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Population-based optimization algorithms are useful tools in solving engineering problems. This paper presents an elitist
transposon quantum-based particle swarm algorithm to solve economic dispatch (ED) problems. It is a complex and highly
nonlinear constrained optimization problem. The proposed approach, double elitist breeding quantum-based particle swarm
optimization (DEB-QPSO), makes use of two elitist breeding strategies to promote the diversity of the swarm so as to enhance
the global search ability and an improved efficient heuristic handling technique to manage the equality and inequality
constraints of ED problems. Investigating on 15-unit, 40-unit, and 140-unit widely used test systems, through performance
comparison, the proposed DEB-QPSO algorithm is able to obtain higher-quality solutions efficiently and stably superior than

the other the state-of-the-art algorithms.

1. Introduction

Economic dispatch (ED) of electric power generation is
used to determine an optimal combination of power output
from the units in the system for a minimal total generation
cost meeting the load demand while satisfying all equality
and inequality constraints of the units and system. The
constraints involved discontinuous prohibited zones, unit
power limits, and ramp rate limits making the practical
ED problem a highly constrained nonconvex and nonlinear
optimization problem [1]. The cost function of ED prob-
lems can be represented by a quadratic function and solved
by conventional methods such as the gradient method,
dynamic programming, and the lambda-iteration method
[2, 3]. However, none of these conventional optimization
methods is able to provide an optimal solution as they are
fast but easily getting stuck at the local optima as confirmed
with past experience of researchers.

In recent decades, a wide variety of metaheuristic optimi-
zation methods such as genetic algorithm (GA) [4, 5], artifi-
cial immune system (AIS) [6, 7], particle swarm optimization

(PSO) [8-16], differential evolution (DE) [17-19], gravita-
tional search algorithm (GSA) [20], Tabu Search (TS)
[21, 22], neural network (NN) [23, 24], evolutionary pro-
gramming (EP) [25], bacterial foraging algorithm (BFA)
[26], biogeography-based optimization (BBO) [27], and
other population-based optimization algorithms [28-32]
have been applied with success in solving the ED problems
and been able to obtain better solutions compared to using
conventional optimization methods.

Recently, a variant of PSO with guaranteed global con-
vergence ability, quantum-behaved particle swarm optimiza-
tion (QPSO) algorithm, is proposed by Sun et al. [33, 34].
QPSO outperforms PSO in global search ability and is a
promising optimizer for complex problems [35-37]. QPSO
demonstrates its superiority in solving ED problems com-
paring to other population-based optimization algorithms
[38, 39]. Although various QPSO approaches have been suc-
cessful in solving ED problems as reported in literature, they
still lack the efficient mechanism to treat the constraints
effectively [39]. The most commonly used method to handle
constraints in ED problem with QPSO is the use of penalty
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functions [39, 40]. The simple implementation of combining
the constraints with the objective function is the advantage
of this approach. However, an additional tuning parameter
called penalty factor is needed to penalize those solutions
violating the constraints. It is rather difficult to choose
the appropriate penalty factor for the penalty function
approaches. A small penalty factor is not effective to handle
the ED problem. Conversely, a large penalty factor will make
the ED problem feasible but is distorting the solution space.
As a result, it will converge to a weak local optimum.
Recently, some heuristic constraint handling strategies have
been proposed to modify infeasible solutions to satisty the
equality constraints, but their heavy computational require-
ment imposes a challenge for any evolutionary algorithms
based on those heuristic strategies to find the global optimal
solutions efficiently [41].

To overcome the existing deficiencies of QPSO for the
ED problem, this paper proposes a double elitist breeding
transposon QPSO (DEB-QPSO) algorithm based on our
recent work on EB-QPSO [42] with the extension of an
improved constraint handling technique and a cooperative
update method for the pbests and gbest. The proposed
approach makes use of two elitist breeding methods with
transposon to enhance the diversity of the population in the
QPSO mechanism. The transposon operators can improve
the global search ability by preventing the premature con-
vergence through increased diversity of the population as
demonstrated in our previous work [42]. The current work
is to extend our EB-QPSO technique to solve the ED
problems. Moreover, one of the proposed elitist breeding
schemes aims to assist the constraint handling while
improving the diversity of the population. An improved
dedicated efficient heuristic handling technique is proposed
to manage the equality and inequality constraints of ED
problems. The proposed algorithm is applied on three differ-
ent widely used ED test problems and compared to various
the state-of-the-art population-based optimization algo-
rithms. The rest of this paper is organized as follows: the
mathematical formulation of the ED problem is given in
Section 2. Section 3 briefly describes the PSO, QPSO, and
EB-QPSO algorithms that related to the proposed approach.
The proposed DEB-QPSO algorithm for solving ED prob-
lems is presented in Section 4. Section 5 gives the implemen-
tation of the proposed algorithm for solving ED problems.
Section 6 provides the case studies and results of the DEB-
QPSO algorithm for three nonconvex ED problems and is
compared to the state-of-the-art approaches from literature.
Conclusion is given in Section 7.

2. Problem Formulation

The objective of ED is to reduce the operation cost of the
system while fulfilling the load demand within the limit of
constraints. The nonsmooth/nonconvex ED problem takes
into account valve-point loading effects, prohibited operating
zones and multifuel options along with system power
demand, transmission loss, and operational limit constraints.
The overall ED problem can be formulated as a nonlinear
optimization programming problem:
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where Cy, F;(P;), and N, are the total fuel cost, cost function
of generator i, and the number of generators in the system,
respectively; a;, b;, and ¢; are the cost coeflicients of the ith
generator and P; is the power output of the ith generator.

The generating units with multiple valves in steam
turbines are available. The opening and closing of these
valves may add the ripples in the cost function which makes
the objective function highly nonlinear [5]. The cost function
in (2) is modified as

Fy(P;)=a;+bP; + Cing + }ei sin (f; X (P;min _Pi))}’ (3)

where P, is the minimum output of the ith generator, e;
and f; are two coefficients of the ith generator with valve-
point loading effect.

