Wylie | Data in Time
5 November 2016

PSA 2016 symposium contribution: “Data in Time: Epistemology of Historical Data”
Organized by Sabina Leonelli | 5 November 2016

LEGACY DATA, RADIOCARBON DATING AND ROBUSTNESS REASONING
Alison Wylie, University of Washington and Durham University

Introduction

Archaeologists put a premium on pressing “legacy data” into service, given the notoriously destructive
nature of their practices of data capture. Legacy data consist of material and records that been
assembled over decades, sometimes centuries, often by means and for purposes long since
discredited or superseded. The primary strategies by which archaeologists put the data to work for
new purposes are, | argue elsewhere (Wylie 2016), secondary retrieval, recontextualization, and
experimental modelling. | focus here on a particularly telling example of secondary retrieval: the
extraction of new data from old by means of radiocarbon dating.

As a physical dating technique underpinned by warrants of unimpeachable scientific pedigree,
radiocarbon dating was expected, at the outset, to establish an empirical foundation for absolute
chronologies that would render obsolete the local and relative chronologies on which archaeologists
had long relied. And, indeed, it was applied to legacy data with dramatic effect, upending established
archaeological chronologies and, with them, closely worked models of continent-wide culture
processes like the spread of farming and the formation of early states and empires. In the event,
however, many of the initial 'C results were reassessed and amended as problems with
contamination, the replicability of results, worries about a growing number of confounding factors, and
questions about the cultural interpretation of '*C dates came sharply into focus. Sixty years of
standardizing applications and refining calibration curves has resolved many of these problems but
two issues remain. One is that radiocarbon dates are a probabilistic estimate of a range of dates that
an originating event could have generated often at a time scale and with margins of error that require
considerable refinement to serve as the basis for cultural chronologies. And the second is that, even
when problems of precision and scale are resolved, radiocarbon analysis dates a natural event — the
point at which an organic sample ceased to exchange carbon with the atmosphere — so that its use in
archaeological contexts requires a series of inferences about how the datable event relates to the
cultural contexts and events of archaeological interest.

Now described as developing through not one but three revolutions — the initial introduction of
radiocarbon dating (the Libby revolution) being the first, and the long process of calibration the
second - this tortuous history reinforces a point made by internal critic/advocates in the early 1990s:
no matter how much it is refined, radiocarbon dating typically cannot resolve, on its own, the
chronological problems that archaeologists address. The challenge that animates the third
radiocarbon revolution now under way is to ‘fully integrate archaeological information with “c dating
in order to address archaeologically relevant ... timescales and episodes’ (Manning 2015: 151). This
is a genre of “robustness” reasoning that illustrates its epistemic risks as well as its appeal. To unpack
what this means in an archaeological context | begin with an overview of the practices that have
evolved through the three radiocarbon revolutions. What emerges is a history of dealing with the
various kinds of error that can afflict robustness reasoning, on the basis of which | articulate a set of
conditions that must be met if virtuous rather than vicious tangles of evidence are to be constructed.

Multiple radiocarbon revolutions

The formation of archaeology as a discipline in the 19" century turned on the successful development
of chronologies that were originally founded on artefact typologies that capture patterns of association
among artefacts found buried together (e.g. in burials and hoards, Trigger 1996: 124; Rowley-Conwy
2007: 32-47), and seriations that document the orderly succession of form and design within classes
of artefacts (e.g. Deetz and Dethlefsen 1967). These were anchored temporally, where possible, by
means of links to textual or epigraphic records, and with reference to the stratified deposition of this
material (Renfrew 1973: 24). Tree-ring and varve analysis were used to build absolute chronologies
of limited scope, but for the most part the dating of archaeological material was an internal affair until
the advent of radiocarbon dating. When radiocarbon dating was first introduced there was enormous
enthusiasm for the prospect that it would solve a range of chronological problems in archaeology,
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supplanting dependence on these local, uncertain and relative chronologies.1 Willard Libby, the
physical chemist who recognized that the rate of decay of radioactive carbon isotopes might be
exploited for archaeological purposes, particularly emphasized the stability of the physical process of
radioactive decay as the crucial warrant for its use as the anchor for archaeological dating:
The rate of disintegration of radioactive bodies is extraordinarily immutable, being independent of
the nature of the chemical compound in which the radioactive body resides and of the
temperature, pressure, and other physical characteristics of its environment’ (Libby 1952: 9, as
cited by Francis 2002: 297).
Libby’s insight was that glven this stable decay rate, if you know the ratio of radioactive ("*C) to
stable carbon ( Cand’ C) in the atmosphere in which a sample of organic material originated, you
can use the difference between the proportion of carbon in the sample and this baseline ratio to
estimate the time elapsed since the decay process began.

