Shaking up the mind’s ground floor: the cognitive penetration of visual
attention*

Wayne Wu

[Forthcoming The Journal of Philosophy]

Figures for which copyright permission not granted have been redacted

1. Introduction

Philosophers have returned to the cognitive penetration of vision in recent years in
part due to its epistemic implications.! If belief contents can penetrate visual
experience, perhaps because one sees what one believes—that is, belief contents
provide visual content—then vision cannot be a neutral tribunal for belief. It is not
clear, however, that we have good evidence that cognition penetrates vision and

thus that the epistemic consequences are actual.? Claims about cognitive

*This material was first presented in the workshop, Thinking, Attending and Sensing,
in March 2014 at the University of Utah, organized by Dustin Stokes. I'm grateful to
Dustin and the participants for discussion, especially Marisa Carrasco and
Christopher Mole. The material was later presented at the University of Geneva, in
December 2014. Thanks to the audience for feedback. Susanna Siegel later provided
helpful thoughts on the paper. Zina Ward helped improve readability of the
empirical sections. Finally, thanks to a referee for this journal for helpful comments
that motivated many improvements.

1 Susanna Siegel, “Cognitive Penetrability and Perceptual Justification,” Notis, XLVI, 2
(2012): 201-22.

2 On some attempts to demonstrate cognitive penetration see Fiona Macpherson,
“Cognitive Penetration of Colour Experience: Rethinking the Issue in Light of an
Indirect Mechanism,” Philosophy and Phenomenological Research, LXXXIV, 1 (2012):
24-62 and Dustin Stokes, “Perceiving and Desiring: A New Look at the Cognitive
Penetrability of Experience,” Philosophical Studies CLVIII, 3 (2012): 479-92 among
others.



penetration in humans are claims about interactions between systems subject to
empirical verification. The experimental data philosophers have drawn on are to my
mind insufficient to establish cognitive penetration in a way that meets empirical
standards. In what follows, [ draw on a concrete neural-computational model to
argue for cognitive penetration where the epistemic consequences are actual: one’s
beliefs depend on what one notices or attends to, but attention is biased by
cognition. Such cognitive influence raises pervasive challenges for any epistemic
agent trying to discover the truth.

Visual attention has long been ruled out as a possible example of the
cognitive penetration of vision, but this dismissal relies on a faulty conception of
attention as a gate to the visual system that determines its inputs.3 The dismissal is
appropriate for overt visual attention: movement of the eyes to fixate on targets of
interest. Here cognition controls visual experience by controlling what gets into the
mind via the eyes, but this is an uninteresting case of cognitive influence. Rather, it
is covert visual attention, attention independent of eye movement, that is the
primary form of visual attention and which drives overt attention. Covert visual
attention is cognitively penetrated and indeed, likely subject to disparate forms of
informational bias that have substantial epistemic consequences.

Section 2 presents cognitive penetration as an empirical thesis about
computation and information, and highlights the central role of computational

models in establishing the thesis. A sufficient condition for penetration is provided

3 For criticism of this assumption, see Chris Mole, “Attention and Cognitive
Penetration,” in John Zembekis and Athanassios Raftopoulos, eds., The Cognitive
Penetrability of Perception (Oxford: Oxford University Press, 2015), pp. 218-38.



that identifies a standard for experimental cognitive science in testing for cognitive
penetration. Section 3 characterizes attention as a psychological phenomenon tied
to action while section 4 explores the neural basis of visual attention and presents
an explanatorily powerful computational theory of that basis, divisive normalization.
Section 5 argues that intention cognitively penetrates visual attention: the visual
system uses information about the target of intention to inform selective processing
of visual stimuli in order to guide task performance. Finally, section 6 discusses how
attention might be disparately penetrated and highlights the epistemic
consequences due to the biasing of attention. Tying epistemic bias to attention

makes available a new set of concepts to understand epistemic agency.

2. Cognitive Penetration

Jerry Fodor characterized informational encapsulation as follows:

Imagine a computational system with a proprietary...database. Imagine that

this device operates to map its characteristic inputs onto its characteristic

outputs...and that, in the course of doing so, its informational resources are

restricted to what its proprietary database contains. That is, the system is

“encapsulated” with respect to information that is not in its database.

Similarly, Zenon Pylyshyn wrote:

4 Jerry A. Fodor, The Mind Doesn’t Work That Way: The Scope and Limits of
Computational Psychology (Cambridge: MIT Press, 2001), p. 63.



if a system is cognitively penetrable then the function it computes is
sensitive, in a semantically coherent way, to the organism’s goals and beliefs,
that is, it can be altered in a way that bears some logical relation to what the

person knows.>

[ present these ideas to illustrate the computational core of informational
penetration. “Informationally encapsulated” and “informationally penetrated”
should be understood as two place predicates: X is informationally encapsulated
from/informationally penetrated by Y. Our primary interest is where X is vision
(indeed visual attention), Y cognition. A focal point will be the computations
performed by the visual system, so assessing the cognitive penetration of vision
requires a computational theory of relevant visual processes. As cognitive
penetration is an empirical thesis about influences on computation, to satisfactorily
establish it requires specification of a computational model that explains what
penetration comes to. Without a plausible model, any claim of cognitive penetration
is underspecified.

For Fodor and Pylyshyn, “information” means representational content as
tied to semantic value, but [ use the term in its statistical sense (e.g. Shannon mutual
information): information reduces uncertainty about a random variable. Relatedly,

information can be tied to correlation as in Dretske’s notion of indication or Grice’s

5 Zenon W. Pylyshyn, “Is Vision Continuous with Cognition?: The Case for Cognitive
Impenetrability of Visual Perception,” Behavioral and Brain Sciences XXII, 3 (1999):
343.



notion of natural meaning, though these ideas are tied to reducing uncertainty as
well.¢ Does this amount to changing the subject? I will argue in the final section that
the computational notion of cognitive penetration I discuss has epistemic
significance. We need not exactly toe the Fodor/Pylyshyn line to engage with the
substantial issues concerning epistemology and cognitive architecture that
exercised them.

Nevertheless, in speaking of information, two plausible assumptions allow us
to track relevant semantic relations. The first is a weak supervenience claim: that in
the case of veridical experience of a target (this can be object, property or location),
the neural basis of that experience carries information about the target. Thus, any
change in experience implies a change in informational (neural) content. This
correlation is guaranteed by the causal relation between the target and the relevant
parts of the visual system that give rise to the experience, and it is weak in that it
allows that when one is under an illusion or hallucination of some target, the
experience is still about it even if, by definition, there can be no information about
what is not there.

