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Both glycemic control and handgrip strength affect microvascular function. Multiscale entropy (MSE) of photoplethysmographic
(PPG) pulse amplitudes may differ by diabetes status and hand activity. Of a middle-to-old aged and right-handed cohort without
clinical cardiovascular disease, we controlled age, sex, and weight to select the unaffected (no type 2 diabetes, 𝑛 = 36), the well-
controlled diabetes (HbA1c < 8%, 𝑛 = 22), and the poorly controlled diabetes (HbA1c ≥ 8%, 𝑛 = 22) groups. MSEs were calculated
from consecutive 1,500 PPG pulse amplitudes of bilateral index fingertips.The small-, medium-, and large-scaleMSEs were defined
as the average of scale 1 (MSE1), scales 2–4 (MSE2–4), and scales 5–10 (MSE5–10), respectively. Intra- and intergroups were compared
by one- and two-sample 𝑡-tests, respectively.The dominant handMSE5–10 was lower in the poorly controlled diabetes group than the
well-controlled diabetes and the unaffected (1.28 versus 1.52 and 1.56, 𝑝 = 0.019 and 0.001, resp.) groups, whereas the nondominant
hand MSE5–10 was lower in the well- and poorly controlled diabetes groups than the unaffected group (1.35 and 1.29 versus 1.58,
𝑝 = 0.008 and 0.005, resp.).TheMSE1 of dominant hand was higher than that of nondominant hand in the well-controlled diabetes
(1.35 versus 1.10, 𝑝 = 0.048). In conclusion, diabetes status and hand dominance may affect the MSE of PPG pulse amplitudes.

1. Introduction

Poor glycemic control is associated with endothelial dys-
function, an increase of proinflammatory cytokines, and
lower adiponectin levels in diabetes [1]. On the contrary,
well diabetic control may improve inflammation status and
reduce atherogenic low-density lipoprotein concentrations [1,
2]. Numerous observational studies have shown that diabetic
microvascular dysfunctions such as cardiac or peripheral
autonomic neuropathy are related to physical inactivity and
poor glycemic control [3–5]. Furthermore, a meta-analysis of
randomized clinical trials revealed that improving glycemic
control might reduce the progression of nephropathy and
retinopathy in type 2 diabetes [6]. In addition, a combina-
tion of resistance and endurance exercise improves vascular
endothelial dysfunction and glycemic control, thus leading

to a reduction in the prevalence of diabetic microvascular
complications [7–9].

Measurement of heart rate variability (HRV) and blood
pressure responses to postural change, deep breathing, and
Valsalva maneuver has been applied to evaluate the presence
of diabetic autonomic neuropathies [10]. Javorka et al. have
revealed thatmany frequency and time domain linear indexes
of HRV such as root-mean-square of successive differences of
R-R intervals (RMSSD) are significantly reduced in patients
with diabetes [11]. Costa et al. proposed the nonlinear index
ofmultiscale entropy (MSE) to reflect the complexity of phys-
iological signals [12], which has been utilized additionally to
the linear parameters. In brief, a healthy system exhibits an
exquisite complex control to preserve homeostasis, generally
leading to a high level of MSE [12]. Silva et al. demonstrated
that the nonlinear characteristics of small-time scales MSE
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of HRV are much influenced by parasympathetic activity
in experimental mice [13]. By contrast, the nonlinearity
of large-time scales MSE are much related to autonomic
sympathetic activity and established cardiovascular disease
[14]. Previous reports have shown that the MSE of heart
rate, blood pressure, and pulse wave velocity might be more
sensitive than the linear analysis of HRV parameters to detect
subclinical vascular abnormalities in diabetes [15, 16].

The magnitude of fingertip photoplethysmographic
(PPG) pulse amplitudes is multifactorially influenced by
arteriosclerosis, respiratory cycles, cardiac output, blood
flow, and pulse pressure [17].Theoretically theMSE or refined
MSE of PPG pulse amplitudes can represent the complexity
of cardiovascular and autonomic nervous system network.
Since glycemic control and handgrip strength are associated
with diabetic microvascular diseases, we hypothesized that
the MSE or refined MSE of PPG pulse amplitudes of bilateral
fingers and HRV may vary by hand dominance and diabetes
status.

