
.

Categories of first-order quantifiers

Urszula Wybraniec-Skardowska

Abstract. One well known problem regarding quantifiers, in particular the 1st-
order quantifiers, is connected with their syntactic categories and denotations.
The unsatisfactory efforts to establish the syntactic and ontological categories
of quantifiers in formalized first-order languages can be solved by means of the
so called principle of categorial compatibility formulated by Roman Suszko,
referring to some innovative ideas of Gottlob Frege and visible in syntactic
and semantic compatibility of language expressions. In the paper the principle
is introduced for categorial languages generated by the Ajdukiewicz’s classical
categorial grammar. The 1st-order quantifiers are typically ambiguous. Every
1st-order quantifier of the type k > 0 is treated as a two-argument functor-
function defined on the variable standing at this quantifier and its scope (the
sentential function with exactly k free variables, including the variable bound
by this quantifier); a binary function defined on denotations of its two argu-
ments is its denotation. Denotations of sentential functions, and hence also
quantifiers, are defined separately in Fregean and in situational semantics.
They belong to the ontological categories that correspond to the syntactic
categories of these sentential functions and the considered quantifiers. The
main result of the paper is a solution of the problem of categories of the
1st-order quantifiers based on the principle of categorial compatibility.
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1. Introduction

Sentential logic beginnings date back to ancient times, times the Stoics (3rd c BC),
while the notion of a quantifier arose only in XIX century and of the calculus of
quantifiers, predicate logic – only at the beginnings of the XX century. The begin-
nings of this logic, as we know, were created by Gottlob Frege (Begriffschrift, [11]).

The main problems and their solutions connected with the subject of this paper were presented at
the Logic Colloquium’15 held in Helsinki on August 3-8, 2015, co-located with the 15th Interna-
tional Congress of Logic, Methodology and Philosophy of Science, CLMPS (see my abstract [35];
see also [36]).
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Around 1879 Frege and – independently – Charles Sanders Peirce developed
a way to extend sentential logic by introducing symbols representing determiners,
such as ‘all’, ‘some’, ‘no’, ‘every’, ‘any’, and so on.

Frege and Peirce used two symbols: the universal quantifier (which we will
write ∀) corresponding roughly to the English ‘all’, ‘every’ and ‘each’ and the
existential quantifier (which we will write ∃) corresponding to the English ‘some’,
‘a’, ‘an’.

In this paper we will consider only standard, Fregean quantifiers ∀ and ∃ of
the 1st-order as individual variable-binding operators. They are used in formulas of
predicate logic of the 1st-order and in formalized languages of elementary theories
based on this logic. Their syntactic role and semantic references, i.e. denotation,
extension, created some problems that have not been satisfactorily solved yet.

In the next part (Section 2) I shall partially explicate the problem of quanti-
fiers. In Section 3, I’ll outline some intuitive foundations of my theory of categorial
languages which gives the formal direction for justification of my solution of the
problem of quantifiers. It corresponds to the principle (CC ) of categorial compati-
bility based on some Frege’s ideas and was formulated by Roman Suszko [27]. The
solution of the problem is presented in Section 4.

2. Problem of quantifiers

The problem of quantifiers is connected with the difficulty pertaining to establish-
ing their syntactic and semantic categories.

Leśniewski’s theory of semantic/syntactic categories [16, 17], which was im-
proved by Ajdukiewicz [1] by introducing categorial indices, does not, obviously,
solve this problem, which limits the universal character of the theory.

Leśniewski’s hierarchy of semantic/syntactic category does not include any
variable-binding operators. Leśniewski, in his protothetics and ontology systems,
allows only one operator – the universal quantifier, noting it as parentheses, Aj-
dukiewicz, on the other hand, indicates the difficulty of assigning to quantifiers
the index s/s or s/ns.

Assigning to them the index s/s, i.e. the category of sentence-forming functors
of one-sentence argument, would mean that the quantifiers belong to the same
category as one-argument connectives, and assigning to them the index s/ns of
sentence-forming functors of one-name and one-sentence arguments would mean
that we include them into the same category as some expressions of indirect speech,
e.g. ‘think that’, ‘know that’, etc.

It has been suggested that that categorial grammar, which Bar-Hillel derived
from Ajdukiewicz’s version of the theory of semantic/syntactic categories, does not
satisfactory account for the role of bound variables and operators binding them.

