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Correct lateralization of temporal lobe epilepsy (TLE) is critical for improving surgical outcomes. As a relatively new noninvasive
clinical recording system, magnetoencephalography (MEG) has rarely been applied for determining lateralization of unilateral
TLE. Here we propose a framework for using resting-state brain-network features and support vector machine (SVM) for TLE
lateralization based on MEG. We recruited 15 patients with left TLE, 15 patients with right TLE, and 15 age- and sex-matched healthy
controls. The lateralization problem was then transferred into a series of binary classification problems, including left TLE versus
healthy control, right TLE versus healthy control, and left TLE versus right TLE. Brain-network features were extracted for each
participant using three network metrics (nodal degree, betweenness centrality, and nodal efficiency). A radial basis function kernel
SVM (RBF-SVM) was employed as the classifier. The leave-one-subject-out cross-validation strategy was used to test the ability
of this approach to overcome individual differences. The results revealed that the nodal degree performed best for left TLE versus
healthy control and right TLE versus healthy control, with accuracy of 80.76% and 75.00%, respectively. Betweenness centrality
performed best for left TLE versus right TLE with an accuracy of 88.10%. The proposed approach demonstrated that MEG is a good

candidate for solving the lateralization problem in unilateral TLE using various brain-network features.

1. Introduction

Temporal lobe epilepsy (TLE) is the most common type of
drug-resistant focal epilepsy in adults [1]. TLE is traditionally
associated with mesial temporal sclerosis (MTS), cell loss,
and gliosis in the hippocampus, entorhinal cortex, and amyg-
dala [2]. Currently, surgical intervention is the main choice
of treatment for medically intractable TLE [3]. However,
surgery helps only 70% of patients become seizure free
[4]. Indeed, approximately one-third of TLE patients are
unable to control their seizures, even with the best available
medications and surgery. Correct clinical diagnosis for TLE is
critical for improving surgical outcomes and requires highly

trained professionals [5]. Manual diagnosis of unilateral TLE
using brain-neuroimaging methods is time-consuming, and
different experts may give contradictory diagnoses for the
same data [6]. Therefore, an objective and automated tool
that can accurately classify brain images is desirable for
presurgical evaluation of epileptogenic lateralization in TLE.

The support vector machine (SVM) method is a super-
vised machine learning technique for classification, and the
radial basis function (RBF) kernel is the most commonly
used kernel function for SVM [7]. As a classification tool,
the SVM technique is flexible, automated, and sufficiently
fast to operate in a clinical setting [8]. SVM algorithms have
been applied for measuring brain morphology [9], including


http://orcid.org/0000-0002-9478-8243
https://doi.org/10.1155/2018/4325096

cortical thickness, volume, curvature, and identification of
MTS in TLE patients. SVM approaches have been utilized to
determine lateralization of the TLE epileptogenic focus with
diffusion tensor imaging (DTTI) structural connectomes [10].
Another study verified the use of SVM for voxel-based MRI
classification, and TLE with MTS can be distinguished from
TLE without MTS with over 88% accuracy [8]. These investi-
gations have combined SVM with MRI or DTI. However, one
of the newest neuroimaging tools, magnetoencephalography
(MEG), has rarely been applied for solving the classification
problem of unilateral TLE.

During the last decade, MEG has become increasingly
available as a noninvasive, reliable, fast, and patient-friendly
technique for recording brain activity [11-14]. MEG has been
widely applied for studying epilepsy disorders, particularly
the localization of pathological brain activity or lesions in
candidates for epilepsy surgery [15-17]. In addition, the
sensitivity of MEG has been investigated for spike detec-
tion that depends on two sensor types (magnetometer and
gradiometer) in patients with epileptic foci in the mesial
temporal lobe [18]. The results revealed that the magnetome-
ter was more sensitive in the mesial temporal area, whereas
the gradiometer performed better in the lateral temporal
area. In another study, the ability of MEG to determine the
localization and orientation of medial temporal spikes was
evaluated in patients with known medial TLE using magnetic
source imaging (MSI) with equivalent current dipoles (ECD)
[19]. The results revealed that MSI with ECD was able to
detect medial temporal spikes, providing important localiz-
ing information in patients with medial TLE. In our pre-
vious MEG study, we investigated the relationship between
endogenous neuromagnetic signals in patients with epilepsy
and epileptic foci determined by clinical data, analyzing the
performance of several existing methods for localizing the
epileptic focus, such as ECD, imaginary coherence (IC), and
synthetic aperture magnetometry (SAM) [20]. The results
suggested that the IC method performs better than ECD or
SAM for quantitatively identifying epileptic activity. Thus,
in the current study, we calculated connectivity matrices to
construct a brain-network for all participants, based on the
IC method.

