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Abstract. In the paper, the authors discuss two kinds of consequence
operations characterized axiomatically. The first one are consequence
operations of the type Cn™ that, in the intuitive sense, are infallible
operations, always leading from accepted (true) sentences of a deduc-
tive system to accepted (true) sentences of the deductive system (see
Tarski in Monatshefte fiir Mathematik und Physik 37:361-404, 1930,
Comptes Rendus des Séances De la Société des Sciences et des Let-
tres de Varsovie 23:22-29, 1930; Pogorzelski and Stupecki in Stud Logic
9:163-176, 1960, Stud Logic 10:77-95, 1960). The second kind are dual
consequence operations of the type Cn~ that can be regarded as anti-
infallible operations leading from non-accepted (rejected, false) sentences
of a deductive system to non-accepted (rejected, false) sentences of the
system (see Stupecki in Funkcja Lukasiewicza, 33-40, 1959; Wybra-
niec-Skardowska in Teoria zdan odrzuconych, 5-131, Zeszyty Naukowe
Wyzszej Szkoly Inzynierskiej w Opolu, Seria Matematyka 4(81):35-61,
1983, Ann Pure Appl Logic 127:243-266, 2004, in On the notion and
function of rejected propositions, 179-202, 2005). The operations of the
types Cn™* and Cn~ can be ordinary finitistic consequence operations or
unit consequence operations. A deductive system can be characterized in
two ways by the following triple:

by the triple: (+,-) < 8,Cnt,Cn~ >
or by the triple: (=,+) < 8,Cn~,Cnt" >.

We compare axiom systems for operations of the types Cn™ and Cn™,
give some methodological properties of deductive systems defined by
means of these operations (e.g. consistency, completeness, decidability
in Lukasiewicz’s sense), as well as formulate different metatheorems
concerning them.
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1. Introduction

The notion of logical consequence is one of the most important syntactic
notions of the syntactic theory of deductive systems, in particular - logical
systems. The universal concept of the consequence operation was formalized
in the so-called Tarski’s general theory T of deductive systems in 1930 ([33, see
Section 2]). The consequence operation was also characterized axiomatically
by Tarski [34] for the so-called enriched theories of deductive systems based
on classical logic (describing properties of the classical consequence operation;
see Sects. 8.1, 8.2) and theories of deductive systems based on some non-
classical logic (describing properties of non-classic consequence operation; see
Pogorzelski [14], Stupecki [15] and Pogorzelski and Wojtylak [16]).

The method of characterizing the syntax of specific logical deductive sys-
tems, in the spirit Tarski’s ideas, is based on a consideration of finite axiom
systems for the consequence operation Cn as systems with respect to asser-
tion, i.e. systems for which, in the intuitive sense, C'n consequence is an infal-
lible operation, always leading from accepted (true) sentences of a system to
accepted (true) sentences of the system.

There is another, dual method of axiomatic characterizing of deductive
systems by means of a dual consequence operation which can be regarded as an
anti-infallible operation leading from non-accepted (rejected, false) sentences
of the system to non-accepted (rejected, false) sentences of the system. The
notion of the dual (rejection) consequence operation Cn~! was introduced by
Stupecki [26] on the basis of the theory T in connection with Lukasiewicz’s idea
of dual axiomatic characterization of deductive systems, both with respect to
assertion (determined by the consequence Cn) and rejection (determined by
the consequence Cn~t) and investigations for their saturation (decidability in
Lukasiewicz’s sense).

The very notion of rejection was introduced into formal logic by Jan
Lukasiewcz already in 1921 [8]. The concept of rejection of some sentences
by means of earlier rejected sentences was used by Lukasiewicz in his stud-
ies concerning Aristotelian syllogistic and some sentential calculi [9-12]. As
Lukasiewicz states in the article On Aristotle’s Syllogistic, in 1939 [9], the idea
of demolishing some sentences on the ground of others comes from Aristotle.
Namely, Aristotle not only used examples to reject false syllogistic forms, but
also reduced some false syllogistic forms to other ones, the erroneousness of
which was already shown. As was pointed out by Lukasiewicz in his post-
war reproduced research on Aristotle’s syllogistic in 1951 ([10, pp. 74, 71]),
the modern formal logic should use the notion of ‘rejection’ as an opera-
tion opposed to Frege’s concept of ‘assertion’ and a rule of rejection could be
stated corresponding to the rule of detachment by assertion. In the research
Lukasiewicz used an axiomatic method of rejection, accepting some sentences
as rejected axioms and some others of them as rejected by means of two rules
of rejection. One of them, which was anticipated by Aristotle and corresponds
to the rule of detachment by assertion, is as follows:



Vol. 5 (2011) On Pairs of Dual Consequence Operations 179

a. The rule of detachment by rejection: A sentence « is rejected if the con-
ditional sentence built of o as its antecedent and a sentence (8 as its con-
sequent is asserted and [3 is rejected.

The second rejection rule used by Lukasiewicz is as follows:

b.  The rejection rule by substitution: A sentence « is rejected if a substitution
of v is rejected.

A rejected sentence in Lukasiewicz’s sense is an axiom or a sentence
derivable from rejected axioms by means of his rejection rules.

It turns out that if all rejected axioms are false, so are all rejected sen-
tences.

Lukasiewicz’s idea of the rejected sentence was adopted by Stupecki
in his important continuation of Lukasiewicz’s investigations of Aristotle’s
syllogistic [25]. Stupecki used the following definition which is equivalent to
the Lukasiewicz’s definition of the rejected sentence:

A rejected sentence in Stupecki’s sense is such a sentence for which there
exists a rejected axiom which is derivable from the sentence (and theses of the
system) by means of inference rules.

The above definition was closer to Aristotle’s idea of rejection (refuta-
tion) of syllogism by reducing them to syllogisms rejected earlier. Stupecki
adapted it for any deductive system and generalized the idea of the rejected
sentences. Apart from Tarski’s infallible finitistic consequence operation Cn,
Stupecki [26] introduced the anti-infallible rejection operation Cn~! defined
for any set X of sentences of the deductive system by means of Cn as follows:

(Cn,Cn~ ") a € Cn~!(X) if and only if there is in X a sentence 3
such that 8 € Cn({a}),

and proved that this operation is also a finitistic consequence operation in
Tarski’s sense. Shupecki also showed that the operation Cn~! satisfies topo-
logical axioms for the closure operation in Kuratowski’s sense [7].

In the semantic stylization, it follows from o € Cn~1(X) that if all sen-
tences of X are false, then so is the rejection sentence «; in the pragmatic
stylization, @ € Cn~!(X) means that, under definite circumstances, if all sen-
tences of X are not accepted, then neither is a.