Suszko [25, 27] assigns to them the index s//s/n, and thus the index of
sentence-forming functor of the argument, which is a one-argument predicate. In
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this way, the index, for example in the sentence ‘∀x(x flows)’ pertains to the en-
tire quantifier-variable pattern ‘∀x(x . . .)’ (see Simons [23]) which corresponds to
English word ‘everything’ (see also Cresswell [7], Simons [24]).

Suszko and many other researchers of language syntax treat quantifiers as
expressions independent of the quantifier variable. Generally, researchers avoid
bound variables in attempting to solve the problem, for example by means of
combinators (Curry [8, 9], Curry and Feys [10], see e.g. Simons [23]).

But earlier, Suszko stated that mounting variable-binding operators into
a syntactic scheme requires general principles other than the theory of syntac-
tic/semantic categories.

The principle (CC ) of categorial compatibility is one such principle. It allows
us to assign to every expression of a formalized 1st-order language, which possesses
an index symbolizing a syntactic category, a denotation whose ontological category
(relative to the universe U of a given model of the language) is indicating by the
same index.

Suszko assumes that

• the denotation of the entire expression ∀x(e(x)), where e(x) is a sentential
function with the free variable x, is ether the logical value 1 (of truth) or the
logical value 0 (of falsity) which belong to the ontological category with the
index s, and

• the denotation of the universal quantifier ∀ is the function of generalization
which has the value 1 in only one case, if its argument is the universe U .

The function of generalization belongs to the ontological category with the
index s//s/n because its arguments are any sets belonging to the family P (U)
counted among the ontological categories with the index s/n. In this way the
principle (CC ) holds although the principle of syntactic connection (SC ) does not
hold because no index is assigned to quantifier variable x, and the scope of the
quantifier ∀ (here e(x)) is not one-argument predicate of the syntactic category
with the index s/n.

In the next parts of this paper I explicate both the principle (SC ) syntactic
connection) and the principle (CC ) of categorial compatibility on the basis of my
theory of categorial languages [30–34] which allows us to give some solutions to
the problem of quantifiers.

The essence of the approach proposed here is considering them to be typical
syntactic notions: functors-functions mapping language expressions into language
expressions that correspond to some functions on extralinguistic objects –on de-
notations of arguments of these functors.

Let us note that a standard background for research in the field of mentioned
quantifiers assumes treating them as some functions or relations on extralinguistic
objects, mostly functions with index t//t/e (cf. Mostowski [21], Lindström [18],
Montague [19, 20], Nowaczyk [22], van Benthem [3, 4], van Benthem and Wester-
ståhl [5]).
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3. Some intuitive foundations of the theory of categorial languages

3.1. Main ideas of formalization of categorial language
In the paper, formal-logical considerations relate to syntax and extensional seman-
tics of any language L characterized categorially :

• in the spirit of some ideas of Husserl [15] and Leśniewski–Ajdukiewicz’s theory
of syntactic/semantic category (see Leśniewski [16, 17], Ajdukiewicz [1, 2]),

• in accordance with Frege’s ontological canons [13],
• in accordance with Bocheński’s motto [6]: syntax mirrors ontology and
• some ideas of Suszko [25–28]: language should be a linguistic scheme of onto-
logical reality and simultaneously a tool of its cognition.

The paper includes developing and some explications of these authors’ ideas.
It also presents, in a synthetic form, some ideas presented in my papers published
in [30–34].

Language L is there defined, if the set S of all well-formed expressions (briefly
wfes) is determined. These expressions must satisfy requirements of categorial
syntax and categorial semantics.

3.2. Categorial syntax
The categorial syntax of L is connected with generating the set S by the classical
categorial grammar and belonging wfes of S to appropriate syntactic/semantic
categories.

A characteristic feature of categorial syntax is that each composed wfe of the
set S has a functor-argument structure, in this sense that, in accordance with the
principle originated by Frege [11], it is possible to distinguish in it its constituent
called the main functor, and the other constituents –– called arguments of that
functor, yet each constituent of the wfe has a determined syntactic category.