This correlation is plausible given a second assumption, namely that one
focuses on information processing in relevant parts of the visual ventral stream. The
ventral stream plays a necessary role in visual experience in humans. In brief,
damage to ventral stream areas can give rise to visual agnosia, including the

inability to see objects. One area in humans seems crucial to normal experience of

6 Fred Dretske, Explaining Behavior: Reasons in a World of Causes (Cambridge, MA:
MIT Press, 1991). Paul Grice, “Meaning,” in Studies in the Way of Words (Cambridge,
MA: Harvard University Press, 1987), pp. 213-23.



objects, namely the lateral occipital complex (LOC), and the monkey (macaque)
homolog of LOC is thought to be located in the monkey inferotemporal cortex (IT).”
Macaque monkey vision is widely studied, and provides a model for human vision.
Other regions of the ventral stream play important roles in supporting visual
experience such as area V4 which plays roles in figure/ground segmentation, color
constancy, and feature representation.8 Similarly, the middle temporal area MT,
which lies in the dorsal stream, is important for motion processing and damage to it
can lead to akinetopsia (the inability to see motion).? As we shall see, V4, MT, and IT
exhibit the attentional modifications that will be critical to our discussion: receptive
field remapping (shrinking). Given these two assumptions, computation over
information about a visual target in relevant areas of the ventral stream will track
visual experience of it. In the case we shall consider, computation of information
about a target will track the experience of visual attention to it. Specifically, one
begins with seeing two objects and comes to attentionally select one in order to deal
effectively with it.

Visual computations map certain visual inputs onto certain visual outputs.
David Marr argued that vision maps a two-dimensional retinal image input onto a

representation of the three-dimensional world. This functional characterization

7 On LOC and patient DF, see A. David Milner and Melvyn A. Goodale, The Visual
Brain in Action, 2nd ed. (Oxford: Oxford University Press, 2006). On IT as the
monkey homolog of LOC, see Doris Y. Tsao et al., “Faces and Objects in Macaque
Cerebral Cortex,” Nature Neuroscience V1,9 (2003): 989-95.

8 While V4 was for a long time taken to be a color area, its function is very complex.
See Anna W. Roe et al,, “Toward a Unified Theory of Visual Area V4,” Neuron LXXIV,
1(2012): 12-29.

9 Mark Nawrot, “Disorders of Motion and Depth.,” Neurologic Clinics XXI, 3 (2003):
609-29.



provides Marr’s computational theory of vision.1? But “computation” is often used in
a mechanistic sense, referring to how the mapping is achieved by underlying
algorithms including the representations or contents over which the algorithmic
procedures operate as well as the neural circuits that realize the computation. One
sort of computational model gives a mathematical description (set of equations)
that describes the phenomenon along with a plausible implementation of the
computation in a neural circuit. [ later consider such a model for attention.

Here then is a sufficient condition for the cognitive penetration (SCP) of
vision by cognitive systems where visual computations operate over visual input I to
generate output O among possible outputs O, in light of cognitive

content/information R:

(SCP) If cognitive systems contain information R such that vision computes
over R where this computation explains why the visual system yields O
rather than some other output Oy, given visual input I, then cognition

cognitively penetrates vision.

That is, information from cognition is used by vision to produce a specific output. If
the condition is met, then cognition informationally penetrates visual computations
by providing information that vision uses. Since claims of cognitive penetration are
empirical theses, demonstrating that the antecedent is satisfied requires the

following:

10 David Marr, Vision (San Francisco: W. H. Freeman and Company, 1982).



1. Specification of the nature of the visual computation,
2. Specification of the way in which visual computations depends on cognitive
contents.

3. Specification of relevant experimental evidence in favor of the model as

fleshed out by (1) and (2).

The philosophical clarification of the concept of cognitive penetration sets a task for
cognitive science in (1)-(3). I shall focus on (1) and (2) which requires a
computational model; (3) is a matter of ongoing empirical work. In the next section,
[ introduce a functional conception of attention that has its root in experimental
practice in cognitive science. This identifies the relevant aspect of vision that will
exhibit cognitive penetration: visual attention. The computational model for visual

attention will be described in section 4.

3. Attention and selection for task

William James defined attention as follows:

Everyone knows what attention is. It is the taking possession by the mind, in
clear and vivid form, of one out of what seem several simultaneously possible

objects or trains of thought. Focalization, concentration, of consciousness are of



its essence. It implies withdrawal from some things in order to deal effectively

with others.1!

Yet many are skeptical about defining what attention is, to the point that one
theorist, in a paper entitled, “There is no such thing as attention”, has argued that all
attempts to do so have failed.12 These skeptics have overlooked a constant feature of
attention that is sewn into the fabric of experimental practice. Most cognitive
scientists speak of attention as selection for processing, but this does not even
provide a sufficient condition since dumb manufacturing machines select items for
further processing. Appending “information” to talk of processing does not help
since the different cones in the retina can be understood to select information for
further processing (due to their selective absorption spectra), but one would not
speak of such selection as attention. What then is distinctive of attentional selection?
On my view, attention is selection for action.’? “Action” is taken in the
broadest sense to include mental as well as bodily action. Let me illustrate a
subject’s selection of a target for action in terms of the Many-Many Problem: the idea
that in many action contexts, an agent confronts more targets than can be acted on
at once and for each, there are different responses. In Figure 1, the agent sees an
American football and a soccer ball and can kick each one either with the left or

right foot.

11 William James, The Principles of Psychology, Volume 1 (Boston, MA: Henry Holt
and Co., 1890).

12 Britt Anderson, “There Is No Such Thing as Attention,” Frontiers in Theoretical and
Philosophical Psychology 11 (2011): 246. There is much I agree with in Anderson’s
critique.

13 Wayne Wu, Attention (Abingdon: Routledge, 2014).



Insert Figure 1 Here

The actions available at a time are given in this behavior space where the arrows
define four possible actions. This space is a psychological space in that the inputs are
visually experienced, so the arrows connect visual experience to motor output. Let
us say that the agent now decides (intends) to and kicks the soccer ball with the
right foot. The darker arrow in the figure represents the actual action and, by
implication, the computational processes linking visual experience to motor output.
We can theorize that the causal role of intention in generating action is to influence

the selection of the appropriate behavioral path, precisely the path that the agent
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intends to carry out: one kicks the ball with the right foot because one intends to do
just that. Intentions facilitate the action by representing the input-output mapping
identified by the arrow representing the action.1# This solves the Many-Many
Problem by biasing a solution that amounts to what the agent does, in the face of
many behavioral options.