2. Methods

2.1. Study Population. From July 2009 to October 2010, 113
right-hand dominant men and women, aged between 40
and 80 years, were prospectively recruited at the Ministry of
Health and Welfare Hualien Hospital for PPG exams. Of this
population, 11 individuals were excluded for a history of heart
failure, ischemic stroke, atrial fibrillation, coronary heart
disease, peripheral vascular disease, or permanent pacemaker
implantation, leaving a study cohort of 102 men and women
for the MSE and refined MSE analyses. Diabetes mellitus
was defined as glycated hemoglobin (HbA1c) > 6.5% or
fasting plasma glucose ≥ 126mg/dl or with hypoglycemic
therapy. Of these, 24 individuals had an HbA1c ≥ 8% (the
poorly controlled diabetes group), 29 had an HbA1c <
8% (the well-controlled diabetes group), and 49 did not
have type 2 diabetes (the unaffected group). We matched
age, sex, and body mass index at baseline and selected 80
individuals (78.4%) from the initial study cohort (22, 22, and
36 from the poorly controlled diabetes, the well-controlled
diabetes, and the unaffected groups, resp.) to perform a case-
control comparison as the MSE might be influenced by these
variables. This study has been reviewed and approved by
the participating institutions Research Ethics Boards. Each
participant signed an informed consent.

2.2. Study Protocol. Medical history, demographic, anthropo-
metric, and laboratory data for the analysis were obtained at
the visit in the morning. Measurement of each participant’s
blood pressure was performed once over left arm in the
supine position by an automated oscillometric device (Micro-
life BP3AG1, Taiwan) after a 20-minute rest. Concentrations
of triglycerides and total cholesterol were measured from
blood samples obtained after a 12-hour fasting. Diabetic
retinopathy signs were identified by a fundus examination.
Diabetic nephropathy or chronic kidney disease was diag-
nosed by a spot urinary albumin-creatinine ratio ≥ 30mg/g
(microalbuminuria) or an estimated glomerular filtration
rate < 90ml/min/1.73m2. Peripheral or diabetic neuropathy

was evaluated by the presence of numbness, tingling, or
pain sensation of upper or lower extremity digits lasting
for more than 6 months. Hypertension was defined as
having a resting blood pressure ≥ 140/90mmHg or use of
antihypertensive medications. Dyslipidemia was defined as
high-density lipoprotein cholesterol < 40mg/dl in men or
<50mg/dl in women, low-density lipoprotein cholesterol ≥
130mg/dl, or use of lipid-lowering medications.

Theophylline- and caffeine-containing substances were
forbidden to use for 12 hours before the visit. In addition,
all participants took a rest for 10 minutes or more in a quiet
room with a constant temperature at 26 ± 1∘C to minimize
involuntary vibrations of extremities and constriction of the
peripheral vessels, which may lead to erroneous artificial
readings from infrared sensors at index fingers. Six-channel
electrocardiographic (ECG) pulse wave velocity (PWV) was
calculated by an average of acquisition of ECG R waves and
simultaneous systolic peak of bilateral index fingertips PPG
recordings for 30 minutes [18, 19].

2.3. Calculation of Bilateral Hands PPG Pulse Amplitudes
Series. To acquire the digital data, the PPG infrared sensors
were placed on bilateral index fingertips of each participant.
The digitized signals being processed by an analog-to-digital
converter (USB-6009 DAQ, National Instruments, Austin,
TX, USA) at a frequency of 500Hz were analyzed by the
Matlab 7.7 software (MathWorks, Massachusetts, USA) and
stored on a computer [20]. PPG pulse amplitude was defined
as the systolic peak which was presented in Figure 1. In
addition, successive 1,500 PPG pulse amplitudes of left and
right hands were simultaneously retrieved and shown as
PPGAL = {PPGAL(1),PPGAL(2),PPGAL(3), . . .,PPGAL(𝑛)}
and PPGAR = {PPGAR(1), PPGAR(2), PPGAR(3), . . . ,
PPGAR(𝑛)} from each participant.