Brain regions and the structural or functional associ-
ations between them constitute a brain-network. Complex
network analysis is useful for quantitatively characteriz-
ing the properties of brain-networks with a small number
of network measures [21, 22]. Recent studies have estab-
lished that TLE affects a distributed neural network, with
widespread extratemporal effects, rather than having a single
focal epileptogenic source [23-26]. Based on both structural
and functional connectivity (FC) analyses, accumulating
evidence suggests that brain-networks in TLE patients are
pathologically altered [27-30]. Hsiao et al. [31] investigated
FC alterations in the default mode network (DMN) in TLE,
using resting-state spike-free MEG recordings. Their results
revealed that TLE involved changes in FC within the DMN
and that the change was associated with the lateralization
of TLE. In right TLE, FC between the DMN and the
right medial temporal region is enhanced, while left TLE
involves enhanced FC between the DMN and bilateral medial
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temporal regions [31]. By analyzing resting-state MEG sig-
nals, Jin et al. [32] calculated betweenness centrality at the
source-level functional network in mesial TLE. The results
indicated that altered electrophysiological functional hubs
reflected pathophysiological brain-network reorganization
[32]. To test the hypothesis that FC and network characteris-
tics are useful for determining the lateralization of TLE, Yang
et al. extracted resting-state functional brain-network fea-
tures as inputs to an SVM [33]. Using a leave-one-out cross-
validation strategy, their SVM model achieved a prediction
accuracy of 83% with 12 TLE patients. However, there are
few studies using MEG data to construct functional brain-
networks for investigating the lateralization of unilateral TLE.

In the current study, we extracted brain-network features
of patients and healthy controls based on a resting-state
MEG scan, including nodal degree, betweenness centrality,
and nodal efficiency. The features were used as input to the
SVM to classify left TLE, right TLE, and healthy controls.
The results indicated that nodal degree exhibited the best
performance for left TLE versus healthy control and right
TLE versus healthy control, while betweenness centrality per-
formed best for left TLE versus right TLE. Thus, our findings
indicated that MEG is helpful for solving the lateralization
problem of unilateral TLE.

2. Materials and Methods

2.1. Patients and Healthy Control Participants. Thirty patients
with unilateral TLE (age range: 15-62 years, mean age: 38
years; 15 left TLE and 15 right TLE) were recruited at the
Nanjing Brain Hospital, Nanjing Medical University. Seizure-
type classification was based on the International League
Against Epilepsy (ILAE) criteria [34] and the laterality of
the seizure origin was determined using clinical history,
a comprehensive neurological examination, interictal EEG
recordings, and neuroimaging. Fifteen healthy volunteers
(age range: 19-45 years, mean age: 27.9 years) were recruited
as controls who had no history of symptoms related to neu-
rological or psychiatric disorders. There were no significant
differences in age or sex between the groups.

2.2. Ethics Statement. A full explanation of this study was
provided to all patients and control participants before enroll-
ment. All participants provided voluntary and informed
written consent according to the standards set by the ethical
committee of Nanjing Brain Hospital of Nanjing Medical
University, who approved the study.

2.3. MEG Recordings. MEG recordings were performed
while participants were seated inside a magnetically shielded
room using a whole-head CTF 275-Channel MEG system
(VSM MedTech Systems Inc., Coquitlam, BC, Canada).
Before beginning data acquisition, three small coils were
attached to the nasion, left, and right preauricular points
on the head of each participant. The three coils were sub-
sequently activated at different frequencies for measuring
each individual’s head position relative to the MEG sensors.
The system allowed for head localization to an accuracy of
Imm. The sampling rate of MEG recordings was 1200 Hz.
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All MEG data were recorded with noise cancellation of
third-order gradients. Each epoch took 120 seconds and
15 epochs were recorded from each participant. The head
position was measured before and after each epoch. The
limit for acceptable head movement during MEG recording
was 5mm. Spontaneous resting-state activity was recorded
while participants remained in a supine position with their
eyes closed. The resting-state in this study was defined as
spontaneous activity not evoked by cognitive tasks and in the
absence of seizure activity.