ED problem is subjected to the following constraints:

(i) Power balance constraint

N!’i
Y P,—P - P,=0, (4)

i=1

where P; and Py, are the total transmission network
losses and the total load demand, respectively.

Normally, P; is represented by way of Kron’s loss
formula [1] given as

gk

P, = PByP;+ Y ByPi+By,  (5)
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—

i=1
where Byj> Bjps and B, are known as the loss coeffi-
cients determined by the situation of a specified
power system.

(ii) Power output limit and amp rate limit constraint

Considering the inequality constraints of power out-
put limit and ramp rate limit simultaneously, the
generator operation constraint can be expressed as

follows:

max {P; .., P! = DR;} <P, <min {P, ... P!+ UR},
(6)

where P; .5 Piooe P UR;, and DR; are the mini-

mum output, maximum output, previous output
power, the upramp limit, and downramp limit of
the ith generator, respectively.

(iii) Prohibited operating zone constraint

The feasibility operation zones of a unit with prohib-
ited operation zones lead to additional constraints
on the unit operating range as follows:
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A

k=2,3,....n,,

5o P!, and P¥, are the number of prohibited
zones, the lower bound of the kth prohibited zone of
the ith generator, and upper bound of the kth
prohibited zone of the ith generator, respectively.

where n

3. PSO, QPSO, and EB-QPSO

Particle swarm optimization (PSO) was proposed by Kennedy
and Eberhart [34, 43] and is acknowledged as one of the
most popular stochastic algorithms. In the past two decades,
the PSO algorithm has undergone many improvements or
modifications in an effort to compete more effectively on
solving complicated problems [34, 43].

3.1. The Original PSO Algorithm. The PSO algorithm is
inspired by the social behavior of bird flocking. Each particle
is defined by a position vector x = (x;, x,, ... , xp,) which sig-
nifies a solution responsible for the exploration of the search
space. Let N denote the swarm size and D be the dimension-
ality of the search space; during the search process, the posi-
tion of each particle is evolved through the velocity and
position equations:

t
i

vi'' =wv + ¢,r) (pbest; — x{) + c,r, (gbest —x!),  (8)

Xf‘f’l — Vfﬂ + X:, (9)
where v andx! are the velocity and position of the ith
(i=1,2,...,N) particle in generation . pbest;, the personal
best, is the previous position having the best objective func-
tion value of the ith particle. gbest called global best particle
is the position of the best particle among all particles in the
swarm. r; and r, are two uniformly distributed random
numbers generated in the range [0, 1]. ¢; and ¢, are the learn-
ing factors called acceleration coeflicients, and w is the inertia
weight introduced into (8) by Shi and Eberhart [34, 43, 44]
which is decreased linearly from 0.9 to 0.4 through the evolu-
tionary process to enhance the capacity of exploring the solu-
tion space. Without loss of generality, for minimization, with
the objective function, f, the pbest; is updated according to

pbest = {Xi ] <l (10)
pbest; " if f[x{] > f[pi™'].

Consequently, gbest is found by

gbest’ = pbesttg, .
o » 1)
pbest, =arg min, . {f [pbest;] }.

Although PSO converges fast and many attempts have
been made to improve the performances of PSO [42, 43], it

is prone to be trapped into local optima and not guaranteed
to be global convergent as demonstrated in [45].

3.2. QPSO. A widely used PSO using alternative particle
evolution formulae is QPSO. Inspired by the quantum
mechanics, Sun et al. developed the quantum-behaved parti-
cle swarm optimization algorithm based on the trajectory
analysis of the PSO, which is theoretically proved to be global
convergent [33, 34, 46]. In the evolutionary process, the posi-
tion of each particle is updated with the following rules:

1 t
i

1
x{" = p} + a|x{ - mbest'| In () » ifrandv>0.5,
u

1
xith=pl - (x}xf - mbestt| In (;) , ifrandv<0.5,

| (12)

where p!, mbest’, and « are the local attractor of the particle
in iteration t, the mean best position in iteration ¢, and the
contraction-expansion coefficient, respectively; both u! and
randv are random numbers generated using the uniform
probability distribution functions in the range of [0, 1]. The
local attractor is defined as

i =¢' x pbest; + (1 - ¢') x gbest', (13)

where ¢' is a uniformly distributed random parameter
chosen within the interval [0, 1], pbest; and gbest' are the
personal best of the ith particle and global best of the swarm,
respectively. The mean best position is defined as the mean of
the pbest position of all particles:

| N
mbest’ = — Z pbest.. (14)
N&

a is the contraction-expansion coefficient used to control
convergence rate of QPSO, which is usually adjusted with a
time-varying decreasing method [47] defined as follows:

o +(T—1t)x (ag—ty)
a= T , (15)

where T is the maximum iteration number and ¢ is the
current search iteration number. «, and «; are the initial
and final values of «, respectively.

QPSO is theoretically guaranteed the global convergence
of the algorithm; however, upon the assumption of infinite
number of search iteration, such requirement is impractical
in solving complex engineering problems like ED problems.

3.3. EB-QPSO. To alleviate the problem of QPOS, numerous
strategies have been proposed in recent literatures to improve
the exploration efficiency and quality of solution. These
strategies can be classified as improvements by parameter
selection, control swarm diversity, cooperative methods,
using probability distribution function, novel search
methods, and hybrid methods [32, 46, 48, 49, 51-57]
Recently, a EB-QPSO algorithm based on transposon was
proposed [42, 58]. The basic idea of the approach is to
make better use of the elitists consisting of the pbests and
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FIGURE 1: Cut-and-paste transposon operator. (a) Cut-and-paste in same chromosome. (b) Cut-and-paste in different chromosomes.
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FIGURE 2: Copy-and-paste transposon operator. (a) Copy-and-paste in same chromosome. (b) Copy-and-paste in different chromosomes.

gbest in aiding to aggrandize the diversity of the swarm that
is essential to the exploration and exploitation for the
search of the global optima [59, 60].