Due to removing the noises from original PPG data
created in nonstationary and nonlinear processes [21], empir-
ical mode decomposition (EMD) method was used [22] to
partition the bilateral hands PPGA series that approaches
the zero mean. Then the PPGA series were normalized as
shown in (1). In (1), SDPPGAL

and SDPPGAR
were the standard

deviations of left and right hand PPGA series, respectively.
PPGAL and PPGAR represented the means of left and right
hand PPGA series, respectively. The MSE and refined MSE
were calculated on the normalized results, 𝑛PPGAL(𝑖) and
𝑛PPGAR(𝑗):

𝑛PPGAL (𝑖) =
PPGAL (𝑖) − PPGAL

SDPPGAL

,

𝑛PPGAR (𝑗) =
PPGAR (𝑗) − PPGAR

SDPPGAR

.

(1)

2.4. MSE Analysis of Bilateral Hands PPG Pulse Amplitudes
Series. MSE contains the procedures of coarse-graining and
estimation of sample entropy (𝑆�퐸) for respective coarse-
grained time series.

(1) Thedata series𝑥(𝑛)with length𝑁 and the two param-
eters of 𝑚 (embedded dimension of the vector) and
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Figure 1: Photoplethysmographic pulse amplitudes (PPGA) series of left and right hands (PPGAL and PPGAR, resp.) were defined as the
distance between peak and triumph of each pulse waveform and simultaneously acquired from signal 1 to signal 1,500.

𝑟 (tolerance) are defined. 𝑁 = 1,500 for 𝑛PPGAL(𝑖)
and 𝑛PPGAR(𝑗), respectively. We set 𝑚 = 2 and 𝑟 =
0.15 × SDPPGA based on previous Costa et al.’s study
recommendation [14].

(2) 𝑁 − 𝑚 + 1 vectors, each of size 𝑚, are defined and
composed as follows:

𝑢�푚 (𝑖) = {𝑥�푖, 𝑥�푖+1, . . . , 𝑥�푖+�푚−1} , 1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1. (2)

(3) 𝑑[𝑢�푚(𝑖), 𝑢�푚(𝑗)] is defined as the maximum value:
𝑑[𝑢�푚(𝑖), 𝑢�푚(𝑗)] = max{|𝑥�푖+�푘 − 𝑥�푗+�푘| : 0 ≤ 𝑘 ≤
𝑚 − 1} (𝑖 ̸= 𝑗). The number of 𝑑[𝑢�푚(𝑖), 𝑢�푚(𝑗)] within
distance 𝑟 and the ratio of the number to the total
𝑁 − 𝑚 for each value of 𝑖 ≤ 𝑁 − 𝑚 + 1 are calculated
and an average to all points is defined as

𝐶�푚 (𝑟) =
1

𝑁 − 𝑚 + 1

�푁−�푚+1

∑
�푖=1

ln
𝑛�푖
�푚

𝑁 −𝑚 + 1
. (3)

(4) The embedded dimension is increased to𝑚 + 1 gives

𝐶�푚+1 (𝑟) =
1
𝑁 − 𝑚

�푁−�푚

∑
�푖=1

ln
𝑛�푖
(�푚+1)

𝑁 −𝑚
. (4)

(5) As a result, 𝑆�퐸 is defined as
𝑆�퐸 (𝑚, 𝑟,𝑁) = 𝐶�푚 (𝑟) − 𝐶�푚+1 (𝑟) . (5)

Multiple coarse-grained time series are built up of
averaging the data points within nonoverlapping blocks of
increasing length, 𝜏 (i.e., the scale factor), as follows:

𝑦�푗
(�휏) = 1
𝜏

�푗�휏

∑
�푖=(�푗−1)�휏+1

𝑥�푖, 1 ≤ 𝑗 ≤
𝑁
𝜏
. (6)

Therefore, 𝑆�퐸 is computed for each new coarse-grained
time series {𝑦�푗

(�휏)} of which the length is 𝑁/𝜏 and is plotted
as a function of the scale factor [12]. The scale factor 𝜏 up to
10 was selected for a minimal length of the coarse-grained
time series equal to 150 beats, a length appropriate for a
reliable estimate of 𝑆�퐸 [23]. As peripheral vasomotor rhythm
is typically around 20 seconds, the time scale at 𝜏 = 1 was
defined as small-scale for analyzing PPG pulse amplitudes
series using the MSE algorithm [24]. In addition, the time
scales, 𝜏 between 2 and 4, and 𝜏 between 5 and 10were defined
as medium- and large-scales, respectively, based on the study
of Bari et al. [24].