The above definition and remarks allow characterizing a deductive sys-
tem in a two-side manner by means of the pair of consequence operations
<Cn,Cn~'>, not only as an asserted system (based on the consequence oper-
ation C'n) but also as a refutation system (based on the rejected consequence
operation Cn~1'). The dual axiomatic method characterization of deductive
systems in accordance with Lukasiewicz’s idea of investigations of their satu-
ration (decidability in a sense) is formalized in Sect. 4.

The investigations initiated by Stupecki [26] have been continued by the
first co-author of this paper [38,39], later also by Bryll [4-6] and Stupecki’s
circle of researchers (see [29,30]). The initial studies concerning the rejection
consequence Cn~! and refutation issues were connected with their applica-
tions in methodology of empirical sciences. Namely, there is a strict relation
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between the notion of the rejected consequence Cn~!', Lukasiewicz’s rule a.
(the rejected rule by detachment), and the methodological procedure of falsifi-
cation, rejection (refutation) of a hypothesis. It is easy to see that if X is a set
of sentences, each of which is the negation of an empirical ascertained sentence
and « is a hypothesis, then, in accordance with the definition (Cn,Cn~1), a
is a rejected hypothesis on the ground of the set X if at least one sentence (3
of the set X is a consequence of «, i.e. if it entails at least one [ in X, the
sentence contradictory to experience, rejected on the basis of the experience.
So, the set Cn~1(X) includes all the hypotheses which are rejected on the
ground of the negations of empirical sentences, i.e. those which are refuted on
the basis of sentences that are not in agreement with the empirical data.!

Refutation of a hypothesis is connected with its rejection on the basis
of only one sentence that is not in agreement with empirical data. If, in a
deductive system, the theorem of deduction is valid, then the right side of the
definition (Cn,Cn~1!) states that:

there existsin X a sentence 3 such that the implication‘a — 3 € Cn(().

So, if 0 is rejected as a sentence of X, which is a negation of an empirical
ascertained sentence, then « is refuted on the basis of only one sentence in X.

This statement justifies the fact that investigations concerning Stupecki’s
consequence operation Cn~! have been based on the so-called enriched the-
ory of deductive systems T built by Tarski [34] (see Sects. 8.2). TT is the
theory based on the theory T and its two new primitive terms are symbols ‘c’
and ‘n’ that are the names of classical functors of implication and negation,
respectively.

The rejection consequence Cn~! is not an ordinary finitistic consequence
operation but, as we see, it is a unit operation: any sentence that is rejected is
rejected on the basis of only one sentence, while a sentence deducible by means
of the ordinary operation Cn is derivable on the basis a finite set of sentences.
So, the consequences of the pair < Cn,Cn~! > are not quite dual. Dual to
the rejection consequence operation Cn~! is an infallible consequence Cnt!
induced by the ordinary “positive” consequence operation Cn(Cn = Cn™; see
Sect. 5).2

All pairs of dual unit consequences operations < Cn',dCn' > can be
characterized axiomatically (see Sect. 6). In contrast to the ordinary con-
sequences in Tarski’s sense they are the closure topological operations in
Kuratowski’s sense [7]; in particular they are additive operations.

1 Let us mention in this place that the refutation of hypothesis is also used in other domains
of knowledge, e.g. in jurisdiction. Let as also mention here that Karl Poper was known for
his opposition to the classical justification account of knowledge and advancing empirical
falsification instead. Jan Wolenski applied in [36] the idea of Poper of comparing theories
from the point of view of their content and for comparing the true content and the false
content of a theory; beside the consequence Cn he applied also the consequence Cn—1, as
well as its generalization.

2 These two mutual dual operations were examined already in [39].
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The presence of dual consequence operations of the pair < Cnt!,Cn~1 >
in the two-side formal syntactic characterization of deductive systems is sat-
isfactory if these systems possess in their language the conjunction functor
because a deduction from a finite set of sentences is usually reduced to the
deduction from a single conjunction of sentences of the set. However, this fact
is based on the assumption that the finitistic consequence operation Cn = Cn™
is conjunctive. If it also satisfies the condition Cn(() # @, then dual to it is
the finitistic consequence operation dCn introduced by Wdjcicki [37].

The consequence operation dCn defined by Cn on the basis of the the-
ory T is the generalization of the rejection consequence operation Cn~! (see
Sect. 7). The pair of dual finitistic consequence operations < Cn,dCn > may
serve the purpose of bi-level formalization of deductive systems but dCn is
an anti-infallible operation only if we overimpose on the Cn operation some
additional conditions. In particular, if Cn is a classical consequence operation,
then Cn and dCn are mutual dual consequence operations, similarly like the
operations Cnt! and Cn~!. So, two-side formalizations of the pairs of notions
<Cn*',Cn~'> and <Cn,dCn> run in two different directions:

<4, —> or < —,4+ >,

“ 2

where “+” symbolizes an infallible consequence operation, while “—” — an
anti-infallible one.

In Sect. 8 we show two-sided formalization of deductive systems by means
of two kinds of dual consequence operations.

The aim of the paper is not only to recollect, systematize, enlighten, expli-
cate and bring closer to the reader certain results relating to dual consequence
operations, results obtained earlier but which were included in publications
that are hard to access nowadays and frequently rendered solely in the Polish
language. The paper contains also new results concerning some properties of
pairs of consequence and notions connected with them, as well as formulates
different metatheorems concerning them.

Dual consequence operations play not only a significant role in syntactic
metalogical studies. Due to their application in empirical sciences methodology
they are vital both in the semantic and pragmatic aspects. The studies com-
menced by Lukasiewicz and Stupecki on saturation (L-decidability) of logical
systems, thus the possibility of characterizing a deductive system in a two-side
manner, not only as an asserted system (based on the notion of assertion con-
sequence), but also as a refutation system (based on the notion of rejection
consequence or dual consequence), became a standard procedure applied in
metalogical studies on concrete sentential calculi (see Sect. 9).

The exposing, in the present work, of the role of unit consequence opera-
tions as individual unit operations is also significant for another reason. Unit
operations have found their application, among others, in studies on certain
algebras (see [42,43]) and in computer science studies (see [1,2]), especially in
questions concerning approximation of information.
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2. General Characterization of the Consequence Operation Cn

The notion of a consequence operation is the fundamental notion of the theory
of deductive systems. The general notion of consequence was formalized by
Tarski [33] in his consequence theory, the theory denoted by T. The theory T
is based on two primitive notions: the set S of all propositions of an arbitrary,
but fized, language and the consequence operation Cn on the power set P(S)
of all subsets of the set S, i.e. a function

Cn: P(S) — P(S),

which to any set of propositions X assigns the set Cn(X) of all propositions
deducible from the propositions in X (i.e. the consequences of the propositions
in X).

In the axioms of theory T, the variables x,, z, ... run over the elements
of the set S, while the variables XY, Z, ... take values in P(S).