An elitist exploration strategy, namely, elitist transposon
breeding, is incorporated with the basic evolutionary pro-
cesses of QPSO in the EB-QPSO algorithm. In the elitist
transposon breeding scheme, an elitist pool consisting of pb
ests and gbest is constructed. New particles are generated
from the elitist pool with the transposon operators, having
the ability to enhance the diversity of solutions, to explore
the elitist memory and extract some more potential essences
from the elitist individuals and thus to improve the search
efficiency. Moreover, the update of elitists with the new-
bred better-fitted individuals will provide a more efficient
and precise search guidance for the swarm.

Transposon operators were firstly proposed by Tang et al.
[50] and mainly used in multiobjective evolutionary algo-
rithms and applied in population-based optimization algo-
rithm in our works [42, 58, 61]. A transposon is made of
consecutive genes located in the randomly assigned position
in each chromosome while the transposon operators are lat-
eral movement operations that happen in one chromosome
or between different ones. In general, there exist two types
of transposon operators, cut-and-paste and copy-and-paste,
which are shown in Figures 1 and 2. The transposon
operations conducted within an individual chromosome
or on a different chromosome are chosen randomly.
Moreover, the size of each transposon can be greater
than one and is decided by a parameter called jumping

X x1 x2 x3 x4 x5

FIGURE 3: An example of the particle is represented as a
chromosome.

percentage while the number of transposons is also a pre-
defined parameter. Another parameter, the jumping rate, is
assigned to determine the probability of the activation of
transposon operations.

As demonstrated in Figure 3, each particle which can be
regarded as a chromosome consists of the same number of
genes as the size of its position vector and each gene holds
a real number of the corresponding decision variable.

Comparing with other the state-of-the-art PSO and
QPSO variants, EB-QPSO performs more competitively in
solving unconstrained optimization problems in terms of
better global search capability and faster convergence rate
as demonstrated in our recent work [42, 58] and has been
applied in solving practical problems like cancer gene
classification [62, 63].

4. DEB-QPSO for ED Problems

In this section, we will propose a DEB-QPSO algorithm
based on our recent work of using elitist breeding to solve
the ED problem. A double elitist breeding strategy is
designed to improve the search efficiency and manage the
constraint requirement of the complex ED problems. In
addition, an improved heuristic technique infeasible particle
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FIGURE 4: Integration of the double elitist breeding into the evolutionary processes of QPSO.

repositioning is proposed to treat the equality and inequality
constraints of ED problems efficiently. Moreover, a novel
update method for the pbests and gbest of the swarm is pro-
posed to cooperate with the constraint handling technique.
In the rest of the section, the double elitist breeding strategy
catered for solving constrained optimization problem is
described and is followed by how to use the proposed
approach to solve ED problem.

4.1. Elitist Breeding Strategies. The elitists have a major effect
on the exploration behavior of the swarm, thus impinging the
exploration performance. Obviously, making good use of the
elitists is beneficial to promote the exploration for optimal
solution. In DEB-QPSO, an elitist pool, epool, consisting
of pbests and gbest is constructed. Two elitist breeding
strategies are used to improve the global search ability of
the algorithm. Generally, the main idea of breeding is to
make good use of the elitists to generate new particles
through transposon operations. There are two types of elit-
ist breeding operations used: the bias elitist breeding and
the series elitist breeding differentiated according to their
execution sequences in the proposed DEB-QPSO algorithm
and the selection of the type of elitists for breeding. Figure 4
shows the relationship between the elitist breeding and the
normal algorithmic operation of QPSO. In Figure 4(a), it
gives the relationship between particles and the elitists of
the swarm in the original QPSO while Figure 4(b) illustrates
the integration of two elitist breeding with the exploration
operations of QPSO.

4.2. Bias Elitist Breeding. The bias elitist breeding aims at
improving the search efficiency of the algorithm through
promoting the particle diversity and assists the constraint
handling capability. The bias elitist breeding is not executed
on every search cycle but once at the interval of every A

[}
Particles within constraints

P Constraint

boundary

X

Particles outside constraints

FIGURE 5: Particles participated in transposon: an infeasible particle
undergoes transposon with a feasible elitist randomly selected from
the elitist pool.

iteration. It places impact to particles by substituting the
elitist individuals in memory with better-fitted new-bred
individuals. Breeding operation will be conducted on every
particle in the swarm. New particles will be generated
through the transposon with an elitist selected randomly
from the original elitist pool made up of the pbests and
the gbest of the swarm. Only the feasible elitists are selected
for transposon. If the newly generated particle has a better
fitness evaluated by the objective function, it will become
the personal best of that particle and be kept in the elitist
pool; otherwise, the original personal best of that particle
will be kept in the elitist pool. In other words, the pbest
of each particle and the gbest will be substituted by the corre-
sponding better solutions in the newly generated subswarm.
Such elitist breeding scheme is biased towards the generation
of elitists in the feasible zone. The idea is illustrated in
Figure 5.
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endif
endfor

PN W

Procedure of Bias elitist breeding
for i=1 to swarm size N
epool_eb = transposon (epool, particle[il;);
evaluate (epool_eb);
if f (epool_eb[i]) < f (pbest[i]);
pbest [i] = epool_eb [i];

Pseupocobk 1. The pseudocodes for bias elitist breeding operation.

For an infeasible particle, located outside the constraint
boundary, undergoing the bias elitist breeding with a ran-
domly selected elitist located within the constraint boundary,
it is more likely to have a feasible particle generated for
the infeasible particle through the transposon with a feasi-
ble elitist chosen from epool. In such a way, the bias elitist
breeding not only promotes the diversity of the swarm but
also is able to assist the constraint handling capability in
order to enhance the global search exploration in return.
The pseudocodes of bias elitist breeding operation are
given in Pseudocode 1.