Attention is found in the “for action” of the visual experience of the soccer
ball. While the agent sees both balls, it is only the experience of the soccer ball that
guides the action. So, action-relevant processing selects that information and
ignores the basketball to generate a specific action. To pump intuitions, identify two
objects before you and then fix your eyes on a point between them. For practice,
shift attention between them without moving your eyes (many find this difficult).
Now, shift attention to the point of fixation and, while holding the eyes fixed, reach
for one of the objects. Attention must shift back to that object to guide reach even
when the eye does not move. Similarly, while maintaining fixation, move the eyes to
one of the objects. The science of eye movement suggests that covert attention—
attention independent of eye movement—programs overt attention, the eye
movement.1> This example of overt attention (eye movement in a task) presents the
core of an experimental example to be discussed below (Yarbus). The current point
is that solving the Many-Many Problem by acting requires selection of some relevant
target in order to guide action. As James noted, one must attend to the item and

select it from among others in order to deal effectively with it.

14 For more on these issues, see Wu, op. cit. chapter 3.

15 See Katherine Armstrong, “Covert Spatial Attention and Saccade Planning,” in
Christopher Mole, Declan Smithies, and Wayne Wu eds., Attention: Philosophical and
Psychological Essays (Oxford: Oxford University Press, 2011), 78-96.
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In what follows, I rely only on a consequence of the selection for action view:
when a subject selects a target in order to guide action in an experimental task, the
subject attends to that target. This is an empirical sufficient condition for attention
that links selection for task performance to attention. It use in our discussion can be
independently motivated, distinct from the selection for action view of attention, as
itis a condition assumed in the main experimental paradigms used to study
attention: visual search, dichotic listening, multiple object tracking, and spatial
cueing among others. Here is the experimental logic. To study attention, an
experimenter must control how the subject attends. The experimenter designs a
task whereby attention to a target is controlled by making the target relevant to
performing the task. That is, to adequately execute the task, subjects must select
information from the target to inform their response. For example, in dichotic
listening, one is presented with two verbal streams to each ear and asked to shadow
(i.e. verbally repeat) just one stream, say the stream presented to the left ear. One
must select just those words to inform repeating them. The assumption is that when
one does so, one is attending to that stream.

Consider next a delayed match to sample task used by Robert Desimone and
co-workers to study attention effects on visual processing in the macaque monkey
visual system. As we will look carefully at visual neural response during
performance of this task, it will be important to understand it. The task requires that
a subject remember an initially presented “sample” that must later be matched (or
not) to one of two test stimuli presented after a delay period. If there is a match (i.e.

one of the test pair matches the earlier sample), the subject identifies the match by
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moving the eye to it. Electrical activity from visual neurons is recorded while the
subject (awake behaving monkeys) performs the task. Specifically, Desimone et al.
recorded electrical activity from cells in area V4 and IT when the two test stimuli
were placed in the cells’ receptive fields. The receptive field can be understood as
that region of external space such that placing an appropriate stimulus within that
space causes the cell to generate action potentials, i.e. spikes of electrical discharges.
The dotted circles in Figure 2 identify the location of the receptive field. To
manipulate attention, the experimenters drew on the empirical sufficient condition
for attention: “The task used to focus the animal’s attention on a particular location
was a modified version of a “match-to-sample” task.” 16 Thus, before moving their
eyes, the animals must attend to the test stimuli within the neuron’s receptive field
so as to determine whether a match is present.

Insert Figure 2 Here

Two stimuli are presented in succession while the animal maintains fixation (FP, the
fixation point): first a sample (the cue; second panel) and then, after a delay of 1.5
seconds, a test array of two objects, one of which can be a match of the cue. If there
is a match (top two rows), the animal reports this by making an eye movement
(saccade) to the match from the fixation point. The animal thus comes to fixate on
the match. Note that there are two “Target (Match)-Present” conditions, one (top
row) involving a target that is the preferred (good) stimulus for the neuron whose

activity is recorded (good stimulus because it drives the neuron to generate the

16 Leonardo Chelazzi et al., “Responses of Neurons in Macaque Area V4 during
Memory-Guided Visual Search,” Cerebral Cortex, XI, 8 (August 2001): 761-72.
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largest number of spikes per unit time, i.e. high firing rate) and the other (middle
row) involving a target that is not a preferred stimulus (i.e. is bad) which drives a
lower firing rate. In “Target-Absent” conditions (bottom row), the animal reports no
match by maintaining fixation (not moving the eye).

Two salient deployments of attention occur: (1) attention to select the cue to
store in working memory during the delay period and (2) attention to program the
eye movement because the animal must attend to the relevant target to prepare the
saccade. Covert attention is found in the animal’s covertly selecting the match so as
to move the eye to it. These are just cases of selection of a target to perform a task
which neuroscientists and psychologists take to be a form of attention (the
empirical sufficient condition for attention). Note that recordings to be discussed
below concern the second deployment of attention to prepare the saccade.

Because selection for task accords with the animal’s intentions to perform
the task, the previous case exemplifies what I call top-down, goal-directed attention,

specifically intention-influenced attention:

S top-down attends to X in an intention-oriented manner if and only if S

attends to X as a result of an intention to ® in respect of X.

“@”can stand for attend to X in which case one intentionally attends to X, but the
intention can be to perform an action directed to X, say to saccade to it. The
influence of intention on attention can be subtle yet pervasive, as seen in Alfred

Yarbus'’s study of goal-directed eye movements.
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Insert Figure 317

(b)

Yarbus presented human subjects with a painting and asked them to perform
various tasks including to remember what the individuals were wearing; to
remember what objects were in the room; and to estimate how long the father was
way (panels b-d respectively). In measuring eye movements, Yarbus tracked overt
attention, and by implication, the shifts in covert attention that program those
movements. Interestingly, the eye movements clearly tracked the subjects’
intentions to carry out the tasks. Each pattern seems to make sense, given the

objects that must be examined in order to perform each task. Given that eye

17 Figure from M. F. Land, “Eye Movements and the Control of Actions in Everyday
Life,” Progress in Retinal and Eye Research 25 (2006): 296-324.
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movements are programmed by covert attention, the data show that covert
attention is sensitive to the subject’s intention even if the subject does not intend to
attend in the patterns observed. Attention shifts in a way consistent with the
subject’s broader intention to respond to Yarbus’ commands. So, when subjects
perform tasks, they do so with specific intentions and this seems to set the
deployment of attention to targets in a task-relevant way. We can treat this as an
empirical hypothesis to explain the eye tracking data, a hypothesis we will flesh out
below by deploying a computational model of attentional modulation in the visual
system.