The original axiom system for T is the following:

Al. card(S) <R, — denumerability of S,

A2, X C Cn(X) C S — the consequence Cn is compact,

A3. CnCn(X) = Cn(X) — the consequence Cn is idempotent,

A, Cn(X)=U{Cn(Y) | Y € Fin(X)} — the consequence Cn is finitistic.
It is worth observing that there are other axiom systems for T, but the

most frequently used axiom system for T consists of the axioms A1-A3 and

the following axioms:

A4, X CY = Cn(X) C Cn(Y) — the consequence Cn is monotonic,
A5 Cn(X) CU{Cn(Y) | Y € Fin(X)}.

The method of characterizing the syntax of specific logical deductive
systems, in the spirit of Tarski’s ideas, is based on a consideration of axiom
systems for the consequence operation as systems in regard to acceptance,
i.e. systems for which, in the intuitive sense, consequence is an infallible oper-
ation, always leading from accepted (true) sentences of a system to accepted
(true) sentences of the system.

There is another, dual, method of axiomatic characterizing of deduc-
tive systems by means of a rejection consequence operation or a dual conse-
quence operation, which can be regarded as an anti-infallible operation leading
from non-accepted (rejected, false) sentences of the system to non-accepted
(rejected, false) sentences of the system. The rejection consequence operation
can be formally introduced on the basis of the theory T.

3. Rejection Consequence Operation Cn !

The notion of rejection (dual) consequence was introduced and formalized by
Stupecki [26] as the rejection function Cn~! which is a generalization of the
notion of rejection introduced into metalogical investigations by Lukasiewicz
[8-13] for a bi-level dual characterization of deductive systems.

Lukasiewicz’s idea of the dual characterization of a deductive system
consists in the system existing on two levels, both with respect to acceptance



Vol. 5 (2011) On Pairs of Dual Consequence Operations 183

(determined by the consequence operation C'n) and with respect to rejection
(determined by the rejection function Cn~1), and investigation of its satura-
tion, decidability in Lukasiewicz’s sense (see [9-12]).

Formally, the rejection function Cn~! was defined by means of the con-
sequence operation C'n by adding the following definition to the theory T:

Definition 3.1. (rejection consequence operation Cn~! induced by the conse-
quence operation Cn)

Cn~'(X) = {y | 3z € X (= € Cn({y}))}.

A proposition belongs to the set Cn~!'(X)— the set of propositions
rejected on the basis of propositions in X if and only if it has a proposition in
X among its consequences.

The names consequence applied to Cn~! is justified by the following
result of Stupecki:

Metatheorem 3.2.

(i) Cn~1 satisfies the general azioms A1-A5 of the consequence theory T,
(i) Cn Y (X UY)=Cn Y X)UCn 1 (Y)— it is additive,
(iii) Cn=1(0) = 0— it is normal,
moreover,
(iv) y€e Cn~Y(X) = Jz € X(y € Cn~({x}))— it is a unit operation.

So, Cn~1! is the so-called unit consequence operation.
In T, with Definition 3.1, the following theorem justifies the name rejec-
tion consequence given to the consequence operation Cn=! (cf. [3]), p. 356):

Theorem 3.3.
Cn(X)C X = Cn 1(S\X) C S\X.

Proof. (ad absurdum).

Let us assume that Cn(X) C X,z € Cn~(S\X) and = ¢ S\X. Then,
from Definition 3.1. it follows that in S\X there is a sentence y such that
y € Cn({z}). Thus, because z € X,Cn({z}) C Cn(X) and y € X. Hence, we
have a contradiction.

Theorem 3.3 helps to understand the intuitive sense of this kind of con-
sequence. Indeed, if the consequence operation Cn determines a deductive
system as a set closed with respect to some inference rules, or more gener-
ally some rules of logical entailment, i.e. if C'n is the ordinary consequence
operation, an infallible consequence which yields a true (or accepted as true)
conclusion for true (or accepted as true, respectively) premises, then taking X
to be the set of true (or accepted as true) propositions, S\ X is the set of false
(or not accepted as true, respectively) propositions and by Theorem 3.3, the
expressions rejected on the basis of false propositions (or not accepted as true)
are also false (or not accepted as true, respectively) and the rejection conse-
quence operation Cn~! always leads from false (or not accepted) propositions
to false (or not accepted) propositions and can be regarded as an anti-infallible
consequence operation.
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The notion of rejection consequence operation introduced by Stupecki
[26] according to Lukasiewicz’s idea of rejection of propositions was examined
by Wybraniec-Skardowska [39-41,44], as well as other researchers belonging
to Stupecki’s circle of scientific research. O

4. Decidability in Lukasiewicz’s Sense of Deductive Systems

Having at our disposal two types of consequences Cn and Cn~!', we can speak
of two kinds of systems: the system with respect to acceptance (A-system) and
the system with respect to rejection, refutation (R-system), and provide com-
plete syntactic characterization of a deductive system asking if it is saturated,
decidable in Lukasiewicz’s sense (L-decidable system, L-saturated system). If
Cn is understood as an infallible, ordinary, derivable consequence operation,
then we put Cn = Cn™" and define these systems as follows:

Definition 4.1. (A-syst.) X is A-system  iff Cn™(X) = X,
Definition 4.2. (R™'-syst.) Y is R '-system iff Cn=Y(Y) =Y.

Thus, every deductive system with the bi-level formalization < XY >,
with the acceptance A-system X and the R™'-refutation system Y can be
characterized by the following triple:

<4,—-1> <S8,Cnt,Cn~t > .

The extension of the theory T with the definition Definition 3.1 describes each
system of this kind. Tarski’s theory T, enriched by the definition of rejec-
tion consequence, can be seen as a generalized consequence theory providing a
two-sided characterization of deductive systems.

In T, we can define basic syntactic notions, in particular, the following
ones: consistency and consistency with respect to rejection, completeness and
completeness with respect to rejection.

Moreover, we can define the notion of L-decidability corresponding to
the notion of saturation or decidability used by Eukasiewicz. The notion was
introduced by Shupecki (see [29]) by means of the notions of L-consistence and
L-completeness.?

< X,Y > is L-consistent iff Cn™(X)NCn™ ' (V) =0,
< X,Y > is L-complete iff Cn™(X)uCn™ (V) = S,
< X,Y > is L-decidable iff < XY > is L-consistent& < X,Y > is L-complete.

A deductive system with the two-sided finite axiomatization is L-decidable
if and only if its A-assertion system and its R~ '-refutation system are disjoint
and their union yields the set of all its propositions.