2.5. MSE Analysis of ECG R-R Intervals Series. To assess
the MSE of ECG R-R intervals series [20], the procedure
followed that of PPG pulse amplitudes of bilateral hands.
Small-, medium-, and large-scales were defined as scale 1,
scales 2–4, and scales 5–10, respectively. The sum of MSE
in small-, medium-, and large-scales of series of PPG pulse
amplitudes and ECG R-R intervals were averaged and abbre-
viated as MSE1, MSE2–4, and MSE5–10, respectively. We set
𝑚 = 2 and 𝑟 = 0.15 × SDR-R intervals [14].

2.6. Refined MSE Analysis of PPG and ECG Signal Series.
The low pass filter’s frequency response in MSE calculation
poorly manifested by a slow roll-off of the main lobe, aliasing
of important side lobes, and a large transition band may
not be prevented as the filtered series is downsampled at
a rate of one sample every 𝜏 [24]. A refined MSE (RMSE)
method proposed by Valencia et al. might improve the flaw
of MSE [25]. In brief, the low pass finite impulse response
filter in MSE is substituted by a low pass Butterworth filter
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Table 1: Baseline characteristics of nondiabetic participants (unaffected), those with well-controlled diabetes (HbA1c < 8%), and those with
poorly controlled diabetes (HbA1c ≥ 8%).

Unaffected (𝑛 = 36) Diabetes, HbA1c < 8% (𝑛 = 22) Diabetes, HbA1c ≥ 8% (𝑛 = 22)
Male, % 19 (52.8) 12 (54.6) 12 (54.6)
Age, y 60.3 (8.8) 64.9 (6.1) 61.3 (7.2)
Height, m 161.6 (8.4) 162.0 (9.2) 161.2 (7.5)
Weight, kg 68.0 (10.1) 71.7 (15.7) 71.2 (10.4)
Waist circumstance, cm 88.7 (8.0) 92.7 (13.0) 93.7 (10.4)
BMI¶, kg/m2 26.0 (3.1) 27.2 (4.7) 27.5 (4.0)
Pulse rate, beats/min 73.5 (8.6) 77.6 (13.8) 83.7 (11.4)
Systolic BP, mmHg 127.4 (18.7) 126.0 (21.4) 128.3 (16.4)
Diastolic BP, mmHg 75.5 (10.8) 74.9 (11.9) 76.5 (9.9)
Pulse pressure, mmHg 51.9 (15.7)† 51.1 (14.4) 51.8 (14.3)
HbA1c, % 6.0 (0.4)∗† 7.1 (0.4)� 9.6 (1.6)
Fasting glucose, mg/dl 110.5 (24.4)∗† 126.0 (23.9)� 189.5 (58.4)
Total cholesterol, mg/dl 185.5 (38.1) 170.9 (37.6) 191.2 (36.7)
Triglyceride, mg/dl 111.1 (83.6)† 118.7 (47.8) 158.4 (76.4)
HDL-C, mg/dl 48.7 (14.1) 43.8 (22.8)� 41.2 (10.9)
LDL-C, mg/dl 108.7 (29.8) 97.2 (23.9) 118.5 (29.4)
Diabetes duration, y 0 (0)∗† 8.2 (8.9) 12.5 (8.5)
Hypertension, % 15 (41.7)∗† 16 (72.7) 16 (72.7)
Dyslipidemia, % 24 (66.7) 14 (63.6) 17 (77.3)
Peripheral neuropathy, % 2 (5.6) 3 (13.6) 5 (22.7)
Diabetic retinopathy, % 0 (0) 0 (0) 2 (9.1)
Chronic kidney disease, % 1 (2.8) 1 (4.6) 0 (0)
Continuous variables are expressed asmean (standard deviations) and categorical variables as number (percentage). BMI, bodymass index; BP, blood pressure;
HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; ¶BMI was calculated as body weight
(kg)/square of height (m2); ∗�푝 < 0.05: diabetes, HbA1c < 8% versus unaffected; †�푝 < 0.05: diabetes, HbA1c ≥ 8% versus unaffected; ��푝 < 0.05: diabetes,
HbA1c < 8% versus diabetes, HbA1c ≥ 8%.

of order 6 with a cutoff frequency of 0.5/𝜏 cycles/sample
in RMSE [26]. The characteristics of this filter include no
side lobes in the stop band, a flat response in the pass
band, and a faster roll-off, which limit aliasing efficiently
during downsampling. In RMSE, 𝑟 is set as a percentage
of the SD of 𝜏, which could continuously update 𝑟 with 𝜏
[25].