Returning to the experiment of Desimone et al., I make two assumptions
about intentions, granting that monkeys can have intentions. This attribution of
intention has always been part of the neuroscientist’s description of monkey
behavior (if necessary, one can shift to action-directed representations as the
monkey functional homolog of intentions). The assumptions are: (a) that the
monkey’s behavior is explained by an intention to act on a target as instructed,
including withholding eye movement; (b) that the neural mechanisms observed in
the monkey’s visual system are also found in humans (monkeys vision is a model for
human vision). Thus, the monkeys studied by Desimone et al. exemplify intention-
directed attention, a selection of a specific item to guide task performance (moving
the eye to report a match). But what is the visual system doing during such action?
In the next section, I describe the recorded neural activity and a computational

mechanism that explains it.
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4. Divisive Normalization

James emphasized that attention withdraws from some things to deal effectively
with others. This is evocative of the demands of the Many-Many Problem: multiple
objects yield multiple behavioral possibilities, but action often requires selection of
a subset of those possibilities. The empirical sufficient condition for attention points
out that such selection for task yields attention. Moreover, selection for task
performance is reflected in neural activity given the subject’s response to the Many-
Many Problem: the brain shows selectivity that serves action and realizes the
subject’s attending to task-relevant targets.

Consider a common signature of attention in the activity of single neurons:
gain modulation. This modulation is essentially the amplification of a signal carrying
information. Figure 4 shows a simulation of the response of a single visual neuron to

a set of motion stimuli, each moving in a different direction.

Insert Figure 4 Here [use PDF file]
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The lower dotted horizontal line identifies the baseline or spontaneous activity of the
neuron, namely its firing rate when no stimulus is presented in its receptive field.
The lowest bell curve is plotted on the basis of presenting the neuron with a each
member of the set of moving stimuli, with motion in a particular direction, and
measuring the response to that stimulus. For the lower curve, using the empirical
sufficient condition for attention, the experimenter directs the animal’s attention
outside of the receptive field (e.g. to a different task relevant object). Thus, the
motion stimulus in the receptive field is not attended. The graph shows that the
good or preferred stimulus for this neuron is where the direction of motion is at 0
degrees, in this case, vertical upward motion. The response drops off to near
baseline when the motion is downward (180°). If the experimenter now makes the

motion stimulus in the receptive field task relevant so that the animal must attend
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to it, measured response to each stimulus increases (the modulation of neural gain).
This yields the top curve which shows that the signal is amplified during attention.18

Gain modulation, the difference between the two bell curves, is correlated
with attention to the stimulus in question. It is as if the activity at each point in the
“unattended” bottom curve is multiplied by a constant factor when attention is
engaged, generating the corresponding point on the top “attended” curve (hence,
this is called multiplicative gain). It is important to emphasize, however, that the
mere presence of gain modulation does not entail attention. It is not a sufficient
condition for it, for one could increase neural response by appropriate increases in
the intensity (luminance) of each stimulus, generating the two curves. In that case,
the gain modulation would not be due to attention but to stimulus luminance. So,
the difference between the two curves in Figure 4 is not uniquely associated with
attention. It is the empirical sufficient condition for attention that secures the
relevance of attention when neural signal amplification occurs. That is, the
experimenters concluded that the observed gain modulation is an attention effect
because, in addition to the modulation, they deployed that empirical sufficient
condition to direct the animal’s attention to within the neuron’s receptive field.

[ shall focus on the visual computation postulated to underlie gain
modulation and which explains another form of attentional modulation, namely
receptive field remapping. Receptive field remapping concerns cases where two

stimuli are present in the neuron’s receptive field. Thus far, we have considered only

18 For actual data demonstrating this, see Carrie J. McAdams and John H. R. Maunsell,
“Effects of Attention on the Reliability of Individual Neurons in Monkey Visual
Cortex,” Neuron, XXIII, 4 (1999): 765-73.
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single stimuli, but it would be natural to predict that a neuron’s response to two
stimuli will be the sum of the neuron’s response to each individual stimulus. The
actual response, however, is often the weighted average of the two individual
responses. Thus, for a number of neurons, it is division not addition that best
describes neural activity in response to multiple stimuli. The response of the neuron
is divided and not summed.

Where attention is directed to one of the two objects, the neural response
over time comes to be driven by the attended stimuli, as seen from neural data

recorded during the task described in Figure 2:

Figure 51°

Here, we are looking at the time course of neural response from a V4 neuron. Time 0
indicates the presentation of the two-object test array after the delay period where
the animal must move the eye to the match (recall: right boxes, Figure 2). The top
and bottom open circle curves show the plot of neural response over time for the
good and poor stimuli to which the neuron responds, each placed by itself in the
receptive field (the good stimulus gives the strongest (higher) response). The

middle two curves (dark and dashed lines) show the neural response when both

19 From Chelazzi et al. op. cit.
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objects are present in the receptive field where the animal attends to only one of the
two stimuli. Initially, one sees what is essentially the weighted average of the
response (the initial response to two stimuli is in between the peaks of response to
each individual stimulus at 100 ms). This means that in V4, both objects are initially
registered by the neuron. As time goes on, the middle curves split, with one more
closely tracking the bottom curve (dashed line; here, attention to the poor stimulus)
and the other more closely tracking, indeed overlapping, the top curve (solid line;
attention to the good stimulus). Since neural response comes to be as if driven by
only one of the two objects in its receptive field (“ignoring one to deal effectively
with the other”), one can speak of the receptive field as shrinking (remapped)
around the attended stimulus.?? Note that the remapping of the receptive field
occurs before the action (saccade) to the attended stimulus (time of saccade
indicated by the black bar at about 250 ms), leaving open the possibility that it
might serve programming the target location for the saccade.?!

We can think of the resolution of neural activity in Figure 5 in terms of biased
competition. There is a resource that stimuli compete for, namely a neuron’s
capacity to generate spikes (generating spikes requires energy, a limited resource).
Each stimulus aims to garner the neuron'’s spikes, i.e. to be signaled to downstream
processes. The neural signature of competition is the weighted average response
seen with multiple stimuli. Bias is exemplified in the shift of neural activity that

yields receptive field shrinking/remapping. Attention is said to “emerge” from such

20 Jeffrey Moran and Robert Desimone, “Selective Attention Gates Visual Processing
in the Extrastriate Cortex,” Science, CCXXIX, 4715 (August 23, 1985): 782-84.