If e is a functor-argument wfe of S, f is its main functor and e1, e2, . . . , en

its subsequent arguments then e can be written in the functional-argument form:

e = f(e1, e2, . . . , en). (e)

In categorial approach to the language L, syntactic categories of wfes of L
are determined by attributing to them, like their expressions, categorial indices of
a certain set I. To every wfe e of the set S is unambiguously assigned a categorial
index (type) iS(e) of the set I; wfes belonging to the same syntactic category
CATa have the same categorial index a.

Categorial indices were introduced by Ajdukiewicz [1] into logical semiotics
with the aim to determine the syntactic role of expressions and to examine their
syntactic connection, in compliance with the principle of syntactic connection (SC )
discussed below.

The set S of all wfes of L is then intuitively defined as the smallest set
including the vocabulary of L and closed with respect to the principle (SC ) which
in free formulation says that
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(SC ) The categorial index of the main functor of each functor-argument expression
of the language L is formed out of the categorial index of the expression which
the functor forms together with its arguments, as well as out of the subsequent
indices of arguments of this functor.
In the formal definition of the set S it is required that each functor-argument

constituent of the given expression should satisfy the principle (SC ).
If the functor-argument expression e = f(e1, e2, . . . , en) is a wfe (it belongs

to the set S), then in accordance to the principle of syntactic connection (SC ) the
index of its main functor f formed from the index a of e and successive indices
a1, a2, . . . , an of successive arguments e1, e2, . . . , en of the functor f , can be written
in the following quasi-fractional form:

iS(f) = iS(e)/iS(e1)iS(e2) . . . iS(en) = a/a1a2 . . . an. (iS)

3.2.1. An algebraic structure of categorial language. In categorial language L we
can distinguish two sets: the set B of all basic wfes of S and the set F of all
functors of S such that

S = B ∪ F and B ∩ F = ∅,
where functors of the set F differ from basic expressions of B that they have indices
formed from simpler ones. If the functor f has the functoral index of the form (iS),
i.e. the index of the form a/a1a2 . . . an then it belongs to the syntactic category
CATa/a1a2 . . . an and so to the category of functors forming expressions with the
index a if their arguments are n expressions with successive indices a1, a2, . . . , an.
So the functor f can be treated as the following partial function defined on wfes
of S:

f : CATa1 × CATa2 × . . .× CATan → CATa
mapping of wfes from Cartesian product of syntactic categories CATa1, CATa2,
. . . , CATan into the category CATa. Then we have

f ∈ CATa/a1a2 . . . an = CATaCATa1×CATa2×...×CATan . (CATf )

In this way we simultaneously can regard the categorial language L as an
algebraic structure L, partial algebra with the carrier S and the set Fo ⊆ F of
partial functions on S (simple functors of L):

L = 〈S,Fo〉 .
3.3. Categorial semantics
Categorial extensional semantics is connected with denotations of wfes of S and
with their belonging to an appropriate semantic extensional category. Each con-
stituent of the composed wfe has determined a semantic extensional category and
also a denotation, and thus – an ontological category (the category of ontologi-
cal objects). Denotations (extensions) of wfes of L are sets of object references
(references) of wfes of L, objects of the cognized reality, e.g.: individuals, sets of
individuals, states of affairs, operation on the indicated objects, and the like.
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We will concentrate only on referential relationships between expressions of
L and reality to which they refer. We enrich the categorial grammar generating L
by the denotation operation δ regarded as its semantic component. The denotation
operation δ assigns to every wfe of the set S an object of ontological reality ONT
describing by the language L – its denotation belonging to an ontological category.
So

δ : S → ONT, (δ)

where ONT is the sum of all ontological categories corresponding to wfes of S.
According to some innovative ideas of Frege [12, 13], Bocheński’s (his famous

motto: syntax mirrors ontology) and Suszko [25–27] who anticipated the research
in categorial semantics and was the first to use categorial indices as a tool for co-
ordination of expressions and their references, extralinguistic objects, the mutual
dependence of syntactic and semantic formal description of L should be considered
by keeping the principle (CC ) of categorial compatibility, based on the compatibil-
ity of the syntactic category of each language expression of L with the ontological
category assigned to its denotation. The principle (CC ) of syntactic and semantic,
i.e. also ontological categorial compatibility in Suszko’s formulation can be given
by keeping for any wfe e of categorial language L the relationship:

e ∈ CATι iff δ(e) ∈ ONTι, (CC )

where CATι and ONTι are: the syntactic category and the ontological category,
respectively, with the same categorial index ι, and δ is the operation of denotation.