2.4. MRI Acquisition. MRI acquisition was similar to that in
our previous study [20]. MR images were acquired ona 3T
scanner (Siemens Medical Solutions, Erlangen, Germany).
The protocol typically included the following sequences: (1)
A T1-weighted, 3D spoiled gradient-recalled echo in a steady-
state sequence with TR = 75 ms, TE = min full, flip angle =
15°, and field of view = 240 mm x 240 mm; (2) A T2-weighted
image, 2D fluid-attenuated inversion recovery (FLAIR) with
TR =8000 ms, TE =120 ms, TT = 2000 ms, matrix = 192 x 256,
field of view = 240 mm x 240 mm, and slice thickness = 5 mm
in the coronal and axial planes, respectively. To allow for
accurate coregistration of the two data sets, the three fiducial
points were placed in locations identical to those of the three
coils used in the MEG recordings.

2.5. MEG Preprocessing. All MEG recordings were visually
examined off-line by two experienced epileptologists, and the
peaks of all epileptic spikes were marked manually based
on the MEG recordings. We extracted three quasi-stationary
segments (20 s per segment) from each participant. The seg-
ments were at least 10 s away from recent epileptic discharge
and free from eye- or muscle-related artifacts or epileptic
activities. Then, the data were band-pass filtered in the 1 to
4 Hz range as a frequency band of interest for further analysis.
Preprocessing and analysis of MEG data were performed with
Brainstorm [35], a well-documented software package that is
freely available to download online under the GNU general
public license (http://neuroimage.usc.edu/brainstorm).

2.6. Network Construction. The Freesurfer open-source
software package was used to extract the cortical envelope
(http://surfer.nmr.mgh.harvard.edu/fswiki/Download And-

Install) of each subject based on their individual MRI
results. The cortical regions of interest (ROIs) in each
of the individual hemispheres were identified from the
reconstructed brain of each participant according to the
automatic anatomical labeling template, using Desikan-
Killiany atlases to define ROI [36]. The cortical surface
of each subject was downsampled to 15,000 vertices. The
standardized low resolution brain electromagnetic tomo-
graphy (sSLORETA) was then used to extract time series
for each vertex [37] (See Brainstorm Tutorials for details,
http://neuroimage.usc.edu/brainstorm/Tutorials). sSLORETA
was based on minimum-norm estimation (MNE) and the
cortical source activities (current density) were normalized
with an individual estimate of the source standard deviation
at each point. MNE can fit the MEG data through a forward
model with a solution of minimum energy. The method has

been identified as an efficient tool for functional mapping,
since it is consistent with physiology and capable of
correcting localization. Subsequently, the dynamic current
strengths of the source activity at grid points within each
ROI were averaged to represent the cortical source dynamics
of each ROL Based on the time-varying source strengths, the
IC, which is insensitive to volume conduction effects [38],
was used to estimate the functional connectivity between
each pair of ROIs. The details of our IC calculations have
recently been published [20]. IC calculation resulted in
a full 68 x 68 adjacency matrix between ROIs for each
individual. The flowchart for the brain-network construction
is displayed in Figure 1.

In general, networks can be represented by graphs that
consist of sets of nodes and the corresponding sets of links
between the nodes [22, 39]. In this sense, ROIs are considered
to be the nodes of a network and the IC values are considered
to be the links between them. We calculated graph-theory
metrics from these weighted matrices using the GRETNA
toolbox [40] (https://www.nitrc.org/projects/gretna/) run-
ning in Matlab (version 8.1 (R2013a) Mathworks Inc.). The
sparsity threshold used for constructing weighted networks
was set from 5% (5% strongest connections (edges) were kept
along with their weights) to 40%, with step size of 1%, of
all the possible connections within networks, generating 36
thresholded weighted networks consequently.

2.7. Feature Extraction. Calculation of graph-theory mea-
sures provides three features to characterize the net-
work’s nodal properties in this work, including, nodal
degree (D), nodal efficiency (E), and betweenness centrality
(B).

Measures of node centrality can effectively describe the
importance of individual nodes in the network. The nodal
degree is considered a basic and important measure of
centrality and represents how strongly one node is inter-
acting, structurally, and functionally, with other nodes in
the network. Besides node degree, measures of centrality
may be based on the length or number of shortest paths
between nodes [21]. The weighted degree of node i is defined
as

D =) w;, 0

JEN

where N is the set of all nodes in the network and wj; is the
connection weight of the link between nodes i and j (i,j €
N).