21 See Milner and Goodale op. cit. for an account of how attentional modulations in
the ventral stream might serve action computations in the dorsal stream.
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biased competition.22 The effects of biased competition are found throughout the
visual system such as in inferotemporal (IT) cortex within which neural activity
comes to correlate with (“represent”) objects.?3 Figure 5 gives a snapshot of shifts in
neural activity that occur throughout the visual system when a target is attended to.
The idea then is that the resulting subject-level visual state, one’s attending to an
experienced object, is realized by selective neural modulation within the ventral
stream where specific stimuli seem to be neurally selected. Psychological selectivity
in attention has a basis in neural selective modulation in the brain, all tied to the
task being performed.

We can think of neural activation in terms of neural computation. Neural
computation is given in terms of mathematical/statistical models of the neuron’s
behavior. In remapping, the activity of a neuron is a function of its interaction with
other neurons, the links between them constituting a circuit that implements
division or divisive normalization. Divisive normalization has been called a
canonical computation in that it is deployed in a variety of brain regions and for a
variety of phenomena.2# [t is not restricted to attention, but in attention relevant

circuits, it models many of the observed attentional modulations in neural activity.2>

22 Robert Desimone and John Duncan, “Neural Mechanisms of Selective Visual
Attention,” Annual Review of Neuroscience XVIII (1995): 193-222.

23 Leonardo Chelazzi et al., “Responses of Neurons in Inferior Temporal Cortex
during Memory-Guided Visual Search,” Journal of Neurophysiology LXXX, 6
(December 1998): 2918-40.

24 Matteo Carandini and David ]. Heeger, “Normalization as a Canonical Neural
Computation,” Nature Reviews Neuroscience, XIII, no. 1 (2012): 51-62.

25 Geoffrey M Boynton, “A Framework for Describing the Effects of Attention on
Visual Responses,” Vision Research XLIX, 10 (2009): 1129-43; Joonyeol Lee and John
H. R. Maunsell, “A Normalization Model of Attentional Modulation of Single Unit
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That is to say, the equations accurately describe neural activity under attention.
While models of divisive normalization differ in mathematical details, all emphasize
division. I shall begin with the mathematical model presented by Lee and

Maunsell.26 The following equation describes the neuron’s response for two stimuli:

R Nl'(]l)u-*—Nz'(Iz)“ l/’ll
=
12 Ni+N>

Equation 1

The equation models a neuron’s response R to two stimuli, 01 and Oz, in the
neuron’s receptive field. This neuron, M, responds to 01 and Oz in a way sensitive to
two factors: N, the normalization term, and [, the input term. These terms are due to
populations of neurons that constitute M’s normalization pool. Metaphorically, think
about the normalization pool as the neuron’s peer group to which it listens for
advice about the stimuli. At the neural level, normalization pools provide
information to the neuron about the input in question, and can effectively suppress
M’s response. M’s response is thus determined by the input in its receptive field and
by the activity of other neurons in its normalization pool. A schematic circuit is
given in Figure 6 for a neuron in visual area MT that is sensitive to moving stimuli.

This circuit realizes the computational mechanism described in Equation 1:

Responses,” PLoS ONE, 1V, 2 (2009): e4651; John H. Reynolds and David |. Heeger,
“The Normalization Model of Attention,” Neuron, LXI, 2 (January 29, 2009): 168-85.
26 Lee and Maunsell, op. cit. There are important differences although the basic idea
of division remains. I shall largely ignore these. Where the models agree is that there
is a route for attention to affect the computation. The location of the entry point is
one difference.
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Figure 627
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In Lee and Maunsell’s model, the normalization term N takes on values
between 0 and 1. Attention influences the magnitude of N. As they note: “The effect
of attention is introduced by letting attention modulate the normalization
associated with the attended stimulus...In this way, attention acts only through the
normalization mechanism.”28 This influence of attention on N is captured by the

following equation:

Equation 2  Nattended=(1-5) (1_e.[30c0)+s

27 From Lee and Maunsell, op. cit.
28 Lee and Maunsell, op. cit. p. 4651
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Just note that {3 is the contribution of attention to N where [ can take values from 1
to infinity: 1 where no attention is directed at the stimulus and greater than 1
otherwise. As attention increases f3, the value of N gets closer to 1. Looking at
equation 1, a prediction is that where attention to O1 (say) is greater with Oz being
ignored, the response Ri,2 will be driven more by /1 than by I, as observed in Figure
5. Where attention is directed to one of two stimuli within a neuron’s receptive field,
the response of the neuron is determined by the attended stimulus. If we think of
attention as a form of selection, then where only one object is attended to, divisive
normalization takes two inputs and returns only one as output. Attention then
serves as a gate within the visual system, filtering one object for further processing,
namely that object on which the subject intends to act.2? Given that we are speaking
of areas that are implicated in visual experience, including many areas in the ventral
stream, the idea is that divisive normalization in these areas implements the
subject’s visually attending to a visually experienced object. Divisive normalization
currently provides the most unified computational account of the neural basis of

visual attention. This discharges item (1) in our sufficient condition for cognitive

29 Lee and Maunsell, op. cit.,, write: “We assume that a neuron with a receptive field
containing two stimuli receives a direct, tuned input with a strength that depends on
how well the stimulus matches the preferred stimulus for the cell” (4651). On their
account, where the response is maximum, the neuron conveys the information that
the stimulus in the receptive field is maximally similar to its preferred stimulus;
where the response is minimal, the neuron conveys the information that the
stimulus is maximally dissimilar to its preferred stimulus (the metric of similarity
here is left open); where the response is in between these values, the neuron carries
information about “mixed” similarity, a case that involves more uncertainty (hence
less information) about what is in the environment. There are alternative accounts
of how to understand the neuron’s function
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penetration: providing a model of visual (attentional) computation. How then does

intention enter into the story?

5. Intention cognitively penetrates vision

Our empirical hypothesis, based on the Yarbus results and the Many-Many
Problem, is that intention sets attention. What one attends to depends on the task at
hand which in turn depends on one’s intention to perform that task. If divisive
normalization is the neural computational basis of subject-level attention to a task-
relevant object, then the neural realization of top-down, intention-directed attention
should also be sensitive to intention. It is this point that suggests cognitive
penetration: for the monkeys, their intention to act on a specific object shifts the
visual computation of divisive normalization from a weighted average reflecting two
stimuli to a response driven by only one stimulus, namely the task relevant
stimulus. In other words, think of the visual system as keeping an eye out for
information about the animal’s current goals so as to shift its processing to better
serve those goals.

But what is the content of the intention? In the experiment of Figure 2, the
monkey is trained to perform the match-to-sample task and during the experiment,
intends to perform the task. One option: when presented with a stimulus, the
monkey intends to act on it. As Figure 2 demonstrates, the monkey must retain the
sample in working memory due to the delay period when no stimulus is presented.