From the principle (CC ) it follows that for any e = f(e1, e2, . . . , en) ∈ S with
the main functor-function f ∈ CATa/a1a2 . . . an satisfying the condition (CATf )
the following conditions are satisfied:

δ(f) ∈ ONTa/a1a2 . . . an = ONTaONTa1×ONTa2×...×ONTan (ONTf )

and
δ(f(e1, e2, . . . , en)) = δ(f)(δ(e1), δ(e2), . . . , δ(en)). (PCD)

The condition (ONTf ) states that the denotation (object reference) of the
main functor of the composed wfe e of the set S is the set-theoretical function
mapping the Cartesian product of ontological categories ONTa1 ×ONTa2 × . . .×
ONTan into the ontological category ONTa and it is defined by means of the
condition (PCD) connected with some Frege’s ideas and called the principle of
compositionality of denotation.

3.3.1. An algebraic ontological structure corresponding to the partial algebra L.
The operation δ assigns the following ontological structure RL of a reality corre-
sponding to language L to the algebraic structure L:

RL = 〈ONT,ONTFo〉 ,
where ONTFo is the sum of all ontological categories corresponding to all functors
of the set Fo. The structure RL is a partial algebra similar to the algebra L and the
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principle (PCD) is simultaneously the condition of homomorphism of the algebra
L into the algebra RL, i.e.

δ : 〈S,Fo〉 −−−→
hom

〈ONT,ONTFo〉 .

Amodel of language L is the structure of homomorphic images of components
of L, i.e. the substructure ML = 〈δ(S), δ(Fo)〉 of the structure RL.

If we distinguish in the set B of basic wfes of S the category CATs of all
sentences of language L, then the notion of truthfulness of any sentence e ∈ CATs
in the model ML is defined as follows:

e is a true sentence in the model ML iff δ(e) ∈ T, (T )

where T is primitive notion of the considered theory intuitively understood either
as the singleton with the true value (in Freegan semantics) or as the set of all
states of affairs that take place (in situational semantics).

4. The solution of the problem of quantifiers of 1st-order

The unsatisfactory efforts to establish, in the sense of the principle (CC ) of cate-
gorial compatibility, the category of quantifiers in formalized 1st-order languages
can be solved by means of notions and statements of the above outlined theory of
categorial languages.

Let L1 be any 1st-order formalized language. Let us treat any standard quan-
tifier of L1 as a context-dependent functor of two arguments:
1. a quantifier variable (the variable accompanying this quantifier) and
2. its scope, i.e. a sentential function including as a free variable the same vari-

able as the quantifier variable.

4.1. Different types of the 1st-order quantifiers and their syntactic categories
A standard, the 1st-order quantifier is a functor forming a new sentential func-
tion (in particular a sentence of L1) in which there occur one free variable less
than in the scope of this quantifier (the variable bound by the quantifier). As
such a functor, a quantifier can be treated as a set-theoretical function relative to
the number of free individual variables occurring in its scope. So, we should not
speak of one existential ∃ or one universal quantifier ∀ but about different types of
such quantifiers depending of the number of free variables in their scope. We will
use numerical superscripts in order to point out these different types of quantifiers.

Let
• Var be the set of all individual variables for L1, with categorial index n1;
• S = S0 – the set of all its sentences, with the categorial index s;
• Sk(k ≥ 1) – the set of all sentential functions in which exactly k free variables

occur, with the index sk.
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For example, if α(x1, x2, x3) ∈ S3, where x1, x2, x3 ∈ Var, then the expres-
sions:

∀3x2α(x1, x2, x3) ∈ S2, ∃2∀3x2α(x1, x2, x3) ∈ S1, ∀1∃2∀3x2α(x1, x2, x3) ∈ S0

and quantifiers ∀3, ∃2, ∀1 belong to different syntactic categories with indices
s2/n1s3, s1/n1s2, s/n1s1, respectively.

More generally, the quantifiers ∀k and ∃k (k ≥ 1) are treated as the functors-
functions:

∀k, ∃k : Var× Sk → Sk−1 (S0 = S).