3. Statistical Analysis

Continuous variables were presented as mean (SD) and
compared by two-tailed 𝑡-test. If Kolmogorov-Smirnov test,
the normality test, was not fulfilled, Wilcoxon signed rank
test was used. Categorical variables were presented as number
(percentage) and compared by chi-square test or Fisher’s
exact test. The PPGA and PWV as well as MSE and
RMSE of PPGA and ECG R-R intervals were compared
intra- and intergroups by one-sample and two-sample t-
tests, respectively. Since the PPGA and PWV data were
nonnormal distributions,Mann–Whitney𝑈 test was used for
their intergroups comparison. A 2-tailed value of 𝑝 < 0.05
was considered statistically significant. All statistical analyses
were performed using SPSS version 14.0 (SPSS Inc., Chicago,
IL, USA).

4. Results

The baseline characteristics of the age-, sex-, and weight-
matched three groups were shown in Table 1. As compared
with participants in the unaffected group, those in the
diabetes groups seemed to have greater waist size, faster pulse
rate, and more proportion of hypertension. As compared
with patients with well-controlled diabetes, those with poorly
controlled diabetes had higher HbA1c and more diabetic
microvascular complications.

Table 2 shows that the mean PPG pulse amplitudes of
bilateral hands did not differ between inter- and intragroups.
In contrast, the PWV was higher in both hands of the two
diabetes groups, whereas the PWV was similar between
two hands in each group. The dominant hand large-scale
MSE5–10 was lower in the poorly controlled diabetes group
compared with that in the well-controlled diabetes group
and the unaffected group (1.28 versus 1.52 and 1.56, 𝑝 =
0.019 and 0.001, resp.); however, the nondominant hand
MSE5–10 was both lower in the poorly and well-controlled
diabetes groups than that in the unaffected group (1.29 and
1.35 versus 1.58, 𝑝 = 0.005 and 0.008, resp.). The medium-
scale MSE2–4 showed a similar trend with the large-scale
MSE5–10 in bilateral hands. However, there was no difference
in the small-scaleMSE1 of bilateral hands between groups. In
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Table 2: Comparisons of photoplethysmographic pulse amplitudes, pulse wave velocity, multiscale entropy, and refined multiscale entropy
between two hands and between groups.

Unaffected Diabetes, HbA1c < 8% Diabetes, HbA1c ≥ 8%
𝑛 = 36 𝑝 value 𝑛 = 22 𝑝 value 𝑛 = 22 𝑝 value

PPGA (×105)
Right hand 4.32 (1.74) 0.45 5.12 (2.25) 0.67 4.18 (1.73) 0.64
Left hand 3.97 (1.83) 4.69 (3.82) 4.56 (2.84)

PWV, cm/sec
Right hand 5.45 (0.33)∗† 0.70 5.77 (0.12) 0.077 5.78 (0.54) 0.86
Left hand 5.52 (0.39)∗ 5.89 (0.10) 5.75 (0.58)

MSE5–10 (large-scales)
Right hand 1.56 (0.31)† 1.00 1.52 (0.39)� 0.16 1.28 (0.25) 0.91
Left hand 1.58 (0.26)∗† 1.35 (0.40) 1.29 (0.41)

MSE2–4 (medium-scales)
Right hand 1.25 (0.27)† 0.64 1.29 (0.38) 0.067 1.10 (0.25) 0.95
Left hand 1.28 (0.27)∗ 1.07 (0.37) 1.10 (0.40)

MSE1 (small-scale)
Right hand 1.30 (0.43) 0.78 1.35 (0.36) 0.048 1.29 (0.41) 0.42
Left hand 1.30 (0.45) 1.10 (0.45) 1.17 (0.57)

RMSE5–10 (large-scales)
Right hand 0.77 (0.13)† 0.95 0.79 (0.15)� 0.44 0.71 (0.08) 0.34
Left hand 0.77 (0.12) 0.76 (0.15) 0.74 (0.16)