Once the target array is presented, the monkey must determine which of the two
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objects matches the sample and move the eye to it. The monkey’s intention then
might develop in this way: initially intending to match two presented test stimuli
(general intention), it comes to intend to move the eye to that target (namely the
one in the test array that matches the sample; recall, on some trials the monkey
must not move the eye). As with humans, such intentions can rapidly develop,
sensitive to task context.

It is natural to think of the intention at issue as demonstrative. Thus, the
intention might be to move the eye to that target, a perceptual demonstrative to the
match. For example, locate a medium sized object before you. Got it? Now, grab it. |
submit that execution of that task requires a demonstrative intention to grab the
relevant object attended. Such perception-based demonstratives require attention
to fix reference,3? but now a puzzle arises: if intention shapes attention to the match
target, as seen in the activity of the V4 neuron in Figure 5, how can intention also be
demonstrative since that requires prior attention to the match? That is, we need
attention to a target to intend to act on that target, but that intention seems to be
needed for (top-down) attention to the target. Is this not a problematic circle?

The solution is to recognize two stages of attention: attention for fixing
demonstrative thought and attention for movement. If these stages are distinctly

realized, then the problematic circularity is eliminated. Recent work by Mante et

30 John Campbell, Reference and Consciousness (Oxford: Oxford University Press,
2002); Imogen Dickie, “Visual Attention Fixes Demonstrative Reference by
Eliminating Referential Luck,” in Christopher Mole, Declan Smithies, and Wayne Wu
eds., Attention: Philosophical and Psychological Essays, (New York: Oxford University
Press, 2011), 292-322; Declan Smithies, “What Is the Role of Consciousness in
Demonstrative Thought?,” Journal of Philosophy XVIII, 1 (2011): 5-34.
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al.31 provides evidence that there are attentional mechanisms that are post-
perceptual and not reliant on resolving competition within the visual system. Mante
et al. observed selectivity in prefrontal cortex, a higher-order nonsensory area
linked to cognition and planning, where this selectivity did not depend on prior
selectivity in sensory cortex, such as the modulations depicted in Figure 5, yet still
reflected selectivity needed to serve the task. They write: “Our results show that the
modulation of sensory responses is not necessary to select among sensory inputs...
Multiple selection mechanisms may exist within the brain” (83).

Given that there is evidence for different mechanisms of selectivity, some of
which are realized in prefrontal regions that do not require sensory modulation, and
some which are realized by sensory modulation as in Figure 5, the puzzle can be
resolved. The attentional selectivity needed to ground a demonstrative intention
might rely on the selectivity mechanisms observed in prefrontal areas tied to
planning where these mechanisms do not rely on modulations of sensory processing
but are post-perceptual. Once the demonstrative intention to an object is formed,
this intention can then feedback, via the divisive normalization mechanism, to
influence sensory processing, as indicated in Figure 5, which then serves eye
movement. Thus, the two instances of attention in the task, attention to fix intention
and attention as a result of intention, can be realized in different ways. Two distinct
deployments of attention are at issue, and no problematic circularity arises.

In a different formulation of devisive normalization, Heeger and Reynolds

posit an attention field as the source of a signal that shifts divisive normalization as

31 Valerio Mante et al.,, “Context-Dependent Computation by Recurrent Dynamics in
Prefrontal Cortex,” Nature D, 7474 (November 7, 2013): 78-84.
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the  term does on the Lee and Maunsell model. In both models, a place is made for
the influence of attention on visual computation. There is good reason, however, to
reconceptualize the attention field (also the 3 term) as an intention field. That is, in
both models, it is intention, not attention, that directs shifts in neural computation.
After all, the proposed models are models of attention, meant to elucidate the
machinery that realizes the subject’s attention state or at least modulations of
relevance to attention. Attention is the explanandum to be explained as effect of
shifts in neural computation, and thus not to be deployed as the cause of the neural
activity. Indeed, this idea is a central claim of the biased-competition model of
attention, and divisive normalization is an implementation of biased competition
(the bias is captured in the attention field or 3; the competition is the division by the

respective normalization pools). Thus, Desimone and Duncan noted that:

The approach we take differs from standard view of attention, in which
attention functions as a mental spotlight enhancing the processing (and
perhaps binding together the features) of the illuminated item. Instead, the
model we develop is that attention is an emergent property of many neural
mechanisms working to resolve competition for visual processing and

control of behavior.32

32 Desimone and Duncan, op. cit. Similar point can be made about the premotor
theory of attention where attention is the effect of selective motor preparation of
eye movements to a spatial location and not the cause of such spatial selectivity. In
my conversation with several prominent endorsers of the divisive normalization
model, they have expressed willingness to eliminate talk of attention as a cause at
the relevant stages in the model.
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If attention is meant to be the output of the divisive normalization computation we
have been considering, then we should not see it as one of the inputs shifting the
underlying computation (this would be a problematic explanatory circularity).
Rather, given that we are discussing top-down intention-driven forms of attention, a
natural source of the bias is just the intention that shapes the selectivity required for
performing the task. In other words, intention provides the relevant signal to shift
visual processing in a task-relevant way. It provides the input for the  term in the
Maunsell and Lee model or the attention field in the Reynolds and Heeger model.

Granting this, in what sense does the input of the intention field carry
information (in the statistical sense) about intention? The input resolves
uncertainty about the target of intention, namely which object within the visual field
is task-relevant, the intended target of action. From the visual neuron’s perspective,
it is receiving information about what the target of action is as represented by the
subject’s intention. On receiving that information, the neuron’s response shifts to
serve that intention. The content of intention is provided to the divisive
normalization mechanism precisely to induce the task-relevant shift in processing,
the selection of the intended target. Neural filtering (receptive field remapping) can
serve the intended task by shifting visual neuronal response so that it carries
information from just the task-relevant input. If visual processing is thus sensitive to
intention, the response of the neuron should be appropriately modulated so that it
filters the object of intention via remapping of the receptive field. This sort of

remapping might occur throughout the visual hierarchy as some evidence currently
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suggests.33 Thus, to return to equation 1, if I; corresponds to the object that is the
target of intention, then the magnitude of N; as against Nz should be appropriately
increased so that I; comes to dominate in contributing to the neural response Rj,2.
This shift will occur because of the contribution of 3 to N; where 3 carries
information about the subject’s current intentions. Such an interpretation of the
circuit and computation makes biological sense: for visual processing to be task-
appropriate, it needs information regarding the intended task and its targets. This
discharges (2) in our sufficient condition for cognitive penetration as I have argued
how intention (cognition) might directly affect visual neural computation for
attention. We have, in passing, discussed (3) some empirical evidence for the
divisive normalization model though there is more work to be done.34

Recall then that sufficient condition for cognitive penetration:

(SCP) If cognitive systems contain information R such that vision computes
over R where this computation explains why the visual system yields O
rather than some other output Oy, given visual input I, then cognition

cognitively penetrates vision.