4.3. Series Elitist Breeding. The series elitist breeding is
performed right after the position update procedure of each
particle. It will be conducted for every search cycle. Different
from the bias elitist breeding, the newly updated particle
undergoes transposon with an elitist selected randomly
among all elitists from epool to generate a trial vector so
as to effectively exploit and explore the search space. The
purpose of the series elitist breeding is to promote the
diversity of the swarm. The epool is updated accordingly
with the newly generated particle. The procedure of series
elitist breeding is the same as the bias one, but all the elitists
participated in the random selection of transposon.

4.4. Constraint Handling with Particle Repositioning. To keep
the particle search in the correct direction, it is essential to
satisty the equality and inequality constraints simulta-
neously. The standard penalty function method is not
effective in handling the equality constraints. Researches
have focused on the heuristic strategies to modify infeasi-
ble solutions to satisfy the equality constraints. Emphasis
is on adjusting the value of the elements in each solution
in every search iteration meticulously to satisfy the con-
straints [9, 64, 65]; obviously, such strategies are computa-
tionally expensive and inefficient in finding the optimum
solution. As mentioned, the infeasible particle which
resulted from the position update may have a chance to
migrate to the feasible zone through the series elitist
breeding. Therefore, an improved heuristic technique
based on the heuristic strategy presented in [64] and com-
bined with the complementary update method for pbests
and gbest for infeasible particle repositioning to satisty
the constraints is proposed. If the infeasible particle can-
not be corrected through the series elitist breeding, it will
be repositioned to a new location satisfying the constraints
through the method described as follows:

Step 1. 1If necessary, to satisfy the inequality constraint of
power output limit given by (6), modify the value of the jth
element in the ith individual as follows:

. ! !
PLj’ if Pj,min < PLj = Pj,max’
! . !
ij — Pj,min’ if Pi,j < Pj,min’ (16)
! . !
Pj,max’ if Pi,j > Pj,max'

Step 2. If any element in the ith individual falls within its kth
prohibited zone, the value of this element will be adjusted to
satisfy the inequality constraint given by (7) as follows:

) : !
P Fio I (Pz" B P’”‘) g (P c PJ"‘>’ (17)
ij =
. !
fo i (Pl—Py) < (Py—Pli).

Step 3. Set P,=P; and set each of the repairing flag RF ; of
element j to 0.

Step 4. Calculate P; (i.e., transmission network loss) using
the coeflicient formula given by (5).

Step 5. Calculate the equality constraint violation using the
following formula:

NH
P,= Y P,—P -Pp (18)
i=1

If the absolute value of P,, is less than the predefined demand
tolerance ¢, then go to Step 8; otherwise, go to Step 6.

Step 6. From the current individual, randomly select an
element j with RF; = 0 (it means the element was not selected

so far) and set RF =1 if all the elements have been selected
before, then go to Step 8.

Step 7. Adjust the value of element j to satisfy the power
balance constraint given by (4) as follows:

P,;~ min (Pw, (P,.) P j,mh;) x randv), if P, >0,
ij = '
P;; + max (Pw, (P Pi,j) X randV),

jomax

if P, <0,

v —

(19)
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where randv is a random number uniformly distributed
on [0, 1].

If element j falls within its kth prohibited zone, the value
of this element will be adjusted to satisty the prohibited
zone constraint as Step 2. Repeat the actions listed in
Step 5.

Step 8. If maxy,{[P;; - P,;|} < 6, then go to Step 9; otherwise,
go to Step 3. Here, § is a temporal adaptive solution conver-
gence tolerance and can be calculated as follows:

O, +(T-t)x(8,-9,)

0= T ,

(20)

where T is the maximum iteration number and ¢ is the
current search iteration number; §, and &, are the initial
and final values of §, respectively.

Step 9. End.

The improved constraint handling method lays on the
time-varying & together with the cooperative update method
for pbests and gbest described below to reduce the computa-
tional cost and enhance the search efficiency. To handle the
constraints effectively, the solution convergence tolerance §
is normally set to a small fixed value in those approaches
adopting the heuristic technique as in [64] and thereby leads
to heavy computational cost. Apparently, it is unnecessary to
use the meticulous method to handle the constraints for
each of the individual particles in the whole search proce-
dure. Hence, the time-varying decrement § is proposed to
improve the efficiency of constraint handling. In the early
iterations, more infeasible solutions are allowed to appear
so as to increase the diversity of the search. Combined with
the elitist breeding strategies, the exploration ability of the
solution algorithm is thereby enhanced. Conversely, in the
later iterations, a stricter criterion is beneficial for generating
the feasible solutions so as to enhance the convergence speed
of the search.

4.5. pbests and gbest Update. It is clear that the equality
constraint is not guaranteed to be satisfied through the heu-
ristic repairing procedure. To cooperate with the constraint
handling method, a novel update method for pbests and gb
est is introduced following the constraint handling step.
The method is as shown below.

Step 1. Calculate P; using coeflicient (5).

Step 2. Calculate the absolute value of equality constraint
violation (called constr) according to the formula as follows:

N

9
constr = abs ZPI.—PL—PD . (21)
i=1

If constr is less than the demand tolerance &, then set constr
to 0; otherwise, calculate the probability (called prob) to

accept the infeasible solutions as the elitist (pbest and gbest)
as follows:

prob = %, (22)

where T is the maximum iteration number and ¢ is the
current search iteration number.Then recontribute the value
of constr with the equation below:

if randv > prob,

0)
constr = (23)

constr, if randv < prob,

where randv is a random value chosen uniformly within the
interval [0, 1].

