L is a map P from L to [0,1]

such that Pð1LÞ ¼ 1 and for any A � L such that A consists of mutually orthogonal

elements, if
W

A exists, then Pð
W

AÞ ¼
P

a2A PðaÞ.14

A non-classical probability space is a pair hL;Pi, where L is a non-distributive

OML and P is an additive state on L.15

A relation of compatibility needs to be introduced. Only compatible events may

be correlated; and a common cause needs to be compatible with both effects. We

use the word ‘‘compatibility’’ because it was the one used in (Hofer-Szabó et al.

2000); ‘‘commutativity’’ is used in its place (see e.g. Kalmbach 1983).

Definition 13 (Compatibility, correlation, SCC(S) in non-classical spaces) Let

hL;P be a non-classical probability space and a; b 2 L. Event a is said to be

compatible with b (aCb) if a ¼ ða ^ bÞ _ ða ^ b?Þ.

Events a, b are said to be correlated if aCb and the events are correlated in the

sense of definition 3.

The event x 2 L is a proper statistical common cause of a and b if it fulfills the

requirements from definition 7, differs from both a and b by more than a measure

zero event, and is compatible both with a and with b (of course, c? will be

compatible, too).

A partition fCigi2I of 1L is a proper statistical common cause system of size n of

a and b if it satisfies the requirements of definition 7, all its elements differ from

both a and b by more than a measure zero event, and all its elements are compatible

both with a and b.

The notion of causal up-to-n-closedness is then immediately transferred to the

context of non-classical probability spaces by substituting ‘‘non-classical’’ for

‘‘classical’’ in definition 8 (p. 7).

14 Of course, in the finite case—since a lattice always contains all suprema of doubletons by virtue of

being a lattice—it would suffice to say that for any two orthogonal elements a and b, P(a _
b) = P(a) ? P(b).
15 Notice that if L were distributive, hL;Pi would be a classical probability space.
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This leads us to the result of this section, which can be phrased colloquially in

this way: a finite non-classical probability space is causally up-to-n closed if and

only if all its blocks are causally up-to-n-closed.

Theorem 4 Suppose hL;Pi is a finite non-classical probability space. Suppose all

blocks of L have at least 4 atoms a such that P(a) [ 0. Then hL;Pi is causally up-to-

n-closed w.r.t Lind if and only if for any block B of L, the classical probability space

hB;PjBi is causally up-to-n-closed w.r.t. Lind.

Proof Suppose hL;Pi is causally up-to-n-closed w.r.t. Lind. Let B be a block of L; let

a, b be correlated and logically independent events in hB;PjBi. Then a, b are

correlated and logically independent events in hL;Pi, and so have an SCCS of size up

to n in hL;Pi. But since all elements of the SCCS have to be compatible with a and b,

they also have to belong to B. And so the pair has an SCCS of size up to-n in hB;PjBi.

For the other direction, suppose that for any block B of L, the space hB;PjBi is

causally up-to-n-closed w.r.t. Lind. Let a, b be correlated and logically independent

Fig. 1 Greechie diagrams of two OMLs which, if supplied with the state which assigns the number 1
5

to

all ‘‘white’’ atoms and 0 to both ‘‘black’’ atoms, form non-classical probability spaces which are causally

up-to-2-closed (or simply ‘‘causally closed’’, to use the term of Gyenis and Rédei (2004) w.r.t. Lþind

Fig. 2 In these OMLs ‘‘white’’ atoms have probability 1
7

and the ‘‘dotted’’ ones 2
7
. The space depicted on

the left is causally up-to-3-closed, but the one on the right is not
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events in hL;Pi. Being correlated entails being compatible; and so a and b belong to

a block B. Since the ordering on L is induced by the orderings of the elements of

B, a and b are also logically independent in B. Therefore by our assumption they

have an SCCS of size up to n in hB;PjBi. This SCCS is a partition of unity of L, and

so satisfies definition 13. Thus a and b have an SCCS of size up to n in hL;Pi. h

6.1 Examples

We will now present a few examples of causal closedness and up-to-3-closedness of

non-classical probability spaces. Figure 1 depicts two non-classical probability

spaces causally closed w.r.t. Lind
? . All blocks have exactly 5 atoms of non-zero

probability and each such atom receives probability 1
5
, and so each block is causally

closed w.r.t. Lind
? . The left space is also causally closed w.r.t. Lind.