The radiocarbon revolution that Libby set in motion has, indeed, been ‘sensational’; as Manning puts
it in a recent retrospective appraisal, it has ‘entirely restructured the practice and understanding of
prehistoric archaeology around the world’ (Manning 2015: 128). However, realizing the promise of this
first radiocarbon revolution was no means straightforward. By the late 1950s questions were being
raised about the reliability of ™C results and within a decade it was clear that the radiocarbon dating
could not be treated as a ‘silver bullet’ in a more consequential epistemic sense. It took some time for
radiocarbon laboratories to refine methods for measuring “Cin archaeological samples that control
for the effects of elecromagnetic impurities, ambient radiation, radon contamination and fractionation
(in reactions that do not go to completion), and to standardize count-time and conventions for
calculating and reportlng error. By the early 1980s protocols ensuring inter- and intra-lab reliability
had been instituted,” and archaeologists had established procedures for minimizing contamination by
younger or older organic material when recovering and handling samples. But in the process, as
radiocarbon dating became widespread, a number of anomalies were identified that could not be
attributed to contamination or processing error, making clear just how complex the physical processes
are that underpin the method. It was this realization that catalyzed the second revolution: the long
process of calibration that began in the mid-1960s (Manning 2015: 129).

It was discovered early on that Libby’s original estimate of the half-life of “C was out by 162 years;
improved estimates available by the late 1960s set it at 5730 + 40 years rather than 5568 + 30 years
(Renfrew 1973 288), but for pragmatic reasons it persisted as the standard long after the correction
was made.’ The most significant insight where archaeologlcal appllcatlons are concerned was,
however, the growing realization that the proportion of "*C to "*C and "°C in the atmosphere is not
uniform over time or space, or in its uptake by different types of organic matter. The industrial and
bomb effects are particularly strong; 160 years of burning fossil fuels has dumped steadily growing
amounts of ‘dead’ carbon into the atmosphere, depressing the proportion of radioactive to stable
carbon isotopes, while above- ground nuclear tests in the Cold War era dramatically increased the
proportion of ambient radioactive '*C (Gillespie 1986: 20). Even when these effects are controlled for,
samples from different types of organic material have different concentrations of C depending on
whether they are terrestrial or marine (e.g. whether they absorb carbon in the form of bicarbonate
rather than carbon dioxide, or occur in carbon sinks created by ocean currents), what kind of

' The history of radiocarbon dating is an immensely complex story of enthusiasm and ambivalence, institutional
manoeuvring and competition for access and authority. Marlowe (1999) gives a detailed account of its initial
years; Francis (2002) outlines the impact of the first radiocarbon revolution on interdisciplinary research on
Quaternary extinctions; and various aspects of this history are reported in a number of articles that assessed "“C
dating as it was being developed. Many of these appeared in the journal Radiocarbon, or in proceedings of the
International Radiocarbon Conferences (e.g. Long 1992, Taylor, Long and Kra eds. 1992, Stuiver and van der
Picht 1998) as well as in archaeological journals (Browman 1981, Bronk Ramsey 2008, Chippindale 2002 and
Shott 1992). Manning (2015) provides a contemporary overview of how these debates have unfolded.