Thus, in accordance to (CATf ), for k > 0 we have

(CAT∀k,∃k) ∀k,∃k ∈ CATsk−1/n1sk (s0 = s),

and the principle of syntactic connection (SC ) for them is satisfied.
Their denotations and ontological categories should be defined in such a way

as to satisfied the principle (CC ) of categorial compatibility (their denotations
should belong to the ontological category ONTsk−1/n1sk) and the principle (PCD)
of compositionality of denotation.

Let the denotation operation for the language L1 be the function d in Fregean,
standard semantics and the function d in the situational, non-standard semantics:

d, d : S(L1) → ONT(L1)

mapping the set S(L1) of all wfes of L1 into the set ONT(L1) which is the sum of
all ontological categories in the ontological structure RL1 .

We will give here two possible solutions of denotations of quantifiers of the
1st-order taking into account two different ways of understanding of the denotation
of sentences and sentential functions presented below.

4.2. Denotations of 1st-order quantifiers and their ontological categories
4.2.1. Fregean semantics. We assume that if U is the universe of individuals in an
established model ML1 of L1, 1 is the value of truth, 0 – the value of falsity then

d(x) ∈ {U} = ONTn1 for any x ∈ CATn1 = Var;
d(p) ∈ {0, 1} = ONTs for any p ∈ CATs = S;
d(sf) ∈ 2Uk

= ONTsk for any sf ∈ CATsk = Sk(k ≥ 1)

and for any x1, x2, . . . , xk ∈ Var and for any sf = α(x1, x2, . . . , xk) ∈ Sk

d(α(x1, x2, . . . , xk)) =

{(u1, u2, . . . , uk) ∈ Uk | d(αo(x1/u1, x2/u2, . . . , xk/uk)) = 1},
where αo(x1/u1, x2/u2, . . . , xk/uk) is a sentence which we get from sentential func-
tion sf by replacement of its all free variables x1, x2, . . . , xk of Var by suitable in-
dividual names of individuals u1, u2, . . . , uk of the universe U , i.e. the denotation
of sf is the set of all k-tuples from Uk which satisfy this sentential function.

Denotation for the quantifier ∀k of the type k(k ≥ 1) is defined by induction
as follows:
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a) for k = 1 and any α(x) ∈ S1

d(∀1xα(x)) = d(∀1)(d(x)), d(α(x))) =

{
1, d(x) = U = d(α(x))
0, d(x) = U 6= d(α(x));

.

According to a) the quantifier sentence obtained from any sentential function
α(x) by preceding it with the universal quantifier ∀1 is a true sentence in the
established model ML1 of L1 with the universe of individuals U iff every object
of the universe U satisfies the α(x) which is the scope of ∀1.
b) for k = j + 1(j > 0) and any α(x1, x2, . . . , x, . . . , xj+1) ∈ Sj+1

d(∀j+1xα(x1, x2, . . . , x, . . . , xj+1)) =
= d(∀j+1)(d(x), d(α(x1, x2, . . . , x, . . . , xj+1))) =
= {(u1, u2, . . . , uj+1) ∈ U j | d(αo(x1/u1, x2/u2, . . . , x/u, . . . , xj+1/uj+1)) = 1

for each u ∈ U}.
According to b) the denotation of the sentential function sfk−1 ∈ Sk−1 ob-

tained from the sentential function α(x1, x2, . . . , x, . . . , xj+1) ∈ Sk(k > 1) by
binding the variable x by the universal quantifier ∀k(k = j + 1 > 1) is the
set of all j = (k − 1)-tuples (u1, u2, . . . , uk−1) of individuals of U such that all
sentences obtained by the substitution of all j free variables in sfk−1, respec-
tively, by names of individuals of these tuples and names of any individuals of
U representing x are true; in other words the denotation of sfk−1 is the set of
all such (k − 1)-tuples (u1, u2, . . . , uk−1) of individuals of U that for any indi-
vidual u of U k-tuples (u1, u2, . . . , u, . . . , uk−1) build from them satisfy the scope
α(x1, x2, . . . , x, . . . , xj+1) of the quantifier ∀k.

Thus for any k ≥ 1

d(∀k) ∈ ONTsk−1/n1sk = ONTsONTn1×ONTsk

k−1 .