The left OML in Fig. 2 has two blocks and the measure of the space is uniform

on both of them, therefore the space is causally up-to-3-closed w.r.t. Lind. This

however is not the case with the right one: its measure is not uniform on the block

with four atoms, and so there is a correlation among some two logically independent

events from that block which has neither a common cause nor an SCCS of size 3.

(One of these events will contain one ‘‘dotted’’ atom and the single ‘‘white’’ atom of

the block; the other will contain two ‘‘dotted’’ atoms.) Therefore the space is not

causally up-to-3-closed w.r.t. Lind.

7 Conclusions and Problems

The main result of this paper is that in finite classical probability spaces with the

uniform probability measure (and so no atoms with probability 0) all correlations

between logically independent events have an explanation by means of a common

cause or a common cause system of size 3. A few remarks are in order.

First, notice that the only SCCSs employed in our method described in Sect. 3.2

are 0-type SCCSs, and that they are required only when ‘translating’ the explanation

from a smaller space to a bigger one. Sometimes (if the common cause we found in

the smaller space is 0-type; see example 3 above) such a translation can succeed

without invoking the notion of SCCS at all.

Second, #-type common causes, which some would view as ‘genuinely

indeterministic’, are never required to explain a correlation – that is, a correlation

can always be explained by means of a 0-type SCCS, a 0-type statistical common

cause, or a 1-type statistical common cause16. Therefore one direction of the

equivalence in theorem 2 can be strengthened:

16 But #-type common causes do exist: e.g. in the space with 12 atoms and the uniform measure the pair

of events { A, B }, where A = {0, 1, 2, 3, 4, 5, 6}, B = {4, 5, 6, 7, 8} (the same we dealt with in

example 3, p. 18) has, apart from both 0- and 1-type common causes, a #-type common cause

of shape C ¼ f1; 2; 4; 5; 7; 9g; C? ¼ f0; 3; 6; 8; 10; 11g; PðA j CÞ ¼ 2
3
; PðB j CÞ ¼ 1

2
; PðA j C?Þ ¼

1
2
; PðB j C?Þ ¼ 1

3
:

476 L. Wroński, M. Marczyk

123



Theorem 5 Let hS;Pi be a finite classical probability space. Let S? be the unique

Boolean algebra whose set of atoms consists of all the non-zero probability atoms of

S and let P? be the restriction of P to S?. Suppose S? has at least 4 atoms.

If P? is the uniform probability measure on S?, then any pair of positively

correlated and logically independent events in hS;Pi has a 1-type statistical common

cause, a 0-type statistical common cause or a 0-type statistical common cause

system of size 3 in hS;Pi.

The results of Gyenis and Rédei concerning the unique nature of the space with 5

atoms could lead one to think that in a sense it is not easy to find a space in which all

correlations would be explained by Reichenbachian notions. We have shown that

this is not the case—already on the level of finite spaces there are infinitely many

such spaces. Moreover, recent results on causal completability show that in the case

of classical probability spaces one can always extend (preserving the measure) the

given (possibly infinite) space to a space which is causally closed17 and in many

cases such an extension to a finite causally up-to-3-closed space is possible.18 One

can think of extending a probability space while preserving the measure as of taking

more factors into account when explaining some given family of correlations. We

now know that it is always possible to extend the initial space so that all correlations

are explained (in the Reichenbachian style) in the extension; sometimes (more often

than thought before) all the explanations are there in the original space. So, we

know much about explaining correlations in classical probability spaces using

Reichenbachian notions: it is surprisingly easy! This strengthens the argument

(which perhaps hardly needed strengthening) that a good account of causality (and

causal explanation) inspired by Reichenbach should introduce something more then

just bare-bones probability conditions. The account needs to be philosophically

fleshed out. Another direction is investigating the fate of Reichenbach’s principle in

non-classical probability spaces common in physics: in these cases decidedly less is

known.19 The last option would be to move the discussion to the more general

context of random variables, as opposed to events. First steps in this direction have

been provided by Gyenis and Rédei (2010).
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