2 Even so, in a review of Radiocarbon After Four Decades (Taylor et al. 1992), Browman (1994) observed that,
while ‘error magnitude is no longer linked clearly to lab type’, differences in the standards employed by different
laboratories was still an issue (p. 378). In response to these issues, Shott (1992: 219) emphasized the need for
ongoing scrutiny of how different laboratories handle length of count-time, conventions for estimating counting
errors, fractionation effects (a function of technique and count-time), and how they normalize results, despite the
fact that, by the early 1990s, archaeologists had been advised not to worry about inter-lab variation.

% See, for example, Gillespie’s discussion: the ‘new value is sometimes used for geophysical research but should
not be used for age reports. To convert from the old to the new half-life, multiply by 1.03. There is very little point
in making this correction in isolation’ (1986: 27). This is one example Francis cites of the conventions on which
radiocarbon dating relies (2002: 300). See also Renfrew (1973: 288).
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photosynthetic pathway they use to fix carbon (this differs between arid, succulent or temperate zone
plants), and whether their metabolic processes discriminate against heavy isotopes (e.g. in bone
collagen). So from the outset there was a very real question about what standard to use as the
atmospheric baseline for determining how long the “Cina particular sample had been decaying
since it stopped exchanging carbon with its environment. This was initially Cretaceious cabonate (Pee
De Belemnite, PDB) and subsequently oxalic acid corrected to the average count rate for terrestrial
wood dating to 1950. The discussion of this point in the Oxford Radiocarbon User’s Handbook of
1986 is particularly interesting:
The choice of this value [the average value for terrestrial wood used to normalize the measured
carbon-14/carbon-12 ratio] is arbitrary, and other values could have been used with perhaps more
theoretical justification. This normalization procedure, however, has been agreed internationally
by the radiocarbon community, and the user is encouraged to check whether the laboratory does
in fact use it. (Gillespie 1986: 18, emphasis added)

In addition, ™C production is affected by sunspot activity and dipole movement,”* and these effects are
sometimes amplified by associated changes in temperature that have an impact on the atmospheric
mixing and circulation of '*C as well as its rate of absorption into carbon reservoirs. The result was
recognition by the early 1980s that there are global differences in the concentration of 'C between
the northern and southern hemispheres, given proportionately more ocean surface in the southern
hemisphere (this allows for more rapid transport of C into ocean reservoirs), and also local variation
that results from geological events such as volcanoes and geysers or in cases where climatic factors
affect the rate of "'C exchange between atmosphere and ocean (Browman 1981: 249-67; Gillespie
1986: 26-7). A series of reports that appeared in Science in 2001 documented ‘a regional, time-
varying ¢ offset [that] can occur within a hemisphere’ (Kromer, Manning, Kuniholm, Newton, Spurk
and Levin 2001; Manning, Kromer, Kuniholm and Newton 2001; Reimer 2001), in this case in
securely dated tree-ring samples from Anatolia and southern Germany that grew at the same time
(fifteenth to seventeenth centuries AD). The authors hypothesize that this is a consequence of a solar
minimum which raised "*C levels, depressing radiocarbon relative to calendric ages, and an
associated cooling effect that had seasonally different impact on trees characterized by different
growth periods (Kromer et al. 2001: 2529-30; Manning et al. 2001: 2533). Identifying, measuring and
building these effects into estimates of radiocarbon dates is an on-going process.

In short, the inferential warrants necessary to make effective use of the '*C decay rate as a basis for
archaeological dating include a much wider and diverse range of domain-specific ‘material postulates’
(Norton 2003: 648) than initially realized by advocates of the first radiocarbon revolution.’ The second
radiocarbon revolution has been process of calibrating the atmospheric C dates for specific time
periods and regions against for samples of known age. Initially the basis for calibration was tree-ring
data, but it has also included artefact sequences, stratigraphic data and historical records, just the
kinds of chronological evidence that radiocarbon dating was expected to displace,6 and at this point
several "C calibration systems are available online (e.g. CALIB 7.1, Stuiver, Reimer and Reimer
2016; OxCal 4.2, Bronk Ramsey 2015). As these were refined, ‘wiggle effects’ were identified such
that, for some periods of archaeological interest, samples with different true ages correspond to the
same radiocarbon ages, or the spread in their true ages is exaggerated, compressed or even
reversed. This reinforced the now conventional wisdom — the catalyst for the third radiocarbon
revolution — that, in any archaeological application of the method, radiocarbon results must be
interpreted in light of other contextual and chronological evidence.