Step 3. Update pbest of each particle with the following rules:

(1) If constr of the current particle is less than constr of
its pbest, set the current particle as its updated pbest.

(2) If constr of the current particle is equal to constr of its
pbest and the objective function value of the current
particle is less than the objective function value of
its pbest, set the current particle as its updated pbest.

(3) Otherwise, keep the pbest of the current particle
unchanged.

Step 4. Update gbest with the following rule: select the pbest
with the smallest constr as the new gbest of the current
iteration; if more than one pbest have the same smallest value
of constr, use the pbest with the smallest objective function
value as the new pbest.

Step 5. Stop the pbest and gbest update procedure.

Obviously, the probability of accepting infeasible solution
as elitists is decreasing with respect to the search iteration.
Such scheme aims to enhance the solution diversity in the
early search iterations and promotes the search efficiency in
the feasible area in the later search stage.

5. Implementation of the DEB-QPSO Algorithm

The decision variables in ED problems are the real power
output of the units in the systems. A particle is a set of real
number elements corresponding to the units’ output repre-
sented particle by the position vector x=(x,x,,...,xp)
where D is the number of units, which signifies a solution
in the search responsible for the exploration of the search
space. The proposed DEB-QPSO algorithm is summarized
as in Table I:

5.1. Initialization of Population. According to (6), the mini-
mum and maximum outputs of the ith generator are defined
as follows:

!
Pi,min = max {Pi,min’ P? - DRi}’ (24)
P, = min {P, . P+ UR,}.

i,max’



TaBLE 1: The process of DEB-QPSO.

Step 1. Randomly initialize the position of a population while
satisfying the constraints.

Step 2. Update the positions of particles according to (12).
Step 3. Perform the series elitist breeding operation.

Step 4. If necessary, repair the position of particles to satisfy the
constraints.

Step 5. Update pbests and gbest.

Step 6. Perform the bias elitist breeding operation when the
criterion is met.

Step 7. Go to step 2 until the stopping criterion is met.

Therefore, a set of particles is initialized randomly as
follows:

Pi{}it =P ! + randvi,j X (P ',ma),( - pj,mixll) > (25)

J.min Jj

where randv;; is the random number generated using the
uniform probability distribution function in the range [0, 1].

5.2. Position Update. For each particle, the position update
is conducted according to the QPSO algorithm signified
by (8).

5.3. Series Elitist Breeding. The series elitist breeding is per-
formed on each particle with the elitist randomly selected
from epool. New subswarm is generated. Since the resulting
subswarm is not always guaranteed to satisfy the constraints,
the improved particle repositioning is conducted.

5.4. Update of pbests and gbest. The pbests of each particle at
iteration ¢ + 1 is updated according to the described updating
procedures. Obviously, gbest is set as the best evaluated posi-
tion among all the pbests.

5.5. Bias Elitist Breeding. To bias the swarm towards the
feasible region, each particle is going through the bias elitist
breeding for every A iteration.

5.6. Stopping Criteria. The proposed DEB-QPSO algorithm is
terminated if the iteration reaches a predefined maximum
number.

6. Case Studies and Results

The proposed DEB-QPSO approach is applied to three dif-
ferent widely used test case power systems posing different
difficulties to optimization algorithms: (i) a 15-unit system
with prohibited operating zones, ramp rate limits, and
transmission network losses, (ii) a 40-unit system with
valve-point effects, prohibited operating zones, and ramp
rate limits, and (ii) a 140-unit Korean power system with
valve-point effects, prohibited operating zones, and ramp
rate limits.

To evaluate the solution quality and robustness fairly, 50
independent runs are conducted for each case. The setup for
the proposed DEB-QPSO algorithm is as follows:

Complexity

TaBLE 2: Best solution obtained using the proposed DEB-QPSO
(case I).

Bus number Output Bus number Output
P, (MW) 454.9997 P, (MW) 60.5887
P, (MW) 380 P, (MW) 159.9958
P, (MW) 129.9998 P, (MW) 80
P, (MW) 130 P, (MW) 79.9992
P (MW) 170 P, (MW) 25
P, (MW) 459.9998 P, (MW) 15
P, (MW) 430 P, (MW) 15
Py (MW) 68.7781

3 P, (MW) 2660. 3611

P .. (MW) 30.3611

F o ($70) 32701.1557

(1) The maximum object function evaluation numbers
(FEs) are 6000, 20,000, and 20,000 for test systems
1, 2, and 3, respectively.

(2) The population size is 20.

(3) The contraction-expansion coefficient a decreases
linearly from 0.6 to 0.5.

(4) CR in serial elitist breeding is fixed at 0.6.
(5) Ais 2.

(6) €is set to 1 x 10710 x (total power load demand), and
it is much stricter than the parameter setting in [24].

(7) 8, and &, are set at 1x107% and 1x1073,
respectively.

To make a direct comparison, simulation experiments
of the three test systems are conducted with the QPSO
and its two variants, QPSO-DM(1) and QPSO-DM(2),
proposed to solve the ED problem in [39] with the same
population size and FEs as set in the DEB-QPSO algorithm.
In addition, to assess the efliciency of the proposed elitist
breeding strategies and the proposed constraint handling
method, the proposed constraint handling and the one pro-
posed in IPSO [64] are applied, respectively, to the original
QPSO under the same parameter settings as in the DEB-
QPSO algorithm to form two other algorithms, namely,
QPSO-EDP(1) and QPSO-EDP(2), for comparison. Further-
more, the computational results found by some other the
state-of-the-art methods reported in the literature are com-
pared as well. All the simulations are conducted under the
computing environment with a notebook PC, 4 GB RAM,
Core i3 2.13GHz CPU clock speed, Microsoft Windows 7,
and MATLAB 2010a.