RMSE2–4 (medium-scales)
Right hand 1.48 (0.29)† 0.87 1.47 (0.43) 0.34 1.27 (0.29) 0.47
Left hand 1.46 (0.33) 1.36 (0.36) 1.35 (0.43)

RMSE1 (small-scale)
Right hand 3.25 (0.67) 0.47 3.39 (0.68) 0.011 3.19 (0.54) 0.97
Left hand 3.12 (0.69) 2.91 (0.42) 3.18 (0.78)

Data are expressed as mean (standard deviations), and one-sample paired �푡-test is used to compare the data between right and left hands shown as �푝 value.
MSE,multiscale entropy; PPGA, photoplethysmographic pulse amplitudes; PWV, cardiofingertip pulse wave velocity; RMSE, refinedMSE; ∗�푝 < 0.05: diabetes,
HbA1c < 8% versus unaffected; †�푝 < 0.05: diabetes, HbA1c ≥ 8% versus unaffected; ��푝 < 0.05: diabetes, HbA1c < 8% versus diabetes, HbA1c ≥ 8%.

addition, there were no differences in themedium- and large-
scale MSE between dominant hand and nondominant hand,
while a higher small-scale MSE1 of dominant hand than that
of nondominant hand was observed in the well-controlled
diabetes group (1.35 versus 1.10, 𝑝 = 0.048). Notably, the
results of RMSE of bilateral hands were consistent with that
of MSE in each group.

Figure 2 shows the MSE and RMSE of bilateral hands
PPG pulse amplitudes series at each scale factor of the three
groups. Generally, the unaffected group had the highest MSE
and RMSE levels, and the poorly controlled diabetes group
had the lowestMSE andRMSE levels acrossmost scale factors
in both left and right hands. For the well-controlled diabetes
group, theMSE had similar high level as that of the unaffected
group at each scale factor in right dominant hand, whereas
the MSE had as low level as that of the poorly controlled
diabetes group in left nondominant hand. The pattern of
bilateral hands RMSE between each group was consistent
with that of MSE.

Figure 3 shows the MSE and RMSE of ECG R-R intervals
series at each scale factor of the three groups. Although there
was no difference between groups (data not shown), the
unaffected group seemed to have highMSE and RMSE levels,

and the poorly controlled diabetes group had relatively low
MSE and RMSE levels across most scale factors. For the well-
controlled diabetes group, the MSE had similar high level
as that of the poorly controlled diabetes group at each scale
factor, but in contrast the RMSE had similar high level as that
of the unaffected group.

Supplemental Figures 1 and 2 in Supplementary Material
available online at https://doi.org/10.1155/2017/3472121 reveal
the MSE and RMSE indexes at each scale factor between two
hands of the three groups in the case-control population,
respectively.

5. Discussion

Our principal findings were that PPG pulse amplitudes rather
than ECG R-R intervals for MSE and RMSE analyses were
sensitive to evaluate local vascular health. The medium-
and large-scale MSE or RMSE index were found higher
in participants without diabetes (more complex PPG pulse
amplitudes) than those in participants with poorly controlled
diabetes. Moreover, greater handgrip strength (dominant
hand) might increase the small-scale MSE1 or RMSE1 index
of PPG pulse amplitudes with euglycemia status. However,

https://doi.org/10.1155/2017/3472121
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Figure 2: The MSE and RMSE index with the standard error (vertical bar) of the unaffected (solid blue line), the well-controlled diabetes
(solid orange line), and the poorly controlled diabetes (solid grey line) groups at each scale factor in left and right hands, respectively.

the influence of handgrip strength on any time scales MSE
or RMSE was not remarkable in individuals without diabetes
and those with poorly controlled diabetes.