Similarly for d(∃k):
a) for k = 1 and any α(x) ∈ S1

d(∃1xα(x)) = d(∃1)(d(x)), d(α(x))) =

{
1, d(x) ∩ d(α(x)) 6= ∅
0, d(x) ∩ d(α(x)) = ∅; .

b) for k = j + 1(j > 0) and any α(x1, x2, . . . , x, . . . , xj+1) ∈ Sj+1

d(∃j+1xα(x1, x2, . . . , x, . . . , xj+1)) =
= d(∃j+1)(d(x), d(α(x1, x2, . . . , x, . . . , xj+1))) =
= {(u1, u2, . . . , uj+1) ∈ U j | d(αo(x1/u1, x2/u2, . . . , x/u, . . . , xj+1/uj+1)) = 1

for some u ∈ U}.
According to a) the quantifier sentence obtained from any sentential function

α(x) by preceding it with the existential quantifier ∃1 is true sentence in the
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established model ML1 of L1 with the universe of individuals U iff at least one
object of the universe U satisfies the α(x) which is the scope of ∃1.

According to b) the denotation of the sentential function sfk−1 ∈ Sk−1 ob-
tained from the sentential function α(x1, x2, . . . , x, . . . , xj+1) ∈ Sk(k > 1) by
binding the variable x by the existential quantifier ∃k(k = j + 1 > 1) is the
set of all j = (k − 1)-tuples (u1, u2, . . . , uk−1) of individuals of U such that all
sentences obtained by the substitution of all j free variables in sfk−1, respec-
tively, by names of individuals of these tuples and the substitution some individ-
ual name of u for x are true; in other words the denotation of sfk−1 is the set of
all such (k − 1)-tuples (u1, u2, . . . , uk−1) of individuals of U that for some indi-
vidual u of U k-tuples (u1, u2, . . . , u, . . . , uk−1) build from them satisfy the scope
α(x1, x2, . . . , x, . . . , xj+1) of the quantifier ∃k.

Thus, for any k ≥ 1

d(∃k) ∈ ONTsk−1/n1sk = ONTsONTn1×ONTsk

k−1 .

Moreover, the principle (CC ) is also valid for ∀k and ∃k in situational seman-
tics.

4.2.2. Situational semantics. In situational semantic we assume that

d(x) ∈ {U} = ONTn1 for any x ∈ CATn1 = Var;
d(p) ∈ {St} = ONTs for any p ∈ CATs = S,

where St is the set of all states of affairs, St = T ∪ F, T ∩ F = ∅ and T is the
nonempty set of all states of affairs that take place and F – the nonempty set of
remaining states of affairs. Stk ⊂ St is the set of states of affairs with k individuals.

d(sf) ∈ 2Stk = ONTsk for any sf ∈ CATsk = Sk

and for any x1, x2, . . . , xk ∈ Var and for any sf = α(x1, x2, . . . , xk) ∈ Sk

d(α(x1, x2, . . . , xk)) =

{s ∈ Stk | s = d(α0(x1/u1, x2/u2, . . . , xk/uk)) for any (u1, u2, . . . , uk) ∈ Uk}.

So, if the denotation operation is understood here as the operation d then
the denotations of sentences are states of affairs and the denotation of any sen-
tential function is the set of all states of affairs that are denotations all sentences
represented by the sentential function.

Denotation for the quantifier ∀k is defined by induction as follows:

a) for k = 1 and any α(x) ∈ S1

d(∀1xα(x)) = d(∀1)(d(x)), d(α(x))) ∈ T iff d(αo(x/u)) ∈ T for each u ∈ U ;
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b) for k = j + 1(j > 0) and any α(x1, x2, . . . , x, . . . , xj+1) ∈ Sj+1

d(∀j+1xα(x1, x2, . . . , x, . . . , xj+1)) =
= d(∀j+1)(d(x), d(α(x1, x2, . . . , x, . . . , xj+1))) =
= {s ∈ St | s = d(αo(x1/u1, x2/u2, . . . , x/u, . . . , xk/uk))

for each u ∈ U, any (u1, u2, . . . , uj+1) ∈ U j}.
According to a) the quantifier sentence obtained from any sentential function

α(x) by preceding it with the universal quantifier ∀1 is a true sentence in an estab-
lished model ML1 of the language L1 with the universe of individuals U iff every
sentence representing this sentential function is true (because their denotations
are states of affairs that take place).