3 The term ‘L-decidability’ could be replaced with a more adequate term ‘L- saturatibility’
but the former has functioned in the logical literature for a few decades (see also [27]).
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5. Unit Consequence Operation Cnt! Induced by Cn

The bi-level formalization of a deductive system in the form < +,—1 > by
means of consequences operations Cnt and Cn~! gives rise to the following
question: Are these operations reverse dually in relation to each other? If the
answer were: Yes, then for Cn = Cn™ we have Cn~! = (Cn*)~! and the
following equation should be valid:

Cnt = (Cn~Y)~L
But we can only prove
Corollary 5.1. (Cn~H~t < Cn*

and observe that the reverse implication to Theorem 3.3. is only valid if Cn™
is a unit consequence operation Cnt!, so a specific finitistic operation which
can be defined on the basis of T, looks as follows:

Definition 5.2. (the unit consequence operation Cn*! induced by the conse-
quence operation Cn)

Cn(X) = {y | 3o € X(y € Cn({a})}.
Let us note that
Corollary 5.3. Cntt({z}) = Cn({z}), for every x € S.
It is easy to see that

Metatheorem 5.4.

(i) Cn*! satisfies the general axioms A1-A5 of the consequence theory T,
(ii) Cn™H(XUY) =Cn™H(X)UCnT(Y)— it is additive,
(iii) Cn*L(0) = 0— it is normal,
moreover,
(iv) y € Cn™(X) = Jz € X(y € CnT ({x}))— it is a unit operation.

So, Cn*t! is also the so-called unit consequence operation. It is weaker than
the operation Cn = Cn™ in the sense of lattice theory, i.e.

cntt <cont.

Let us also observe that using Definition 3.1 for Cn = Cn*! and Cn =
Cn~! we obtain:

Corollary 5.5. Cn~!=(Cn*')"! and Cntl=(Cn 17!

and state that the consequence operations Cnt! and Cn~! are mutually dual.
They are also mutually definable because

Corollary 5.6.

a. Cn™H(X)={y|Jze X(xeCn({y})}
b. Cn Y(X)={y| 3z e X(x € CnTt({y}))}.

On the basis of T, with definitions Definitions 3.1 and 5.2, we obtain the
counterpart of Theorem 3.3:
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Theorem 5.7.
Cn™(X)C X & Cn~'(S\X) C S\X.

which allows understanding Cn™' as the unit infallible consequence operation

while Cn~! as the reverse dual unit anti-infallible consequence operation.
The dual operations Cn*! and Cn~!, defined on the ground T, satisfy

the general axiom for unit consequence operations given in the next section.

6. The Dual Unit Consequence Operations Cn' and dCn!
Let Cn' be a function
Cn': P(S) — P(9)
that satisfies the following axiom:
Al Cn'(X) ={y | 3z € X(Cn'({y}) C Cn'({z}))}-

The axiom states that a proposition belongs to the set of unit conse-
quences of the set X if and only if the set of unit consequences of the sentence
is included in the set of unit consequences of a single proposition in X.

It was proved (see [39]) that, in fact, the unit consequence operation Cn'
defined in this way is a consequence operation and unit operation. It is also
an additive and normal operation. So, the following metaheorem holds:

Metatheorem 6.1. The operation Cn' satisfies the general azioms A1-A5 of T
and the following conditions:

(i) CnH (X UY) = Cn(X)UCn!(Y)—it is additive,

(i) Cn'(0) = 0—it is normal,

(iii) y € Cn'(X) = 3z € X(y € Cn'({z}))—it is a finitistic unit operation.

It was also proved that the following methateorem is true:

Metatheorem 6.2. The general axioms A1-Ab5 of T for any operation
Cn : P(S) — P(S), together with the additivity of Cn and the condition
Cn(0) = 0, define Cn as a unit consequence operation (i.e. an operation sat-
isfying A').

The above theorem explains the fact why we call operations Cnt! and
Cn~! unit consequences (see Metatheorems 3.2, 5.4). We also see that these
operations are topological closure operators in the sense of Kuratowski [7]. We
also stated earlier that they are dual in relation to each other.

Formally, the definition of the dual operation to the unit consequence
Cn' is as follows:

Definition 6.3. (dual consequence corresponding to the unit consequence Cn')
dCn*(X) = {y | Fz € X(Cn'({z}) € On'({y}))}-
Thus we have

Corollary 6.4.  dCn'(X)={y| Iz € X(x € Cn'({y}))}.
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Corollary 6.5. dCn'(X) = {y | Ir € X(dCn'({y}) C dCn'({x}))}.
Thus, by replacing Cn' by dCn' in A' we can state:

Metatheorem 6.6. The dual operation dCn' to the operation Cn' satisfies the
aziom A' and thus it is a unit consequence operation satisfying all conditions
of Metatheorem 6.1.

It can be proved that the unit operations Cn' and dCn' are mutually
dual because the following theorem holds:

Theorem 6.7. ddCn' = Cn'.

These unit operations are also mutually dual in the intuitive sense because
the following theorem holds:

Theorem 6.8.
Cn*(X) C X & dCOn'(S\X) C S\X

which, in the intuitive sense, says that if the consequence operation Cn' leads
from true sentences to true sentences, then the dual consequence operation
dCn' leads from false (or not accepted) sentences to false (or not accepted)
sentences, and reversely.

Let us put in A'and in Definition 6.3 instead of Cn': Cn*t! and Cn~".
Then we can state formally that the operations Cnt! and Cn~! are unit
consequence operations and that they are also mutually dual:

dCn™ =Cn™' and dCn~'=Cn™t,

which, on the basis of the theory T, justifies Corollary 5.5 and Theorem 5.7.

The introduction of unit dual consequence operations in two-level
formalization of a deductive system is justified by the fact that rejection of
some proposition (hypothesis) is always rejection from a single proposition
and deduction from a finite set of propositions can be reduced to a deduction
from a single proposition that is a conjunction of the propositions in that set.

Nevertheless, in the next part of this paper we generalize investigations
on dual consequence operations to finitistic consequence operations.

7. Consequence Operation Cn and its Dual Counterpart dCn

Since the bi-level formalization of deductive systems on the basis of unit
consequence operations limits the scope of applicability of the notion of
L-decidability to systems founded on unit axioms with respect to acceptance
(although the axioms can be treated as a conjunction of a finite number of
axioms), it is convenient to consider—instead of the unit rejection conse-
quence operation Cn~'—a stronger than the latter consequence operation
dCn = Cn~, dual to the finitistic consequence operation Cn. Intuitive refuta-
tion of propositions on the basis of a finite number of unacceptable propositions
consists in rejecting the proposition on the basis of one that is the disjunction
of the propositions rejected earlier. Then, the theory T can be strengthened
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by adding to it Wdjcicki’s definition [37] of the consequence operation Cn~
dual to the ordinary finite consequence Cn:

Definition 7.1. (the dual consequence operation Cn~ corresponding to conse-
quence operation Cn)

dCn(X)=Cn~(X)={y | Y € FmX(ﬂ {Cn({z}) |z €Y} C Cn({y}))}

The operation Cn~ is a finitistic consequence operation because from the
above definition the following metatheorem follows:

Metatheorem 7.2. The operation Cn~ satisfies the general axioms A1-Ab5 of
the consequence theory T.