The Childers Site

The implications of this growing recognition of the complexity of radiocarbon dating were articulated in
the early 1990s by Shott (1992) in terms that anticipate the third revolution. He considers a puzzling

* These factors change the extent to which cosmic rays are deflected before they can reach the upper
atmosphere and produce thermal neutrons.

®am using the terminology of ‘warrants’ in the sense proposed by Toulmin (1958), as domain-specific norms of
inference and substantive assumptions that mediate, in this case, the arguments by which conclusions about the
evidential significance of empirical data are established. See the appended ‘Toulmin scheme’ illustrations, from
Evidential Reasoning in Archaeology (Chapman and Wylie 2016).

® The work of refining and integrating regional calibration curves is on-going and is regularly reported at
International Radiocarbon Conferences and in special issues of the journal Radiocarbon; for example, a recent
issue of Radiocarbon is devoted to the new IntCal13 calibration dataset (Reimer 2013).
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suite of "C dates for the Childers Site, a Late Woodland site in the Ohio Valley; the radiocarbon dates
available at the time suggested that the site was occupied for 600 years (1050-1650 BP) with a
discontinuous later occupation of 200 years (750-950 BP), while the archaeological evidence
suggested that Childers was the result of a single relatively short occupation of ten to fifty years
sometime in the period AD 400 - 800 (Shott 1992: 204, 207), results that, ‘at face value ... resist
simple interpretation’ (p. 208). Rather than take the physics-backed radiocarbon dates as given, Shott
scrutinized each line of evidence, assessing its security in its own terms and its plausibility in relation
to the others (Figure 4.1).7 He started with the radiocarbon samples, rejecting a third of them on
grounds of poor provenance or risk of contamination, and then developed several strategies for
evaluating the competing hypotheses about the Childers occupation suggested by the remaining Yc
results in light of the archaeological evidence. Given cultural practices of reuse, curation, trade and
other forms of circulation, the '*C datable organic samples may have been burned or cut long before
they were deposited in the contexts from which they are recovered. To establish a connection
between the natural event and the cultural target requires close attention to the context and
association of the dated samples (Shott 1992: 203); it is a matter of using what Shott refers to as
‘independent evidence concerning a site’s antiquity’ to determine how radicoarbon results should be
interpreted in relation to the cultural events of archaeological interest (p. 203).°

The archaeological evidence for a single, relatively short occupation includes characteristics of the
site itself — the relative homogeneity of assemblages in all major classes of cultural material and the
low rate of feature overlap compared with other Late Woodland sites and assemblages — as well as
background knowledge about the rates of decay typical for the types of wood found at the site,
patterns of resource depletion associated with the foraging and horticultural activities documented for
Childers, and ethnohistoric evidence that suggests a typical span of site occupation in the region.
Although this establishes no precise length of occupation for Childers, they do reinforce Shott’s initial
conclusion that Childers was not occupied for anything like as long or in the discrete periods
suggested by the radiocarbon results.