Nodal efficiency is one of the most common measures
of integration and can be considered as the average inverse
shortest path length [41]. The weighted nodal efficiency is
defined as

w 1 w) !
B = ) () @
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where n is the number of nodes and d;f is the shortest
weighted path length between nodes i and j.
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FIGURE 1: Flowchart showing the brain-network construction of spontaneous MEG based on the Desikan-Killiany Atlas. Numbers indicate the
five steps. Step (1): individual MRI slices were input into Freesurfer to create the brain-structure model. In this step, the skull and cortex
were recognized and their boundary surfaces were determined. The single sphere-based MEG forward model was employed to calculate
MEG lead fields. Step (2): the cortex was partitioned into regions based on the Desikan-Killiany Atlas in preparation. Step (3): filtered MEG
recordings were projected using the inverse problem algorithm (sSLORETA) on the cortices of individual participants to obtain time series for
each voxel. Step (4): the time series were averaged over each atlas to produce 68 atlas-based time courses. Step (5): the connectivity matrix
was constructed using the 68 atlas time courses in preparation for network parameter calculation.

Betweenness centrality based on the number of shortest
paths between nodes is a relatively sensitive measure of cen-
trality [42]. The weighted betweenness centrality is defined as

1 P
hj
B —— —_
fT =D (n-2) ,,;N oy ®)
h# johiti, j#i

where p;:;. is the number of shortest weighted paths between

nodes h and j and p,lfj(i) is the number of shortest weighted

paths between nodes /1 and j that pass through node i.

For each given threshold of network sparsity 68 node-
based metrics were extracted from the segmented ROIs of
each participant and the network metrics over 36 thresholds
were used to construct the feature vectors for each metric
and each subject. All the thresholds were gone through. The
optimal threshold that can provide the highest classification
accuracy was selected to construct the prediction model.

2.8. Support Vector Machine Classification. An SVM is a clas-
sifier that can automatically learn (supervised learning) and
produce a decision hyperplane to classify new examples [43,
44]. In this study, a radial basis function kernel SVM (RBF-
SVM) was used to distinguish between the groups (left TLE
versus healthy controls, right TLE versus healthy controls,
and left TLE versus right TLE). In contrast to linear SVM,
RBF-SVM can provide a nonlinear boundary using the kernel
trick to transform a nonlinear space into a higher dimen-
sional space [45]. The RBF is commonly seen in K(x;, y;) =
exp(=llx;—; [#/20%), where o? is the variance of the Gaussian

kernel [5, 46]. Principal component analysis (PCA) was
used to further reduce the resulting feature space [47].
SVM computing was performed using the LIBSVM toolbox,
available at https://www.csie.ntu.edu.tw/~cjlin/libsvm [48].

We used the leave-one-subject-out cross-validation in
this study. In each step, one subject in class 1 and one subject
in class 2 construct a test set, and all the left data are treated
as a training set. For example, in case of left TLE versus right
TLE, the left and right TLE groups, respectively, contain 15
subjects. In the cross validation, one subject from left TLE
group forms the test set with anyone subject from right TLE
group, exhaustively obtaining 15 x 15 = 225 combinations
corresponding to a series of binary classifications. Mixing
one subject’s data in both training and test sets will give the
algorithm prior knowledge and cause fake high accuracy.
Hence, the leave-one-subject-out cross validation is a fair
evaluation scheme to truly reveal the robustness of the classi-
fier on overcoming individual differences. In other words, this
is an out-of-sample strategy to ensure the generalizability of
the established classifier for out-of-sample individual subjects
[49-51].

A confusion matrix was used to evaluate the performance
of the algorithm. The lateralization problem was specified
into three binary classifications, including, right TLE versus
healthy control, left TLE versus healthy control, and, most
importantly, left TLE versus right TLE. For each task, samples
in the first class were considered “positive” while samples
in the second class were considered “negative.” Therefore,
for each test sample, a binary classifier has four possible
outcomes: True positive (TP); False positive (FP); True
negative (TN); False negative (FN).
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FIGURE 2: Flowchart showing the network parameter-based determination of TLE lateralization. First, based on the connectivity matrix shown
in Figure 1, node-related network parameters (node degree, node efficiency, and node betweenness) were calculated (step (1)). Node degree is
considered a basic and important measure of centrality and represents how strongly one node is interacting, structurally and functionally, with
other nodes in the network. Node efficiency is one of the most common measures of integration and can be considered as the average inverse
shortest path length. Node betweenness based on the number of shortest paths between nodes is a relatively sensitive measure of centrality.
The parameters were then incorporated into feature vectors. Here, we conducted dimension reduction using PCA (step (2)). The optimal
feature vectors were then input into an SVM for classification (step (3)). Finally, by training the SVM, unilateral TLE could be classified with

a high degree of accuracy.