33 For a review of the evidence, see Sabine Kastner and Leslie. G. Ungerleider, “The
Neural Basis of Biased Competition in Human Visual Cortex,” Neuropsychologia,
XXXIX, 12 (2001): 1263-76.

34 For recent experimental support, see Katrin Herrmann et al., “When Size Matters:
Attention Affects Performance by Contrast or Response Gain,” Nature Neuroscience,
XIII, 12 (December 2010): 1554-59, doi:10.1038/nn.2669.
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Intention is an action-directed cognitive state that often represents an object as to
be acted on. As we saw in the Yarbus case, a subject’s intention affects what objects
the subject attends to. It determines what objects are task relevant. Further, in the
case of intentions that represent specific targets as in the eye movement actions we
have discussed, information about the intended target is transmitted to the visual
system in its computation of divisive normalization such that the visual output
depends on what target is intended. If this computation is both central to attentional
effects in the visual system and if divisive normalization is a canonical neural
computation, then in many task-relevant stages in visual processing, computations
will be sensitive to intention. In our case, divisive normalization establishes the
state of the subject’s visual attention, namely the subject’s visual selection of one of
several seen objects to perform a task. It does so by shifting the neural responses
from responding to all the objects within the receptive field to just the object on
which the subject intends to act. Across the visual system, the net effect will be that
of all the objects within the subject’s field of view, a certain experienced object will
be attended to. In this way, intention affects visual computations as per SCP and
thus, intention cognitively penetrates vision. This case strikes me as currently the
best case for cognitive penetration, for it relies on a well-described computational
model of the response of neurons under conditions of attention that accounts for the
known data. We have then both behavioral data suggesting penetration (e.g. Yarbus
and the monkey data discussed), a specific computational model that explicates
what penetration might amount to, and increasing empirical support for that model.

But why might cognitive penetration of attention matter?
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6. Epistemic Consequences: an agenda for a psychological epistemology

Cognitive penetration is philosophically significant in part because it is
epistemically significant. One significant consequence arises if cognitive penetration
amounts to seeing what one believes, roughly, where the content of belief
penetrates visual experience so as to provide contents for experience. This sort of
penetration would be epistemically problematic, raising worries about vision as a
neutral tribunal for belief. This is not the sort of cognitive penetration exemplified
by top-down attention, yet top-down attention that is biased by intention is
epistemically consequential in ways that I shall now describe. It is uncontroversial
that bias, in a colloquial sense, is epistemically consequential affecting what beliefs
we form and what evidence we consider. The epistemic significance of the cognitive
penetration of visual attention is precisely that attention is a target of such bias. Put
another way, the colloquial biases we all have can influence the neural biases that
set attention. The top-down biasing in divisive normalization is an important source
of the epistemic effects of bias in the more general sense. Once we recognize how
attention is neurally biased, the apparatus used to understand it can illuminate
epistemic bias. I will focus on theoretical reasoning but the same points apply to

practical reasoning.3>

35 There is quite a bit of discussion on these issues in philosophy. For one recent
publication that focuses on similar issues raised here and for many references
therein, see Susanna Siegel, “Can Selection Effects on Experience Influence Its
Rational Role?,” in Tamar Gendler ed., Oxford Studies in Epistemology Volume 4,
(Oxford: Oxford University Press, 2013). Siegel discusses work by Keith Payne
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Let us now consider two contrasts: top-down versus bottom-up attention
and automatic versus controlled attention. We can expand the definition of top-

down attention as follows:

S top-down perceptually attends to X if and only if S’s perceptual attention to

X is the result of a non-perceptual mental state.

Bottom-up perceptual attention can be defined as the absence of top-down
influences as just specified: attention as occurring independently of a non-
perceptual mental state such as when attention is driven by a suddenly appearing
stimulus (stimulus driven attention or capture of attention). The definition relies on
a hierarchy that takes perception as at the mind’s ground floor with everything non-
perceptual above perception: cognition, motor systems, emotions, moods, desires,
intentions etc. Top-down attention then captures a broad set of top-down influences
(biases) on visual (perceptual) computations relevant to attention. An empirical
possibility to be explored is that the intention field or § term is a more general
receptor of biasing signals from all non-perceptual states. Here, intuitions will
hopefully suffice: other states like emotions are well known to direct attention, say

one’s fear of a snake in one’s path that pulls attention to it so as to help one avoid it,

where implicit stereotypes affect perceptual judgments (B Keith Payne, “Prejudice
and Perception: The Role of Automatic and Controlled Processes in Misperceiving a
Weapon,” Journal of Personality and Social Psychology LXXXI, no. 2 (August 2001):
181-92.). One explanation of the effect Siegel dubs anti-selection of experience for
uptake, namely that relevant experience is biased against (as James would say, one
withdraws from it) leading to an inappropriate response. Siegel’s talk of anti-
selection is suggestive of attention.
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or one’s desire that drives attention to the desired item, say when one is hungry and
focuses on plates of food at a buffet. Given how these states shift attention, it is
plausible to hypothesize that the emotional and conative states shift visual
computation in a similar was as effected by intention, namely as within the divisive
normalization model presented earlier. There could be multiple and disparate
influences on attention. Whether this is so, of course, is an empirical matter. What
gives flesh to the proposal is the divisive normalization model.

Now consider control versus automaticity in attention:

S’s attention to X is controlled in respect of its feature F iff S’s attending to X

with feature F is a result of an intention to do so in the F way.

Intuitively, your attention involves control when its having feature F (in the limiting
case, its being directed towards some target) is a result of your intending to attend
in that way. So, control in attention is attending as you intend: if [ intend to attend to
the snake, then my attention’s having the snake as its target is a controlled feature.

Automaticity then can be defined

S’s attention to X is automatic in respect of its feature F iff S’s attending to X

with feature F is not a result of an intention to do so in the F way.

That is, attention is automatic relative to F iff it is not controlled relative to F. So, if

my attention is pulled to the snake despite my wanting to look away, then attention
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is automatic. Automaticity is tied to the absence of intentions in respect of F.3¢ The
point is that when James speaks of the withdrawal from one object concomitant
with attention to another, that withdrawal is often automatic. One doesn’t need to
intend to ignore one object when one intends to attend to another. Sometimes,
withdrawal just (necessarily/automatically) happens.