The crucial element of Shott’s argument that anticipates the strategies of reasoning associated with
the third radicocarbon revolution is his reanalysis of the radiocarbon dates. This includes includes
pair-wise tests for contemporaneity, the calculation of a mean occupation date and measures of
dispersion from the most credible radiocarbon results (calibrated to AD 585), and a strategy of
modelling the dispersion of dates that, given standard sources of error, could be generated by
samples that originated in a ten- to fifty-year occupation whose hypothetical true date is the average
suggested by the pooled radiocarbon dates. Shott’s modelling exercise shows that the wiquIe effects
built into calibration curves for the period in question, and the implications of normalizing *C dates for
the kinds of material that make up the Childers samples, could well produce radiocarbon dates that
range over 200 years for samples with the same cutting or burning dates. He concludes on this basis
that the dispersal of the most reliable radiocarbon dates is consistent with the archaeological
hypothesis for Childers; the samples could all have originated in a single short ten- to fifty- year
occupation, as the archaeological evidence suggests, but most Iikele}/ toward the end of the Late
Woodland in the 200-year date range suggested by the *C results.® The upshot is that the although
the radiocarbon results ‘override our prior beliefs about the site’s age’ (p. 219), interpreted in light of
the archaeological, ethnohistoric and ecological data they ‘warrant archaeological conclusions [about
the length of occupation] that an uncritical reading of all radicarbon results would not support’ (p.
225). Given that 200 years is as close a determination of the occupation dates for Childers as
radiocarbon dating can be expected to yield — at the time, for this period and for the types of sample
analysed — Shott urged archaeologists to redouble their efforts to refine and extend existing local and
relative chronologies, in this case, chronological sequences based on the seriation of ceramics and

7 Shott's analysis of the integrity of these Yc samples is a classic example of source criticism of the |
characterize elsewhere as central to practices of secondary retrieval (Wylie 2016: 6-14; Chapman and Wylie
2015: 94-100). Considered in terms of Toulmin’s analysis of ‘arguments for use’, Shott is articulating
qualifications of the scope and strength of the evidential claim in question. He is also engaged in responding to
potential rebuttals (in Toulmin’s terms), systematically testing alternative hypotheses which is, on Reiss’s
pragmatic theory of confirmation, a matter of building indirect evidence for one among the suite of hypotheses
Shott considers by a process of elimination (Reiss 2015: 347).

8 Shott cites, in this connection, what Schiffer had described as a ‘strong case’ approach (Schiffer 1986; Shott
1992: 203).

® Shott refers here to estimates of typical error that, at the time, suggested that ‘results even in the AD time
interval can be reliably resolved only to approximately a 200-year range’ (p. 226).
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other classes of tools and artefacts. Reflecting on the ‘vagaries’ of calibration, he sees this use of
multiple lines of evidence as ‘a method that not only controls the time dimension’, reducing reliance
on radiocarbon dating, but also ‘tracks subtle cultural variation’ (p. 226).

Shott’'s assessment of radiocarbon dating in the early 1990s was cautiously optimistic; he
acknowledges that its importance for archaeology ‘is almost impossible to exaggerate’ but observes
that it had ‘failed to meet the high expectations we developed for it’ (p. 202). The contributions of the
second revolution to that point are reflected in his use of the growing body of background knowledge
that underpins the calibration of radiocarbon dates to appraise sample integrity and margins of error.
But he is clear that further refinement in the calibration of radiocarbon sequences will not, on its own,
solve the problem of reconciling dissonant chronologies and establishing the cultural significance of

'C dates. Establishing culturally relevant as well as secure and precise chronologies requires
‘archaeological observation and judgment’ (1992: 203).

Robustness reasoning and the third radiocarbon revolution

Taking up these themes two decades later, Manning notes a fundamental shift in approach that
marks the advent of the third radiocarbon revolution. Rather than seek incontrovertible, physics-
backed empirical foundations that can displace reliance on archaeological chronologies and their
web of background assumptions, the challenge is to ‘fully integrate archaeological information with
Yc dating in order to address archaeologically relevant timescales and episodes’ (Manning 2015:
151). Its distinctive contribution is the development of systematic analytical techniques for using
multiple lines of evidence to assess margins of error in physical dating, and delimit, within the range
of physically possible dates, a subset of archaeologically plausible dates. These include strategies of
secondary retrieval and source cr|t|C|sm of the kind that Shott used to assess the provenance and
integrity of samples from which "C dates are drawn, as well as the analysis of stratigraphic data,
design sequence seriations, typological convergence and spatial distributions which, together,
generate a range of chronological models for the target event or context of archaeological interest.
These are then subjected to sensitivity anlaysis:
One component of a model is changed, and the model is rerun. The outputs from the original
model and its variant are then compared. When these are very similar, then the model can be
regarded as insensitive to the component of the model that has been varied. When the outputs
differ markedly, the model is sensitive to that component. Sensitivity analyses are useful not only
in determining how far the outputs of a model are stable, but also help us to identify which
components of a model are most critical to the resultant chronology. (Bayliss and Whittle 2015:
234)