Five values in the confusion matrix are employed to
evaluate the performance of the algorithm:

Accuracy = (TP + TN)/(TP + FP + TN + FN);
Sensitivity = TP/(TP + FN); Specificity = TN/(FP +
TN);

Positive Predictive Value, PPV = TP/(TP + FP);
Negative Predictive Value, NPV = TN/(FN + TN).

The flowchart of the RBF-SVM classification is shown in
Figure 2.

2.9. Principal Component Analysis (PCA). PCA is a statistical
procedure that uses an orthogonal transformation to convert
a set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal
components. It is used here to reduce the dimensions of
feature vector in classification. A relatively smaller dimension
may improve the computational efficiency, especially in prob-
lems with a large number of samples and a high dimension
of feature vectors. Meanwhile, the PCA operation may drop
useless components in the feature vector, producing higher
confusion matrix values.

The algorithm traverses n (1-68) of the 68 PCA compo-
nents corresponding to the descending order of eigenvalues.
Only the optimal #n components are retained to construct the
prediction model.

3. Results

Although SVM is a powerful tool for classification, the
convolution-based algorithm operation is usually very time-
consuming. Before using SVM, it is still valuable to inspect
whether the network metrics can classify different groups
without the assistance of SVM. Group differences of 68
brain regions in the network metrics calculated based on
the optimal threshold were tested with two-tailed t-tests

for independent samples. The brain regions with between-
group differences (P < 0.05, uncorrected) are displayed in
Table 1. False discovery rate (FDR) correction [52] (g <
0.05) was used to control for multiple comparisons. None of
the significant differences survived the FDR correction. This
result suggests the need for mapping of the feature vectors
into the higher dimensional space, making it possible to
distinguish the MEG data by a powerful classifier, such as
RBF-SVM.

The RBF-SVM was utilized to build a nonlinear model
that predicted TLE laterality based on the brain-network fea-
tures using a leave-one-subject-out cross-validation strategy.
The performance of the RBF-SVM classification was esti-
mated by calculating the confusion matrix values as defined
above. The classification performance between groups was
shown in Table 2. For nodal degree (D), the RBF-SVM
classifiers achieved the highest classification accuracy for left
TLE versus healthy controls (80.76%). For nodal efficiency
(E), the resulting classifiers gained an appropriate level
of accuracy both for the left TLE versus healthy controls
(77.38%) and for right TLE versus healthy controls (73.81%).
The betweenness centrality (B) provided the lowest accuracy
in left TLE versus healthy controls and right TLE versus
healthy controls. However, for left TLE versus right TLE, B
achieved the highest accuracy (88.10%), making it the best
feature for lateralization of TLE in patients’ groups.

4. Discussion

The feature vectors were constructed from the network
measures based on brain regions in the source space, rather
than the sensor nodes over the scalp. Each brain region with
an anatomical or functional label from a given atlas has its
own size and shape, whereas the sensor nodes are equal-
sized planes, which are approximately equidistributed over
the scalp [18]. Although TLE can result in pathophysiolog-
ical changes in some brain regions, changes might not be
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TABLE 1: Brain regions with significant differences (P < 0.05, two-tailed ¢-test, uncorrected) in nodal parameters between the groups.

Left TLE versus Right TLE Left TLE versus HC Right TLE versus HC
D B E D B E D B E
bankssts L 0.0427
entorhinal L 0.0154
frontalpole L 0.0408
frontalpole R 0.0195 0.0398
inferiortemporal R 0.0289
lateraloccipital R 0.0189 0.0356 0.0323
medialorbitofrontal L 0.0238 0.0236 0.0282 0.0114
parahippocampal L 0.0475
parsorbitalis L 0.0198 0.0442 0.0181
parstriangularis R 0.0433 0.0370
postcentral L 0.0412
postcentral R 0.0422
precuneus R 0.0466
rostralmiddlefrontal L 0.0500
rostralmiddlefrontal R 0.0340 0.0412
superiorfrontal R 0.0149 0.0216
superiorparietal L 0.0199 0.0182
superiortemporal L 0.0137 0.0163 0.0219 0.0176
superiortemporal R 0.0168 0.0455
supramarginal R 0.0296 0.0361 0.0332
temporalpole L 0.0193 0.0455 0.0356
temporalpole R 0.0091 0.0189
transversetemporal R 0.0441 0.0075

None of the significant differences survived the FDR correction. TLE: temporal lobe epilepsy; HC: healthy control; D: degree; B: betweenness; E: efficiency; L:
left; R: right.