Let us notice that as long as it concerns singletons, the operation
Cn~ does not differ from the operation Cn~!:

Corollary 7.3.
Cn~({z}) = dCn™ ({z}) = dOn({z}) = Cn~'({z}) foranyx € S.

The operation Cn~ is not a unit operation consequence. It is stronger
than Cn~! in the sense of the lattice theory, i.e.

Cn~' < Cn™.

Nevertheless, it satisfies intuitions related to the rejected consequence
Cn~! if we put some new conditions for the consequence operation Cn.

Definition 7.4. (the conjunctive operation Cn) Let the language of a given
deductive system include k£ as the symbol of conjunction of its sentences. The
operation Cn is conjunctive iff for every finite set of sentences xz1,...,z, of
the system

Cn({k(x1,...,zn)}) = On({z1, ..., 20 }),

where k(z1,...,2,) is the conjunction of sentences z1,...,x,, that can be
defined inductively (for n = 1, k(z1) = 1).

Corollary 7.5. If Cn is the conjunctive consequence operation, then for any
finite set X = {x1,...,x,}

{ﬂ Cn~Mz) | mi € X} — On~Yk(z1, ..., x0))-

Theorem 7.6. If Cn is the conjunctive consequence operation and Cn(B) #
(it is a mon-normal operation), then

(Cn™)” =Cn.
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Proof. Let us assume that
(1) ye(@n7)"(X).

First, let us consider a case when the existing finite set Y’ satisfying the Defi-
nition 7.1 for Cn = Cn™~ is nonempty. Then on the basis of (1) we have:

Y = o1, oo} € X & {({Cn ({m}) s € Y} S On({yh) (11)

&Y ={z1,. v} CX & {{On ({mi}) | s € Y} € On ({))

(Corollary 7.3.)
Y ={z1,.. .2, } C X & Cn ' ({k(21,...,2,)}) € Cn *({y})

(Corollary 7.5.)
<Y ={z1,...,z,} € X & Cn({y}) C Cn({k(z1,...,2,)})

(Definition 3.1.)
<Y ={z1,..,2,} CX &y Cn({z1,...,zn})

(Definition 7.4, assumption)

=y € Cn(X).

If the existing set Y’ is empty, then from (1) we can obtain formula
Y =& {ﬂ{Cn_({xi}) |z; € Y’} con~({y}) = yeln(X). (12

For the proof (1.2) we note that if Y’ = 0 & N{Cn~ ({z:}) | z; € Y’} C
Cn~({y}), then Cn~({y}) = S, and we have to make use of our assumption:
Cn(0) # 0.

From (1), (1.1) and (1.2) we have
(2) (Cn7)"(X)C Cn(X) forany X CS.
In the proof of the reverse inclusion to (2):
(3) Cn(X)C(Cn7 ) (X) forany X C S

we consider a case when X = () and a case when X # (). In the first case, it is
convenient to make use of the property: (Cn™)~(0) = N{Cn({x;}) | x; € S}
(see [6]). In the second case, we can get (3), starting from the end of the proof
(1.1) and moving upward. O

Theorem 7.6 is a generalization of the Theorem 6.7 holding for unit con-
sequence operations, in particular, for operations Cn*! and Cn=1!.

In accordance to Theorem 7.6, the consequence operation Cn™ is not only
dual to the ordinary finitistic consequence operation Cn, but the consequence
operation Cn is also dual to the consequence operation C'n~ provided that it
is a non-normal conjunctive consequence operation. Thus, these two finitistic
operations are mutually dual only when some conditions are satisfied.

The next theorem describes the above-mentioned relation between the
rejection consequence operations Cn~! and the dual consequence operation
Cn~. It requires introducing the notion of a disjunctive operation.
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Definition 7.7. (disjunctive operation Cn) Let the language of a deductive sys-
tem include a as the symbol of a disjunction of its sentences. The operation

Cn is disjunctive iff for every finite set Y of sentences z1, ..., z, of the system
Cn{a(zy,..,2n)} = {m Cn({z;}) |z € Y} ,
where a(x1,...,2,) is the disjunction of sentences z1,...,z, defined induc-

tively (for n = 1,a(z1) = x1).
Theorem 7.8. If the operation Cn is disjunctive, then (see [6,32])
X #0=Cn (X)=Cn(AX),
where AX is the set of all finite disjunctions of propositions of the set X.

So, we justify our intuition on refutation of a proposition on the basis of
a finite set of propositions: it is a rejection of the proposition on the basis only
one proposition that is a finite disjunction of the propositions of the set.

Let as note that

Theorem 7.9. Cn=(0) ={z | Cn({z}) = S}.

The counterpart of the theorem Theorem 5.7 is not generally true for the
consequence operation Cn and the dual consequence operation Cn ™.

Theorem 7.10. If the consequence operation is disjunctive and a set X # S
satisfies the disjunction condition:

(a) a(x1,...,xy) € X = there exist x; € X
then
Cn(X)C X = Cn (S\X) CS\X.

Proof. (ad absurdum). Let us assume that X # S, X satisfies the property (a)
and:

(1) Cn(X)CX, (2) y € Cn~(S\X) and  (3) y ¢ S\X.

It follows from formula (2) and Definition 7.1 that there exists a finite
set X’ C S\ X such that

@) {N{Cn({z:i}) | w: € X'} € Cn({y})).

If X’ =0, then from (4) we have Cn({y}) = S, and from (3) and (1) it follows
that Cn({y}) C X. Hence, we get the equation X = S that is in contradiction
with our assumption that X # S. So, let us assume that X' = {x;,...,z,} C
S\X. It follows from (3) that {y} C X. Thus, we obtain

(5) Cn({y) € On(X).
Formulas (4), (5) and (1) yield

6) {N{Cn({z:}) [z e X'} € X



Vol. 5 (2011) On Pairs of Dual Consequence Operations 191

and on the basis of (6) and the assumption of our theorem that Cn is dis-
junctive we can state that Cn{a(x1,...,2,)} C X and a(z1,...,z,) € X.
Applying the assumption (a), we state that there exists z; € X. However, z;
as an element of X’ does not belong to X and we have a contradiction. O

Theorem 7.11. If the consequence operation is conjunctive and the set X
satisfies the condition:

(k) Tiyeony € X = k(xg,..,2n) €X
then
Cn~(S\X) C S\X = Cn(X) C X.
Proof. (ad absurdum). Let us assume that

(1) Cn=(S\X) C S\X, (2) y € Cn(X) and (3)y ¢ X.
From (3) we have: {y} € S\X. Thus, from (1) Cn~ ({y}) € S\ X and applying
Definition 7.1. we have:

4) Vz(Cn({y}) € Cn({z}) = = ¢ X).