For each test case, there are two tables showing the
simulation results: one for the best fuel cost values
obtained by DEB-QPSO with the corresponding genera-
tion power outputs after 50 independent runs (Tables 2,
3, and 4 for case I, case II, and case III, resp.) and the
other for the result summary of the best, average, and
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TAaBLE 3: Best solution obtained using the proposed DEB-QPSO (case II).

Bus number Output Bus number Output Bus number Output Bus number Output
P, (MW) 110.7998 P, (MW) 168.7821 P,, (MW) 523.2794 P, (MW) 190.0000
P, (MW) 110.7998 P, (MW) 168.0552 P,, (MW) 523.2794 P 5, (MW) 190.0000
P, (MW) 97.3999 P 5 (MW) 214.7598 P ,; (MW) 523.2794 P, (MW) 190.0000
P, (MW) 179.7331 P, (MW) 400.0000 P, (MW) 523.2794 P, (MW) 164.7998
P, (MW) 87.7999 P s (MW) 394.2794 P,. (MW) 523.2794 P L. (MW) 164.7998
P, (MW) 140.0000 P, (MW) 304.5196 P, (MW) 523.2794 P, (MW) 164.7998
P, (MW) 259.5997 P, (MW) 489.2794 P, (MW) 10.0000 P, (MW) 110.0000
P ¢ (MW) 284.5997 P s (MW) 489.2794 P g (MW) 10.0000 P ;s (MW) 110.0000
Py (MW) 284.5997 P o (MW) 511.2794 P,y (MW) 10.0000 P o (MW) 110.0000
P, (MW) 130.0000 P,y (MW) 511.2794 P, (MW) 87.7999 P o (MW) 511.2794
> P, (MW) 10500.0000 F o ($70) 121472.7668

TaBLE 4: Best solution obtained for the 140-unit system using DEB-QPSO (case III).

Bus number ~ Output  Bus number  Output  Bus number  Output  Bus number Output Bus number ~ Output
P, (MW) 1172970 P,y (MW) 5009966 P ., (MW) 1038112 P, (MW) 1150175 s (MW) 941953
P, (MW) 188.7133 P ., (MW) 501 P (MW)  198.0444 P, (MW)  207.0494 4 (MW) 94,0038
P, (MW) 189.8084 P, (MW) 506 P (MW) 3115666 P4 (MW)  207.0172 115 (MW) 244
P, (MW) 190 P, (MW) 5059437 P, (MW) 2850454 P (MW)  177.3728 e (MW) 2442227
5 (MW) 1685109 P, (MW) 5059441 P, (MW) 1635463 P g (MW)  176.1600 1y (MW)  244.0369
o (MW) 1881695 P, (MW) 5059737 P, (MW) 954018 P, (MW) 1750217 e (MW) 951762
(
(

MW) 489.9914 P, (MW)  499.8883 P (MW) 160.7681 P, (MW)  175.1082 1o (MW) 95,0278
1o (MW)  116.0736
1 (MW)  175.0168
1y (MW) 21429

MW)  489.9733 P, (MW) 499.9484 P, (MW) 1659874 P, (MW)  579.9638
o (MW) 4959999 P (MW) 2409973 P (MW) 487.1185 P, (MW)  644.9552
P, (MW) 4959738 P, (MW) 2409804 P (MW) 1979387 P, (MW)  983.9236

P, (MW) 4959997 P, (MW) 7739365 P (MW) 4888266 P, (MW) 978 s (MW) 40436
P, (MW) 4959950 P, (MW) 7689871 P . (MW) 490 Py (MW)  681.9999 14 (MW) 15

P (MW) 5059779 P, (MW) 30000 P, (MW) 1301504 P, (MW)  719.9820 s (MW) 90005
P, (MW) 5089738 P, (MW) 30091 P, (MW) 2348483 P, (MW) 718 e (MW) 120286

P, (MW) 5049864 P, (MW) 2429736 P, (MW) 3252732 P, (MW)  963.9992 s (MW) 1121078
P, (MW) 5059858 P, (MW) 2499237 P (MW) 1956645 1o (MW)  4.0005
130 (MW)  5.0025
11 (MW) 5

15 (MW)  50.3038
153 (MW)  5.0258
L (MW) 42,0002
a5 (MW) 420500
se (MW) 410118
1y (MW)  17.0102
135 (MW) 7

P (MW)  957.9839
P (MW) 5058171 P, (MW) 2493941 P, (MW) 1753521 P, (MW) 1006.9750
P, (MW) 5048906 P, (MW) 2447004 P, (MW) 1860201 P 5 (MW) 10059920
P,y (MW) 5049952 P, (MW) 2480422 P, (MW) 1751273 P, (MW) 1012.9910
P, (MW) 5049956 P, (MW) 249.8546 P, (MW) 1755258 P, (MW) 1019.9920
P,, (MW) 5049881 P. (MW) 2497768 P, (MW) 3309662 P 6(MW) 953.9933
P, (MW) 5049728 P. (MW) 1692291 P, (MW) 5308824 P

P,, (MW) 5049863 P.,(MW) 1650001 P (MW) 5309256 P

P, (MW) 5369815 P.,(MW) 1657448 P, (MW) 3665174 P,

P, (MW) 5367416 P, (MW) 1655105 Py, (MW) 5601368 P,

P, (MW) 5489839 P. (MW) 180.0231 P (MW) 115.1456 P111 (MW)  1014.9750 130 (MW)  7.1937
P, (MW) 5487910 P ., (MW) 180 Pg, (MW)  115.0067 P112 (MW)  94.1349 10 MW) 26,9094