According to b) the denotation of sentential function sfk−1 ∈ Sk−1 obtained
from the sentential function α(x1, x2, . . . , x, . . . , xj+1) ∈ Sk(k > 1) by binding the
variable x by the universal quantifier ∀k is the set of all denotations of sentences
(intuitively –the set of all states of affairs describing by these sentences) which can
be obtained from sfk−1 by replacing all free variables in it with individual names
of any individuals of U ; in other words, it is the set of all denotations of sentences
(all states of affairs) which can be obtained from α(x1, x2, . . . , x, . . . , xj+1) by
replacement for the variable x binding by ∀k individual names of any individual
of U (of the denotation of this variable) and for remaining variables in it also
individual names of any individuals of U .

Thus, for any k ≥ 1

d(∀k) ∈ ONTsk−1/n1sk = ONTsONTn1×ONTsk

k−1 .

Similarly for d(∃k):
a) for k = 1 and any α(x) ∈ S1

d(∃1xα(x)) = d(∃1)(d(x)), d(α(x))) ∈ T iff T ∩ d(α(x)) 6= ∅
b) for k = j + 1(j > 0) and any α(x1, x2, . . . , x, . . . , xj+1) ∈ Sj+1

d(∃j+1xα(x1, x2, . . . , x, . . . , xj+1)) =
= d(∃j+1)(d(x), d(α(x1, x2, . . . , x, . . . , xj+1))) =

= {s ∈ St | s = d(αo(x1/u1, x2/u2, . . . , x/u, . . . , xj+1/uj+1)) ∈ T

for some u ∈ U, any (u1, u2, . . . , uj+1) ∈ U j}.
Thus, for any k ≥ 1

d(∃k) ∈ ONTsk−1/n1sk = ONTsONTn1×ONTsk

k−1 .

4.3. The syntactic and semantic compatibility of quantifiers
In our categorial approach to syntax and semantics of the 1st-order formalized
language L1 its quantifiers have been treated as context-dependent two-argument
functors-functions of different categorial types k > 0 (defined on the set Var of all
its individual variables and the set of all its sentential functions Sk with exactly
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k free variables) and with values in the set of sentential functions Sk−1 possessing
one free variable less or, in particular, in the set of sentences S:

∀k, ∃k : Var× Sk → Sk−1 (S0 = S).

Thus, according to the condition (CATf ), quantifiers ∀k, ∃k belong to syn-
tactic categories:

(CAT∀k,∃k) ∀k, ∃k ∈ CATsk−1/n1sk = CATsCATn1×CATsk

k−1 (s0 = s),

and it means that they satisfy the principle (SC ) of syntactic connection.
It was also shown that for the denotation operations:

d, d : S(L1) → ONT(L1)

their denotations, according to the condition (ONTf ),belong to ontological cate-
gories:

d(∀k), d(∀k), d(∃k), d(∃k) ∈ ONTsk−1/n1sk = ONTsONTn1×ONTsk

k−1 . (ONT∀k, ∃k)

5. Conclusions

From the conditions (CAT∀k, ∃k) and (ONT∀k, ∃k) follow the following conclu-
sions:
1. the 1st-order quantifiers ∀k, ∃k(k > 0) satisfy the principle of syntactic con-

nection (SC ) and the principle of categorial compatibility (CC )
and

2. the problem of standard quantifiers is solved by employing the conceptual ap-
paratus and statements of the outlined theory of categorial languages.

It should also be noted that
3. in languages with other operators biding variables the problem of their deno-

tations can be solved in an analogous way,
but

4. for branching quantifiers used in Independence-Friendly logic (see Hintikka
[14]) the outlined here denotational (compositional) semantics does not work.

However,
5. according to Frege’s ideas, the proposed categorial approach to language syntax

and semantics can be developed in the same spirit for formalized languages
of higher order than 1.

6. the proposed approach to semantics of the 1st-order formalized languages of
differ from the standard in the Tarski’s approach (1944 ) and other improved
versions; first of all it refers to the concept of denotation of any language
expression instead to the concept of satisfaction – the crucial ancillary notion
in the definition of truth; this notion may be omitted in the definition of the
concept of a true sentence and probably replaced by the notion of denotation.
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