Brain region

TaBLE 2: Classification performance between groups.

RBF-SVM classification D B E
Left TLE versus HC

Sensitivity 80.95% 76.19% 76.19%
Specificity 78.57% 71.43% 78.57%
PPV 82.82% 77.26% 78.21%
NPV 85.83% 72.62% 81.39%
Accuracy 80.76% 73.81% 77.38%
Right TLE versus HC

Sensitivity 80.95% 66.67% 78.57%
Specificity 69.05% 64.29% 69.05%
PPV 75.60% 75.64% 77.98%
NPV 75.60% 64.03% 75.12%
Accuracy 75.00% 65.48% 73.81%
Left TLE versus Right TLE

Sensitivity 73.81% 88.10% 73.81%
Specificity 73.81% 88.10% 76.19%
PPV 79.40% 90.60% 78.81%
NPV 79.40% 89.88% 78.10%
Accuracy 73.81% 88.10% 75.00%

HC: healthy control; D: nodal degree; B: betweenness centrality; E: nodal efficiency.
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evenly spaced in the cerebral cortex. On the other hand,
network analysis in source space using MEG recordings has
been increasingly applied to neuroscience and neurological
disorders [53]. Therefore, we selected the brain regions as the
basic unit (network node) to calculate the network measures,
which were taken as feature vectors for the SVM.

The metrics used to measure the connectivity between
each pairs of nodes within networks also should be care-
fully selected. Compared with the other volume conduction
insensitive measures, such as the phase lag index (PLI) [54]
and the weighted phase lag index (WPLI) [55], IC is not the
newest and is thought to systematically underestimate the
true coupling strength because it normalizes the imaginary
component via signal amplitudes [54]. However, IC is still a
widely used technique for revealing altered FC and has been
applied in cases of brain tumors [56], brain lesions [57], and
other disorders. In addition, in source-level network analyses,
the IC has been suggested to effectively represent the true
coupling of two brain regions with a nonzero time delay using
MEG data [31, 58]. Thus, we used the IC method to calculate
the FC matrix for each subject in the source space.

In the current study, we took advantage of the nodal prop-
erties of the brain-network to classify unilateral TLE patients
and healthy controls through RBF-SVMs that were trained
and tested using the leave-one-subject-out cross-validation
method. The classification accuracies were 73.81% to 80.76%
for left TLE versus healthy controls, 65.48% to 75.00% for
right TLE versus controls, and 73.81% to 88.10% for left
TLE versus right TLE, respectively. Among the different
classification tests, the best classification accuracy (88.10%)
was obtained using betweenness centrality in left TLE versus
right TLE. The current results reveal that not only nodal
degree, but also betweenness centrality and nodal efficiency
can achieve classification accuracies closely for unilateral TLE
versus healthy controls. Interestingly, betweenness centrality
performed better than nodal degree and nodal efficiency
in our study when classifying left TLE and right TLE. To
visually represent the results, we used a radar chart (Figure 3)
to compare the relative confusion matrix values for three
features. In the chart, a pentagon is used to represent the
performance of each feature on five performance measures
defined in the confusion matrix in the section above; for
each feature, its five performance measures are represented
by the five vertices of each pentagon in Figure 3. Better
features occupy a larger area in the radar chart. It is clear
that feature B (betweenness centrality) performed better in
all confusion matrix values than D (degree) and E (nodal
efficiency). The maximum difference between B and D was
14.29% on sensitivity, specificity, and accuracy. Similarly, the
relative superior performance of betweenness centrality for
left TLE versus right TLE makes it more valuable for clinical
use, such as assisting epileptic foci localization.

Generally, a large dimension of feature vector may expo-
nentially increase the complexity of the SVM classifier. As
such, the value of feature vector dimension is desired as
small as possible without compromising the classification
accuracy. This is not a significant obstacle in the current
research because the dimension is limited to a maximum
value of 68 and the sample size of each class is only 45.