2 P, (MW) 49342.0000 F o ($7h) 1559989.4523

1oy (MW) 952
105 (MW) 1006
0o (MW)  1012.9980

P
P,
p
P
P
j2
j2
P
P
P
p
P
P
P
P, (MW) 5059993 P, (MW) 2497749 P (MW) 1373286 P99 (MW)  719.9486 P, (MW)  10.0056
P
P
P
P
P
P
P,
P
P
P
1o (MW) 1021 P
P
P

worst cost found by the proposed DEB-QPSO and its FEs  case I, case II, and case III, resp.). In addition, to access
together with the corresponding result of the other state-  the effectiveness of the proposed constraint handling
of-the-art methods in literatures (Tables 5, 6, and 7 for = method in reducing the computational time, the average
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TaBLE 5: Results obtained by optimization methods (case I).
Methods Best cost ($/h) Worst cost ($/h) Mean cost ($/h) FEs CPU time (s)
PSO [11] 32858.00 33331.00 33105.00 20,000 /
GA [11] 33113.00 33337.00 33228.00 20,000 /
SA-PSO [12] 32708.00 32789.00 32732.00 20,000 /
IPSO [13] 32,709 — 32784.5 10,000 /
DSPSO-TSA [14] 32715.06 32730.39 32724.63 6000 /
MTS [22] 32716.87 32796.13 32767.4 100,000 /
IA_EDP [7] 32698.20" 32823.78 32750.22 20,000 /
QPSO [39] 33014.21 33342.30 33148.77 6000 /
QPSO-DM(1) [39] 32970.85 33406.27 33163.26 6000 /
QPSO-DM(2) [39] 32927.93 33353.23 33156.34 6000 /
QPSO-EDP(1) 32707.99 32718.39 32712.02 6000 4.27
QPSO-EDP(2) 32710.14 32719.27 32716.94 6000 6.35
DEB-QPSO 32701.16 32701.18 32701.17 6000 4.68
*In the case of IA_EDP, power balance constraint is not satisfied.

TaBLE 6: Results obtained by optimization methods (case II).
Methods Best cost ($/h) Worst cost ($/h) Mean cost ($/h) FEs CPU time (s)
NAPSO [15] 121491.0662 121491.5261 121491.2756 100,000 /
FAPSO [15] 122261.3706 122597.5196 122471.0751 100,000 /
PSO [15] 124875.8523 125368.9204 125162.7011 100,000 /
IABC [16] 121491.2751 121582.3865 121539.4175 100,000 /
TABC-LS [16] 121488.7636 121582.2525 121526.0333 100,000 /
QPSO [39] 126615.4498 128679.5909 128621.1241 20,000 /
QPSO-DM(1) [39] 131291.9433 131586.1562 131368.4071 20,000 /
QPSO-DM(2) [39] 131318.4412 133393.5961 131739.5250 20,000 /
QPSO-EDP(1) 121681.46 121708.01 121693.42 20,000 5.38
QPSO-EDP(2) 121875.23 121907.26 121895.49 20,000 7.96
DEB-QPSO 121472.77 121483.67 121477.52 20,000 6.15

TaBLE 7: Results obtained by optimization methods (case III).
Methods Best cost ($/h) Worst cost ($/h) Mean cost ($/h) FEs CPU time (s)
IPSO [64] 1657962.73 1657962.73 1657962.73 300,000 /
CQGSO [40] 1657962.72 1657962.77 1657962.74 120,000 /
DEL [18] 1657962.71 — 1658001.70 225,000 /
DE [19] 1566264.99 1566308.37 1566285.56 250,000 /
IDE [19] 1564648.66 1564682.73 1564663.54 250,000 /
QPSO [39] 1795570.26 1896439.75 1837102.23 20,000 /
QPSO-DM(1) [39] 1826727.13 1926994.21 1882621.38 20,000 /
QPSO-DM(2) [39] 1836848.28 1925476.87 1883407.62 20,000 /
QPSO-EDP(1) 1562612.57 1564828.72 1564105.64 20,000 7.21
QPSO-EDP(2) 1563052.83 1565314.23 1564482.81 20,000 10.39
DEB-QPSO 1559989.45 1560739.23 1560215.43 20,000 8.48

CPU time required by the DEB-QPSO, QPSO-EDP(1),
and QPSO-EDP(2) algorithms are listed in Tables 5, 6,
and 7 for case I, case II, and case III, respectively.

Moreover, the convergence characteristics of the median
results obtained in the 50 runs with the proposed DEB-QPSO
algorithm and the compared QPSO-EDP(1) and QPSO-
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FIGURE 7: Convergence properties for case IL.

EDP(2) algorithms for the three test systems are illustrated in
Figures 6, 7, and 8, respectively.

6.1. Case I: 15-Unit System. The test system consists of 15
generating units. The expected load demand is 2630 MW.
The system parameters and the B coefficients can be found
in [10]. The main difficulties of this system for any optimiza-
tion algorithm are the nonlinear and noncontinuous deci-
sion space and the power balance constraint with network
transmission losses.

From Table 5, it clearly shows that the proposed method
obtains the best result with lowest FEs than other techniques

11

Fuel cost ($/h)

1.55

02 04 06 08 1 12 14 16 18 2
x10*
FEs
—— DEB-QPSO
------ QPSO-EDP(1)
——— QPSO-EDP(2)

F1GURE 8: Convergence properties for case IIL.

except for IA_EDP [7] in the 15-generating-unit test systems.
However, it should be noted that the exact power loss
computed from the best solution found by IA_EDP [7]
is actually 30.2825 instead of 30.0187 as reported in the
corresponding literature, which shows that the total gener-
ated power of the schedule is much less than the total load
demand plus its total line loss; obviously, the best solution
reported in [7] is in fact infeasible. It can be concluded that
the elitist breeding strategy of the proposed DEB-QPSO
algorithm is not only capable of locating the optimal solution
but also capable of being computationally effective as fewer
functional evaluations are required comparing to other algo-
rithms in the 15-generating-unit test system.