Formula (4) is equivalent to formula

(5) Vz(y € Cn({z}) = 2z ¢ X).

Formula (5) is equivalent to formula

(6) Vz(ze X =y¢Cn({z}).

The consequence operation Cn is finitistic and conjunctive. Thus, from (2)

and (k) we obtain

(7 vy € Cn({z1,..,2n}) = Cn({k(z1,..,20)}),21,..,2, € X and
E(xy,...,z,) € X.

Applying k(z1,...,2,) to (6) we have

(8) y ¢ Cn({k(z1,...,20)}).

Thus, formulas (7) and (8) are contradictory. O

In accordance to Theorem 7.10, if Cn is disjunctive and an infallible con-
sequence operation, always leading from true (accepted) sentences of a set sat-
isfying the condition (a) to true (accepted) sentences of the set, then the dual
consequence Cn~ is anti-infallible and always leads from untrue (non-accepted
as true) sentences of the complement of the set to untrue (non-accepted as
true) sentences of this complement of the given set. Theorem 7.11 is, in some
sense, a reverse theorem and holds if Cn is conjunctive and the condition (k)
is satisfied.

The method of formal-theoretical characterizing of syntax of deductive
systems, in the spirit Tarski’s ideas, is based on consideration of axiom systems
of the general notion of consequence operation Cn = Cn* for the deductive
systems investigated in regard to acceptance, i.e. the systems for which, in the
intuitive sense, the Cn™ consequence operation is an infallible operation. By
putting: Cn~ = Cn~! or, with the above-mentioned assumptions, by putting:
Cn~ = dCn™, we can also characterize formally some deductive systems by
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means of the anti-infallible, in the intuitive sense, consequence operation C'n~
and consider the two-level syntactic characterization of the deductive systems
(as A-assertion systems and R-refutation systems) by means of the following
triple of notions:

(+7_) < S, CTL+,C717 > .

Then, we can also formally define the notion of L-decidability, saturation, i.e.
decidability in Lukasiewicz’s sense, for the deductive systems, replacing the
symbol ‘Cn~!" by the symbol ‘Cn~ in the definitions of notions of L-consis-
tence and L-completeness, given in Sect. 4.

It is worth mentioning, in this place, that there is a reverse method of
a formal-theoretical characterization of syntax of some deductive systems by
means of the following triple of notions:

(—+) <S,Cn~,Cnt > .

In order to characterize deductive systems by means of the triple (—, +),
by putting Cn = Cn™, we first give the axiom system for the operation C'n™,
postulating that it is a finitistic anti-infallible, in the intuitive sense, conse-
quence operation, and then we define infallible consequence operation Cn™
by the formula: Cn™ = dCn~. Then, the triple of notions (-, +) should be
characterized by a theory dual to the theory T.

The theory T, enriched by some definitions, or the theory dual to T, char-
acterized so far, apply to the deductive systems based on a logic. An axiom
system for the theory of deductive systems, extended over T, based on the
classical sentential logic was built by Tarski in his so-called enriched theory
T* of deductive systems [34] and axiom systems for many richer than T theo-
ries of deductive systems based on non-classical sentential logics were given in
papers of Pogorzelski [14] and Stupecki [15] and Pogorzelski and Wojtylak [16].
On the basis of the theory T, extended by definitions of the operations Cn ="
or dCn, and characterized in the next Sect. 8, we can formalize properties of
deductive systems based on the classical sentential logic and considered on two
above-mentioned levels by means of the triple of notions (4, —). A problem
appears: How, in a similar way, to define adequately certain counterparts of
rejection or dual consequence operations on the ground of theories of deductive
systems based on non-classical sentential logics by means of a triple of notions
like (4, —) (cf. [24]).

8. The Classical Consequence Operation Cnt and the Dual
Consequences Operations (Cnt)~! and (Cn™*)~

8.1. On Adequate Axiom Systems for Theories of Deductive Systems
Richer than T

Tarski’s theory T [33], interpreted as a general consequence operation the-
ory, applies to arbitrary deductive systems. Richer deductive-system theories,
extended over T, apply only to deductive systems based on a logic (a proposi-
tional calculus). The symbol ‘Cn™(X)’ should then be intuitively understood
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as the consequence set, i.e., the set of consequences of X with respect to the
set A (which usually is the axiom system for the propositional calculus) and
logical proof rules. When a deductive-system theory is based on some prop-
ositional calculus, it contains — besides notions corresponding to the system
<8, CnT > or < S,Cn™,(Cn*)~ > - as many new primitive notions as there
are in the logical calculus on which the deductive system described by the
richer theory is based.

If the primitive notions of a propositional calculus are the corresponding
symbols of the system:

:7N7/\7\/

representing the propositional connectives, respectively: implication, negation,
conjunction, disjunction, then the primitive notions of the deductive-system
theory based on this calculus are their metalogical counterparts:

c,n, k,a

characterized by specific axioms of the theory.

Let Le denote the set of all counterparts (called S-substitutions) of the
laws of the propositional calculus C, which the theory is based on. We shall
then say that

Definition 8.1. A system of specific axioms for a theory T¢ based on some
propositional calculus C' is adequate with respect to this calculus if and only
if the following conditions hold:

e The expression Lg € Cnt (D) is a theorem of the theory T,
e If the expression a € Cn't(0) is a theorem of the theory T¢, then o € L.

Theories of deductive systems based on classical propositional calculi with
different axiom systems are called classical deductive-system theories. They are
theories of the classical consequence operation Cn™t.

8.2. Adequate Axiom Systems for the Classical Consequence Operation Cnt

In this part we present the axiom system of the original so-called Tarski’s
enriched deductive systems theory [34] and one of its equivalent variants.
These axiom systems characterize formally the classical consequence opera-
tion Cn.

Tarski’s classical consequence operation theory, denoted here by Tar, is
the theory of deductive systems based on the implicational-negational proposi-
tional Lukasiewicz’s calculus C=>™. Its adequate specific axiom system charac-
terizes the classical consequence operation Cn™ using the counterparts of the
classical connectives of implication = and negation ~, i.e. using metalinguistic
connectives ¢ and n. The primitive terms of T are
PT: S,Cn™,c,n.

They are characterized by means of the axiom system consisting of axioms
A1-A5 of T and some specific axioms for ¢ and n:

Al. card(9) <X,
A2. X CCnt(X)CS
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A3. CntCnt(X) =Cn™(X)

A4 X CY = Cnt(X)CCnt(Y)

A5 CnT(X) CU{Cnt(Y)|Y € Fin(X)}
A6T. cay,nx e S
ATT. cxy € Ont(X) &y e CntH (X U {z})
A8T. Ont({z,nz}) =S
A9t Ont({z}) N Cnt({nz}) = Cn*(0).