Bayliss and Whittle, prominent advocates of this approach, emphasize the capacity of diverse lines of
evidence to both constrain and reinforce one another, and articulate the rationale for what they
describe as triangulation strategies in terms of an informal Bayesian model of confirmation. They
argue that any assessment of the bearing of (new) evidence on a hypothesis must take into account
how well supported the hypothesis is on other grounds (its prior probability), as well as the degree to
which the evidence in question is discriminating: whether it would hold regardless of the truth or falsity
of the test hypothesis (an appraisal of the prior and posterior likelihood of the evidence C|ted)
Construed in these ‘pragmatic Bayesian’ terms, the strategies characteristic of the third radiocarbon
revolution are a classic example of the use of methods of ‘multiple determination’ (Wimsatt 1981: 123—
4; Soler 2012: 3) that Wimsatt has influentially described as various forms of ‘robustness’ reasonlng,

"%In an analysis of the role of Bayesian statistical reasoning in radiocarbon calibration, Steel (2001) describes
archaeologists as ‘eclectic and pragmatic’ in their use of statistical tools (p. 154). For practical reasons of
computational tractability as well as substantive reasons to do with the wiggles in calibration curves, packages
such as CALIB make use of Bayesian statistics alongside classical statistics (p. 162): ‘Bayesian computational
algorithms ... more easily accommodate the complexities raised by the irregular form of the calibration curve’
(2001: 160). A discussion of the use of Bayesian models and methods in a special issue of Radiocarbon on the
internationally agreed 2013 calibration curves supports this claim (see Niu, Heaton, Blackwell and Buck 2013).
Steel’s analysis is addressed to philosophical critics of Bayesian confirmation theory, like Mayo (1996), who
argue that, in practice, scientists do not make explicit use of Bayesian methods but, rather, rely on classical
statlstlcs (Steel 2001: 153-4).

' Wimsatt describes these as serving a wide range of purposes: to establish ‘the existence and character of a
common phenomenon, object, or result’ (pp. 123), the reliability of the instruments and systems of measurement
used to detect and to probe these phenomena, and the models built of them (Wimsatt 2012: 93-4)
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specifically in application to the kind of problem that Hacking explores in connection with microscopy
(Hacking 1981, 1983: 186-203). ' The principle at work here is that we believe what we see through
optical, acoustic and scanning electron microscopes not just because each of these instruments
depends on well understood physical principles — evidential clalms about the entities observed are
backed by inferential warrants that render them individually secure'® — but because, when used in
conjunction with one another, it is implausible that images produced by such different means would
converge as a consequence of confounding influences that generate compensating error in each of
these very different lines of evidence. By extension, when multiple lines of evidence fail to converge
they have a capacity to expose error that might not be detected in an assessment of the security of
the backing and inferential credibility of each taken on its own. In an archaeological context | have
described this as a matter of building cables rather than chains of evidential reasoning (1989);
evidential reasoning is at its strongest when archaeologists can exploit the epistemic independence of
distinct lines of evidence that rely on causally independent processes of trace generation and on
conceptually independent detection techniques and inference-warranting bodies of background
knowledge.