Moreover, the robustness of DEB-QPSO is confirmed
with the evidence that the difference between worst cost
and the best cost obtained by DEB-QPSO is no more than
0.01% of the best cost. The impact of the two key components
of DEB-QPSO towards the search of optimal solution is also
revealed individually from the simulation results. On one
hand, it can be concluded from the results obtained by
DEB-QPSO and QPSO-EDP(1) that the proposed elitist
breeding strategies are beneficial for improving the global
search capability of QPSO since QPSO-EDP(1) employed
the same constraint handling as in the proposed DEB-
QPSO. On the other hand, the efficiency of the proposed con-
straint handling method is validated not only with the results
obtained by QPSO-EDP(1), which are better than those
obtained by QPSO-EDP(2) using the IPSO’s constraint han-
dling method in [64], but also required less computational
time to locate the solutions. Furthermore, the extra process-
ing for elitist breeding is computational effective as the
DEB-QPSO only increases less than 10% of the computa-
tional time when comparing with QPSO-EDP(1).

Besides, the simulation results also reveal that algorithms
with heuristic constraint handling such as QPSO-EDP(1),
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QPSO-EDP(2), IPSO, and the proposed DEB-QPSO have
better performance and computational effectiveness than
those using penalty function for constraint handling.

It can be observed from Figure 6 that the DEB-QPSO
algorithm converges to the result very close to the final opti-
mal solution in early iterations and has a better convergence
property than QPSO-EDP(1) and QPSO-EDP(2) algorithms
in test case I.

6.2. Case II: 40-Unit System. The test system consists of 40
thermal units and 5 of which exhibit prohibited zones. The
transmission losses are not considered and the expected load
demand is 10,500 MW. All the generators in this system are
subjected to valve-point effects resulting in a solution space
with multiple minima. Because of the large dimension and
multiple minima, it is hard to locate the global minimum.
The fuel cost function coefficients and active power genera-
tion limits for this system can be obtained from Table 7 in
reference [15] and the prohibited operation zones from Table
12 in reference [15].

It can be observed from Table 4 that the DEB-QPSO
algorithm has generated very satisfactory stable solutions
in the 40-generating-unit test system. The DEB-QPSO
algorithm is able to obtain the best costs among the com-
pared approaches with the lowest FEs; besides, the best cost
and the worst cost are all within £0.01% of the cost mean.
Similarly, the efficiencies of the proposed elitist breeding
strategies and the constraint handling method are both dem-
onstrated positively in the test results in terms of the solution
obtained and the computational efforts required to reach to
the solution comparing to the compared algorithms. More-
over, the QPSO-EDP(1) algorithm with the proposed con-
straint handling outperforms the QPSO-EDP(2) algorithm
while the DEB-QPSO algorithm has better solution than
both QPSO-EDP(1) and QPSO-EDP(2) algorithms as in case
L. It is obvious that the proposed DEB-QPSO algorithm has
the best convergence performance among the three com-
pared algorithms as shown in Figure 7.

6.3. Case III: 140-Unit System. To demonstrate the capability
of the DEB-QPSO algorithm to the large-scale power sys-
tems, the proposed method is evaluated on a Korean power
system consisting of 140 generators with ramp rate limits
with the hydro and pump storage plants not being consid-
ered. Twelve of the generating units have the cost function
with valve-point effects, and four generating units have the
prohibited operating zones.

Since the 140-unit system is a larger system with more
nonlinear elements and so as local minima; it is far more dif-
ficult to find the global solution than case II. System param-
eters of the test system are taken from [64] with the load
demand set at 49,342 MW. It can be observed in Table 7 that
the proposed DEB-QPSO algorithm outperforms the com-
pared methods. Moreover, even the worst result found by
the DEB-QPSO algorithm is less costly than the best result
of other compared methods, which reveals that the proposed
algorithm is able to solve the large-scale ED problems with
valve-point effect and prohibited zones effectively.

Complexity

In addition, the robustness of the DEB-QPSO algorithm
is obviously demonstrated by the fact that all the costs
obtained by the DEB-QPSO algorithm are within +0.01% of
the mean value. Comparison of the computational time
needed for the ED problem by the DEB-QPSO, QPSO-
EDP(1), and QPSO-EDP(2) algorithms supports the efficien-
cies of the proposed elitist breeding strategies and constraint
handling method. In Figure 8, the proposed DEB-QPSO
algorithm exhibits better convergence properties in solving
the large-scale nonconvex ED problems.

7. Conclusion

This paper proposes a DEB-QPSO approach for solving
nonconvex, nonsmooth, and nonlinear ED problems. It
combines the basic evolutionary processes of QPSO with
two elitist breeding strategies, and an efficient improved
heuristic constraint handling technique is proposed to solve
the ED problems. The bias elitist breeding combined with
the series elitist breeding is devised to improve the search
efficiency of the algorithm. To handle the constraints, the
improved heuristic technique for repairing position of parti-
cles and a novel pbests and gbest update method are pro-
posed. These strategies reduce the computational efforts and
improve the search efficiency of the solution algorithm for
solving ED problems. Such characteristics are demonstrated
consistently in all test cases.

The proposed DEB-QPSO method was tested on the
ED problems of three widely used power system instances
of 15 units, 40 units, and 140 units, respectively, with non-
convex, nonsmooth, and nonlinear characteristics of the
generators such as valve-points prohibited operating zones
with ramp rate limits as well as transmission network
losses. The results of the case studies clearly illustrate the
superior features of the proposed DEB-QPSO method such
as high-quality solutions, robustness properties, and com-
putational effectiveness. Comparing with other algorithms,
the DEB-QPSO algorithm can locate better solution effec-
tively. It is mainly because the proposed elitist breeding
scheme can aggrandize the diversity of the swarm that is
essential to the exploration and exploitation for the search
of the global optima. The framework of the DEB-QPSO
algorithm can be used as an efficient optimizer providing
satisfactory solutions for ED problems with various fea-
tures. Future researches will be followed to perfect the
DEB-QPSO algorithm for solving ED problems under
dynamic environment.
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