In TS‘ we define connectives k and a as follows:
Dk. k(z,y) =4 ncaxny and Da.a(x,y) =af cnay.

The theory Tar of the classical consequence operation Cn™ can be
replaced by the equivalent theory T characterizing deductive systems based
on the classical propositional calculus C=~"V with implication, negation,
conjunction and disjunction as primitive notions. Then, the primitive terms of
T* are the notions of the following tuple:

<8,Cn",n,c.k,a>

and its axiom system consists of axioms: A1-A5, A6% : cxy,nz, k(z,y),
a(x,y) € S; axioms A7T-A9T and the following two additional axioms:

A10T. Cnt({k(z, )}) = Cn* ({z,y})
A1t Cnt (X U{a(z,y)}) = CnT (X U {z})nCnt (X U {y}).

Let us note that according to A10™ the classical consequence operation
Cn™ is conjunctive and with accordance to A117 it is a disjunctive operation.

In T" we accept the Definition 5.2 of the unit operation Cnt! (for Cn =
Cn™).

8.3. A Two-sided Characterization of Deductive-Systems by Means
of the Operations Cn™ and (Cnt)~?!

A theoretical two-sided syntactic characterization of deductive systems based
on the classical propositional calculus C= ™"V is possible by extended the
theory TT to the theory T<" "> axiomatizing the tuple of notions of the
type < +,—1 >, exactly — the following tuple of primitive notions:

<+,-1> < 8,CnT, (CnT) "t n, e,k a >,

where (Cn™)~1 is the rejection consequence operation defined by means of the
Definition 3.1 (for Cn = Cn*) added to the theory T (see [29,39]).

The theory T<" 71> allows characterizing every deductive system based
on the classical propositional calculus C=~"V on two levels: first as an
A-asserted system and then — as a R™'- refutation system.

In T<"~'> the definitions of syntactic notions, in particular the notion
of L-decidabilty (decidability in Lukasiewicz’s sense) for a complete syntactic
characterization of deductive systems, are the same as in T. Of course, all the
theorems formulated on the basis of the theory T enriched by the Definition 3.1
are valid in T<™ 71>,
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The classical consequence operation Cn™ can be characterized in the the-
ory T<T 1> by means of the rejection operation (Cn*)~1 in the following way
(see [29,30,39]):

Theorem 8.2.

a. X #0= (Cnt(X)=N(Cn")"}(ANX)=N(Cn")"L(NKX),
b. Cnt(X)=N(Cn") Y (ANX U {nczz}) = N(Cn") Y (N(KX U {czz})),

where N X is the set of all propositions contrary to the propositions of the set
X, AX is the set of all finite disjunctions of the set X and KX is the set of
all finite conjunctions of propositions of X.

Theorem 8.2 suggests a possibility of a theoretical description of syntax
of deductive systems based on the classical calculus by reversing the levels of
considerations and their description first as R ~!-refutation systems and then as
A-asserted systems. The starting point is then an axiomatizing of the rejection
operation Cn~' as a primitive notion and defining the classical consequence
operation Cnt by means of the operation.

8.4. A Two-sided Characterization of Deductive Systems by means of the
Operations Cn~! and Cnt

The aforementioned reverse direction of the theoretical bi-level description of

the syntax of deductive systems consists in axiomatizing of the following tuple

of notions:

< —1,+> <S,cnt,Cntin, ek a > .

For this purpose, we first formalize the following tuple of primitive notions
of the so-called theory T™* of rejected propositions:

< S, Cn"tn e k>.

The axiom system for T™*, in which Cn~! : P(S) — P(S) is the primitive
notion, is compounded from the following axioms (see [39,41]):
A17L card(S) < R,
A2t nz, cxy, k(x,y) € S
A3l yeCn (X)) & Jr e X(Cn ' ({y}) € Cn~ ' ({z}))
A4~y e Cn Y (ery)
A5t zeOn ' ({y}) & Cn~Yexy) = S
A6z eCn ({in}) A w2 €On~' ({y2}) = k(1,22) €Cn™ ({k(y1,32)})
AT COnT ({ck(x,y)2}) = Cn~ ' ({cxeyz}
A8 k(x,nx) € Cn~ ({y})
A oz e Cn ' ({y}) = Cn ' ({y}) =S
A0 ta. k(z,y) ~ k(y, x)
A107 b, E(k(z,y), 2) ~ k(z, k(y, 2))
A0 e, y ~ 2= k(x,y) ~ k(z, 2)
A107Yd. k(z,2) ~
D.. 2 ~y&Vz(zeCnt({z}) & yeCnt({z})
Da. a(z,y) =4 cnzy.



196 U. Wybraniec-Skardowska and J. Waldmajer Log. Univers.

Let us notice that the axiom A37! states that the operation Cn~! is a
unit consequence (see Sect. 6, axiom A').

By expanding T~' with the following additional definition of the finitistic
operation Cn™:
DCn*. Cn*t(X) = NCn Y (ANX U {nczx}) = NCn ' (N(KX U {czz}))
we obtain the theory T<~1> characterizing the above-given tuple of notions
< —1,+ > and in which all axioms of the theory T<" !> are theorems. Since
all axioms of T<"1"> (for Cn~! = (Cnt)~1) and the definition DCn*t are
theorems of T<T 71> these two theories are equivalent and dual. So,

*) T<"~!> is equivalent to T<~ 1>,

8.5. A Two-sided Characterization of Deductive Systems By Means of Unit
Consequence Operations

A theoretical bi-aspectual description of syntax of deductive systems based

on the classical propositional calculus can be made by a suitable axiomatic

characterization of the following tuples of notions:

<+1,+,-1> < S,cntt.ent,Cn7 Y n, ek, a >
or
< —-1,+1,+ > < S, cn7t,cntt,Cnt n, ek a >,

where Cn™! is intuitively understood as the unit consequence operation in-
duced by the classical consequence operation Cnt and Cn~'— as the unit
rejection consequence operation (see Sects. 5, 4).