Let’s not quibble over definitional details. The issue is the forest, not the
trees. Consider an epistemic agent who aims to figure out what to believe but is
confronted with disparate sources of evidence. Epistemic agents face a Many-Many
Problem: given many sources of evidence, what should they believe? Consider a
simple situation where perceptible reasons p and g (e.g. considering a set of
experimental data) seem to be relevant to the belief that r, the belief that not r and
the belief that s among others. We can then map an epistemic behavior space that
identifies links between putative reasons (evidence) provided by perception and
potential perceptual beliefs (again, this is a simplified case). The links identify paths
that when taken yield beliefs based upon perceived evidence. Some of these paths
will be reasonable in that the evidence supports the belief; some will not in that
support is absent though of course, the agent could mistakenly take there to be
support. As in the Many-Many Problem for bodily movement, taking one path is a
form of selection, here for epistemic action: in selecting some perceptual evidence
over others, as when examining a slew of laboratory data, the agent is deploying

attention to select that evidence to inform the task of fixing belief.

36 For more discussion, see Wayne Wu, “Mental Action and the Threat of
Automaticity,” in Tillman Vierkant, Julian Kiverstein, and Andy Clark eds.,
Decomposing the Will (Oxford: Oxford University Press, 2013).
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The biases tied to attention amount to biases tied to selectivity in epistemic
agency. I conclude by considering some notable cases: Case 1: consider an agent
who recognizes that evidence p supports r and evidence q supports s where rand s
are two competing scientific hypotheses. An epistemic vice in this case is to willfully
ignore g and focus on r. In this way, the subject intentionally attends to p and
withdraws from g, perhaps because r is the subject’s pet theory. Here, attention is
top-down and its concomitant withdrawal is intentional. Clearly, such an agent fails
a basic epistemic virtue. Yet consider Case 2: as James noted, by attending to
something, this necessitates withdrawal from other things. Another agent might
attend to p which supports their favored theory r and in that automatic way fail to
notice g which supports the conflicting hypothesis. In attending appropriately to
evidence for hypothesis r, the agent fails to notice relevant evidence for the
competitor. This is, of course, an epistemic failure but not an intentional one. Rather,
unlike Case 1, the agent in Case 2 lacks a certain capacity, a susceptibility to notice
relevant evidence. So, we are likely to castigate the agent in Case 1 more than the
agent in Case 2. But note that Case 2 can be fleshed out in different ways: Case 24,
where the subject just has a limited capacity for what can be attended to, so that the
ignoring of additional evidence is automatic due to cognitive capacity limitations;
Case 2B, where the subject has biases that are not rooted in intentions to ignore
evidence but rather due to other states such as desires, values, or habits. These top-
down, non-intention influences can also drive attention so that the filtering out of
additional evidence occurs, even if these influences are in the defined sense

automatic. The nature, then, of the top-down influence on attention matters. The
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subject in 2B has something to correct, biases that have negative epistemic
consequences despite sufficient attentional capacity; the subject in 2A simply has a
limited capacity to process information, something that might simply be a product
of a more limited cognitive endowment. Where a specific epistemic agent stands
with respect to bias and capacities for attention will be in part an empirical matter;
there is no reason to expect that each epistemic agent is similar to others with
respect to appropriate and inappropriate biases as well as attentional and agential
capacities.

Focusing on appropriate evidence is ideal, but as we have seen, forming a
belief on the basis of such focus can be an action with different sources, leading to
different assessments of one’s epistemic standing. Individuating such cases is the
payoff of highlighting attention’s role in agency and the different ways it can be
influenced and deployed. Consider, as one more example the capture of attention.
Inattentional blindness studies demonstrate the different powers certain classes of
stimuli have in disrupting top-down attention. As Arien Mack and Irving Rock
demonstrated, a dot placed outside of a subject’s zone of attention in demanding
tasks is not very effective in drawing the subject’s attention away from her current
focus. In contrast, a subject’s name is very effective in capturing attention.3” So
consider Case 3: a subject is appropriately reflecting on evidence relevant to
hypothesis r and is focusing on evidence p. We further hope that the agent can be
sensitive to additional evidence and come to notice it, say the presence in her

collected data of evidence g, evidence that might support a contrary hypothesis. This

37 Arien Mack and Irvin Rock, Inattentional Blindness (Cambridge, MA: MIT Press,
1998).
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requires, in certain cases, the power of that evidence to capture the subject’s
attention, to circuit break current theoretical activity as it were.38 Given the results
of inattentional blindness, we expect speakers to have different capacities to notice
things outside of attention’s current focus. Will the subject notice relevant evidence
outside of the evidence attended? Here, the capacity of such evidence to
automatically and bottom-up, as it were, drive attention will depend on a host of
factors, biases of negative and positive sources—prejudices, incorrect valuation,
suspect desires, and epistemic habits to name a few. A subject so negatively
disposed to the alternative hypothesis, perhaps one endorsed by a hated rival, might
simply fail to notice relevant evidence simply because the capacity for bottom-up
attention (attentional capture) is limiting.

What this all points to, I think, is that being sensitive to evidence is in many
ways a type of skill. An agent confronted with a plethora of evidence, much of it
pulling in different directions, must find a way to sort it out. An ideal case is a calm
reflector who has time to weigh the evidence and come to some reasonable
conclusion in light of rational reflection. In such cases, beliefs are appropriately
based on the evidence, a link I claim requires attention to the evidence due to the
Many-Many Problem. But once we see attention’s role and also the different sorts of
biases and states that can influence its deployment, we can see that real-life agency,
epistemic or otherwise, represents a fine balance between control and automatic

features of that process and between top-down and bottom-up elements. Like a

38 Maurizio Corbetta and Gordon L. Shulman, “Control of Goal-Directed and
Stimulus-Driven Attention in the Brain,” Nature Reviews: Neuroscience 111 (2002):
20115.
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skilled gymnast or concert pianist, skilled epistemic agents must find a way to
balance controlled and automatic features in a way that is also sensitive to the right
top-down sources, the agent’s intentions, desires, emotions and so forth. This can
take learning and training. These top-down influences must also leave room for
noticing new information, bottom-up as it were, when the context requires.

[ began with the idea of shaking up the mind’s ground floor, the perceptual
tribunal of empirical beliefs, through intention. That shaking up is, I think,
empirically supported by the informational penetration of the sort discussed earlier,
and has potentially disparate sources and implementations. The bias that we worry
about in epistemology and action interacts with the computational biases that
realize attention. How we cope with such seismic shifts in perception is just the

challenge of agency, one we can meet with training, skill and appropriate attention.
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