Several physiological signals such as sleep electroen-
cephalographic wave [26], electromyographic signals [27],
body temperature [28], intracranial pressure [29], pulse rate
[12], and blood pressure [15] have been used forMSE analysis
to mainly evaluate autonomic nervous dysfunction, cardio-
vascular disease, treatment effect, and disease prognosis.
Trunkvalterova et al. revealed that theMSEof blood pressures
and pulse rate at scale factor 𝜏 = 3 in patients with type 1
diabetes were significantly lower than those in the unaffected
controls [15]. In addition, the complexity of glucose dynamics
evaluated by MSE was lower in type 1 or 2 diabetes than that
in the healthy controls [30]. Previously, we used ECG R-R
intervals and pulse transit times, the time interval between

the R-wave peak of the ECG waveform to the footpoint of
the PPG pulse from left toe, for MSE and multiscale cross-
approximate entropy (MCAE) analyses in type 2 diabetes
[20]. The results showed the MSE of ECG R-R intervals
at scale 1 did not differ between the unaffected controls
and those with diabetes. On the contrary, the large-scales
MSE of pulse transit times, which was defined as the time
interval between the appearance of ECG peak R-wave and
the following PPG pulse amplitude, was lower in patients
with diabetes. The MCAE as the irregularity between ECG
and PPG signals further distinguished patients with well-
controlled diabetes from those with poorly controlled dia-
betes. Moreover, we also uncovered the large-scales MCAE
between ECG R-R intervals and PPG pulse amplitudes of left
index finger decreased in the same manner in type 2 diabetes
[31].
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Figure 3: The MSE and RMSE index of ECG R-R intervals with the standard error (vertical bar) of the unaffected (solid blue line), the
well-controlled diabetes (solid orange line), and the poorly controlled diabetes (solid grey line) groups at each scale factor.

Several studies have shown that as compared with those
free of diabetes, diabetic patients with cardiac or peripheral
autonomic neuropathy related to poor glycemic control and
sedentary status have lower baroreflex sensitivity [32, 33].
The impaired short-term cardiovascular control in diabetes
mellitus may be caused by the functional or structural
impairment of nerve fibers of the autonomic nervous system
innervating the heart and blood vessels [34]. de Moura-
Tonello et al. [35] further concluded that the presence
of diabetic neuropathies may account for the additional
impairment of the sympathetic control to the blood vessels,
possibly leading to the reduction of large-scale MSE, while
the vagal impairment is a primary result of type 1 or 2 dia-
betes which is associated with the reduced small-scale MSE
[36].

Our study firstly clarified that peripheral microvascular
dysfunction and autonomic neuropathy in type 2 diabetes
evaluated by small-, medium-, and large-scales MSE and
RMSE might be related to glycemic control and hand
dominance. We noticed that in absence of peripheral vas-
cular disease (e.g., subclavian artery subtotal occlusion),
the mean PPG pulse amplitudes and cardiofinger PWV
did not differ between two hands in all the groups. The
dominant hand, having more local physical activity than the
nondominant hand,may improve regionalmicrovascular cir-
culation, thereby reducing the risk of peripheral neuropathy
and increasing the small-scale MSE1 or RMSE1 in patients
with type 2 diabetes. However, if blood glucose was not
controlled well, the peripheral neuropathy remained present
in dominant hand.These findings were consistent with many
previous observational studies [3–9, 37].

To the best of our knowledge, PPG pulse amplitudes are
closely related to central or peripheral autonomic nervous,
cardiorespiratory, and vascular controls [17], whereas ECG
R-R intervals, the classic biological signals mostly used for
the entropy analysis, are mainly influenced by autonomic

nervous activity. Since the PPG pulse amplitudes are com-
promised by a wide range of physiological functions, the
complexity of PPG signal series might be more sensitive than
heart rate variability as a short-term estimate of autonomic
and vasomotor dysfunction in diabetes. Furthermore, the
complexity analyses of PPG pulse amplitudes could give an
opportunity to independently evaluate peripheral vascular
health of each distal extremity.

The strengths of our study include the availability of
large numbers of ECG R-R intervals and serial PPG pulse
amplitude signals of bilateral fingertips and the availability
of a wide range of data on other covariates. Additionally, we
used case-control comparisons to lessen the effect of age, sex,
and weight on the MSE and RMSE. In contrast, our study
was cross-sectional in nature and the laboratory data such
as HbA1c levels were measured once that we could not avoid
the effect of remote glycemic controls on the results. Finally,
residual confounding may have attributed to the difference
between groups.

We concluded that increased physical activity of local
extremities and blood glucose controlled at HbA1c levels
< 8% are equally vital to prevent diabetic microvascular
complications. In addition, simultaneous measurements of
PPG pulse amplitudes signals of bilateral fingers rather than
HRV for MSE or RMSE analysis might be clinically useful to
evaluate diabetic neuropathy andmicrovascular dysfunction.
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