Justification of the above statement follows from the fact that the classical
consequence operation theory T is equivalent to the theory T™! characteriz-
ing the tuple of primitive notions

<S,Cnttn, e k>

by means of the following axioms (cf. [28]):
A1 card(S) <R,
A2TY nz, ey, k(z,y) € S
A3y e CntH(X) & Fz e X(Cnt ({y}) € Cntt({x}))

—Cn™t! is a unit consequence operation
A4t KCntY(KX) C Cnt (K X)
A5 cxy € CntH(X) = y € CntH (K (X U {2}))
AT ontl({z}) nCntt({nax}) = Cnt ({cax))
AT Cnt ({k(z,nx)}) = S,
where K X is the set of all finite conjunctions of propositions in X and the
finite consequence operation Cn™ is defined as follows:

DCn*. Cn*(X) = Cnt (KX U {czz});
the connective a is defined by Da.
It is obvious that in T" we define the unit operation Cnt! as in Sect. 5:

DCntl. CntH(X) ={y | Iz € X(y € Cn*({z}))}.
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Adding to the theory T'' the Definition 3.1 of the rejection operation
Cn~' (for Cn = Cnt) we obtain the theory T<T" "~ and we can state that

(**) T<+17+,71> T<+,71>

is equivalent to

Adding to the theory T~ the following definition of the operation Cnt!:
DCntl. y e Cntl(X) & Jz € X(y € Cn~1({z}))
and the definition DCn't, we obtain the theory T<~ 51> and we can state
that

(***) T<_1’+1’+> T<_1’+>.

is equivalent to

From (*), (**), (***) it follows that

T<TL+~=1> ig equivalent to T<~LF1+>

and deductive systems based on the classical propositional calculus can be
characterized on two opposite levels: by means of unit consequence opera-
tions and the notions of the type < 41,4, —1 > or of the notions of the type
< —1,+1,+ >.

8.6. A Two-sided Characterization of Deductive Systems by means of the Dual
Operations CnT and Cn~

A theoretical bi-aspectual description of the syntax of deductive systems based
on the classical propositional calculus can be made by a suitable axiomatic
characterization of the following tuple of notions:

<+, - > <S5,Cn",Cn",n,c,k,a >
or the dual tuple of notions:

< —+> <8,Cn~,Cn",n,c,a, k>,

where the first tuple is characterized by the theory T<" =~ while the second

one by the theory T<""">. These theories are characterized by the axiom sys-
tems and definitions given below (cf. Spasowski [32]):

Theory T<T >

Al. card(S) <R,
A2. X CCnt(X)CS
A3. CntCOnt(X) =Cn™(X)
A4 X CY = Cnt(X)CCnt(Y)
A5 Cnt(X)CU{CnT(Y) | Y € Fin(X)}
A6T. cay, nx, kry, azy € S
ATT. c:vy eCnt(X) e yelnt(XU{x})
A8T. Ont({x,nz}) =
A9T. C’n*({x}) NCn*({nx}) = Cn™(0)
A10™. Cn*({k(w,y)}) = Cn*({z,9})
AllT. OnT(X U{a(z,y)}) = Cnt (X U{z})NnCOnT (X U{y})
Dc™. ¢ a2y =4 neyx
DCn~. Wjcicki’s Definition 7.1 of dual consequence operation induced by
the conseuence operation Cnt(Cn~ = dCn™).
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The implication ¢~ xy bears the following intuition: it is true in one and
only one case, when both nx and y are true propositions, i.e., when x is a false
proposition and y is a true proposition.

Theory T<+> .

Al. card(S) <N,
A2. X CCn (X)CS
A3. Cn=Cn=(X) =Cn~ (X)
Ad. XCY=Cn (X)CCn (Y)
A5. Cn=(X)CU{Cn (V) | Y € Fin(X)}
A6™. ¢ xy,nz, kxy,axy € S
AT . cayeCn (X)) yeCn (X U{z})
A8™. Cn~ ({z,nz}) =S
A9™. Cn~({z}) N Cn~({nz}) = Cn= (D)
A107. Cn~ (X U{k(z,y)}) =Cn= (X U{z})NnCn (X U{y})
A1, Cn({a(z,y)}) = Cn~({z,y})
De. cxy =g nc yx
DCn~. Wojcicki’s Definition 7.1 of dual consequence operation induced by
the conseuence operation Cn~ (Cn™ = dCn™).

Let us also note that
T* is equivalent to T~

and deductive systems based on the classical propositional calculus can be
characterized twofold by means of the notions of the type < +, — > or of the
type < —,+ >.

Let us note that that direct implication following from the axiom A7 of
the theory T corresponds to the usual modus ponens rule rt and the direct
implication following from axiom A7~ of the theory T~ is a counterpart of the
refutation modus ponens rule r— corresponding to Lukasiewicz’s rejection rule
Tyt

Modus ponens Refutation modus ponens Lukasiewiczi’s rejection rule

|— cxy —| cay |— cxy
rt: |- = r- - = ro: —| oy
-y -y —| =z

The symbol ‘|~ denotes here the symbol of assertion while the symbol
— the symbol of refutation.

These rules are sufficient to carry out an examination of the complete
two-sided syntactic characterization of deductive systems based on classical
deductive systems and an examination of L-decidability of some other deduc-
tive systems based on non-classical propositional logics (in many such systems
that are not based on metalanguage characterization of these logics, apart from
the Lukasiewicz’s rule 7, also his rejection rule by substitution that states: if
a substitution of a formula is rejected then the formula is rejected too).

It is worth mentioning here that it is difficult to build some axiomatic
theories of deductive systems based a non-classical logic and formalizing not

47|7
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only the notion of usual non-classical consequence operations of the type Cn
but also comprising properties of dual—to them—consequence operations of
the type Cn~, because in many such deductive systems, beside refutation rules
given above, there oblige additional specific refutation rules.

9. More Important Findings Concerning L-Decidability
of Deductive Systems

Let S be any given deductive system and For be the set of all of its formu-
las. Let the bi-aspectual axiomatic method characterization of S be based on
its ST € A-system and its S~ € R-system characterized, respectively, by the
couples:

<A,R> and <A ,R™ >,

where A is the countable set of all its asserted accepted axioms, A~ the count-
able set of its refutation axioms, R the set of all its inference rules and R the
set of all its refutation rules.

The asserted system ST = C*(A,R) is the set of all formulas of For
being consequences obtained from axioms of A by means of inference rules of
R, i.e. it is the smallest set including the set A and closed under the inference
rules of R.

The refutation system S~ = C~ (A, R™) is the set of all formulas of
For being consequences obtained from refutation axioms of A~ by means of
inference rules of R, i.e. it is the smallest set including the set A~ and closed
under the refutation rules of R™.

A general theory of refutation systems is presented by Skura [24].

The deductive system S is E-decidable (decidable in Lukasiewicz’s sense)
if and only if the following conditions are satisfied:

(i) StNn S~ =0 —SisL-consistent,
(i) STU S~ =For — S is L-complete.

The relation between L-decidability and decidability in the ordinary sense

describes the following metatheorem formulated by Stupecki [27]:

Metatheorem 9.1. If the deductive system S is L-decidable and the set ST of all
its accepted formulas and the set S~ of all its rejected formulas are recursively
enumerable sets, then the deductive system S is decidable.

Nowadays it is a common methodological principle to consider
L-decidability of concrete logical deductive systems. Some results of research
on L-decidability of such systems are presented in papers of Bryll [6], Skura
[17-23], Sochacki [31], Wybraniec-Skardowska [40,44]. Let us note here only
that all well-known propositional calculi are L-decidable (L-saturated).
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