Specificity

! Sensitivity

Accuracy

—— D:degree
—— B: betweenness centrality
—— E:nodal efficiency

FIGURE 3: Radar chart of the performance of three features for left
TLE versus right TLE. The output of each feature is represented by a
pentagon in specific color. The outermost grey line means the 100%
accuracy of the five values in the confusion matrix.
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FIGURE 4: Variations in classification accuracy with number of PCA

components. The x-axis represents the number of retained PCA

components. The left y-axis represents the classification accuracy.

The right y-axis represents the PCA percentile under different
number of PCA components.

However, to give some references for further study, the issue
was studied nevertheless. For space sake, we illustrated an
additional experiment on the best feature (B, betweenness
centrality) in the left TLE versus right TLE classification
to demonstrate the effect of PCA in our study. Figure 4
indicates the relationship between classification accuracy and
the number of PCA components according to the descending
order of eigenvalues. The classification accuracy increases
with the number of PCA components and plateaus at 55 (95%
percentile) with the classification accuracy of 88.10%, achiev-
ing the dimensionality reduction at (68 — 55)/68 = 19.12%.
The relationship between the number of PCA components
and the classification accuracy maintained a similar pattern
in other classification cases.



The current study has two advantages that should be con-
sidered. First, similar to a previous study [10], our study used
a graph-based approach in which the nodal properties of the
brain-network were input into the SVM. Evidence indicates
that unilateral TLE is a network disease rather than a disease
with a single focal region [23-26]. Additionally, graph-theory
metrics are able to summarize the network properties with
less computational cost than the voxel-based and skeleton-
based methods [8, 10, 59]. Additionally, for classification of
TLE lateralization, MEG has higher temporal resolution than
MRI [9, 45], fMRI [33], or DTI [8, 10, 59]. Thus, method that
can analyze the effects of different frequency bands, especially
the frequency band in which epileptiform discharges, was
generated. Studies have shown that asymmetric and slow
activity of the delta band (1-4 Hz) can reliably lateralize to
the epileptogenic hemisphere [14, 60-62]. Indeed, significant
differences in delta band activity were found between TLE
patients and controls in network analyses [31, 63, 64]. Thus,
we only selected one frequency band, the delta band, as
our frequency band of interest. Although we propose that
delta band-based network metrics are optimal for selection
of lateralization, further investigation is warranted to identify
and confirm the bands with the best lateralization outcomes.

The large age range of the subjects in the current study
should be considered as a potential limitation. Because a
relatively small number of suitable patients were available,
it was difficult to recruit enough patients within a narrow
age range. To enhance the reliability of our results, we plan
to conduct future studies of TLE lateralization in a patient
sample with a smaller age range.

Clinically, it is more significant to improve the classifica-
tion accuracy in left TLE versus right TLE than to increase
the one in TLE patients versus healthy controls. Our results
indicate that the network feature of D is better than B and
E in classifying left and right TLE with healthy control, with
accuracies of 80.76% and 75.00%, respectively. However, in
the classification of left TLE and right TLE, the metric B has
better classification accuracy (88.10%) than D and E, which is
significant for determining lateralization of unilateral TLE in
clinic. Our results can be compared with those from a recent
study [10] that also utilized an SVM approach to determine
lateralization of the TLE epileptogenic focus. In that study, the
input vectors were four graph-theory metrics that were based
on DTI signals. Interestingly, and in line with our findings,
their results indicated that for left TLE versus healthy control,
and right TLE versus healthy control, classifiers based on
nodal degree (D) had the best classification performance
compared with the other three measures. For left TLE versus
right TLE, their results showed the metric B had the highest
classification accuracy. Thus, we suggest that, in clinic, when
identifying TLE patients from controls, the metric D is
an optimal choice, and when evaluating lateralization of
unilateral TLE, the metric B will be a better one.

5. Conclusion

As a relatively new noninvasive clinical recording system,
MEG is a powerful tool for epilepsy diagnosis. However,
MEG is seldom applied for determining lateralization of
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unilateral TLE. This study demonstrated that MEG is a good
candidate for solving the classification problem of unilateral
TLE and that MEG source space brain-network features
can be effectively used for determining lateralization. The
classification accuracy using the RBF-SVM method based on
betweenness centrality was able to achieve an accuracy of
88.10% for TLE lateralization.
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