This rationale for robustness reasoning has been described as a type of ‘no-miracles’ argument — ‘it
would be miraculous if multiple independent experiments showed x (where x is an entity, or a
process, or a constant, or a relation) and x was not real’ (Stegenga 2009: 653) — and it has recently
been challenged by a number of critics who are sceptical of Wimsatt's more ambitious claims about
the epistemic virtues of convergence (e.g. Stegenga 2009: 654-6; Hudson 2014; see also Soler
2014). | am not concerned here with the question of how ubiquitous robustness reasoning strategies
are and whether or not they are ultimately reducible to or superceded by other more decisive modes
of evidential reasoning, although | note that the third radiocarbon revolution took shape precisely
because this physics-backed dating method proved to be incapable of displacing reliance on the
scaffolding of pre-existing methods of chronological reckoning, and that the appeal to multiple lines of
evidence is advocated as a necessary supplement to calibration. That said, this philosophical debate
has directed the attention of both critics and advocates to two sets of reasons for caution about
robustness reasoning that are relevant here. One is a general caution that the rhetorical force of
convergence arguments can be misleading; convergence may add little epistemic weight to that
provided by distinct lines of evidence considered on their own." Another is an appreciation that, in
practice, the processes of calibration and mutual adjustment required to integrate diverse lines of
evidence carry a very real risk of artificially producing convergence. Taken together, these objections
suggest a number of conditions that must be met if the risks of spurious convergence are to be
avoided, all of which figure promlnently in archaeological debate about the robustness of evidential
reasoning from radiocarbon dates. 1

2 These parallels are developed in more detail in my analysis of epistemic security and independence in
eV|dent|aI reasoning in archaeology (2000, 2011).

3 For philosophical discussion of ‘security’ as distinct from robustness in the context of physical and biomedical
smences see Stegenga (2012: 212-13) and Staley (2004).

* | characterize this as horizontal independence between lines of evidence, as distinct from vertical
mdependence between a test hypothesis and the evidence invoked in its support (Wylie 2011: 381, 387).

® Soler refers to these as worries about ‘illusions of robustness’ (2014: 210). The more specific objections she
addresses, as developed by Hudson (2014), are that the evidence that is used to calibrate a measurement
technique, or built into the scaffolding that enables a targeted test of contending hypotheses, should be
understood to be superseded by the results of the measurement or test result that it makes possible. See Soler’s
discussion of these objections as developed by Hudson (2014) in Seeing Things: The Philosophy of Reliable
Observation (Soler 2014: 204-5). For an especially trenchant critique of spurious convergence in an
archaeological context, see Ullmann-Margalit’s analysis of a pernicious interdependence between textual and
materlal evidence in interpretations of the Dead Sea Scrolls (2006: 40-55).

® The set of conditions outlined here expands on those | identified in Wylie (2000 and 2011), and is informed by
Soler (2012: 15-22; 2014: 210-12) and by contributors to Soler, Trizio, Nickles and Wimsatt (2012), especially
Stegenga (2012). See, in particular, their discussion of the need to ensure that each line of evidence is credible
in its own right (Soler 2012: 8; Stegenga 2012: 212-13, 219), and their treatment of the conditions necessary to
establish that ‘the plurality [of distinct lines of evidence] must be real and not just an illusion’ (Soler 2012: 27). In
her discussion of conditions for independence between lines of evidence, Soler distinguishes between content
and historical/genetic independence (pp. 27-8), two dimensions of assessment that are captured here by
conditions 3 and 4. Considerations of independence between the ‘epistemic spheres’ (as Soler refers to them,
2012: 28) in which distinct lines of evidence and their warrants are developed are a particular focus of attention in
my earlier discussions of conditions for horizontal independence and are presupposed here. See also
Stegenga’s analysis of independence between modes of evidence (2012: 217-19). He and Soler both emphasize
the importance of recognizing that assessments of security and of independence, and judgments about how to
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1) Security: each line of evidence — including its anchoring facts or observations and the
warrants for their interpretation as evidence — must must be credible in its own right.

2) Causal anchoring and causal independence: for a suite of evidential claims it must also be
demonstrated that the material traces anchoring them are causally produced (in the first instance)
by the same target of inquiry but that their subsequent transmission is causally independent.

3) Conceptual independence: the warrants backing the interpretation of each line of evidence
must also be independent. In particular, they must not depend on common assumptions (implicit
or explicit) that could produce artificial convergence in the interpretation of distinct anchoring facts
as evidence.

4) Grounds for calibration: the calibration of warrants backing each line of evidence must be
justified on independent grounds, not because they ensure the convergence of these lines of
evidence.

5) Addressing divergence: when lines of evidence fail to converge, each must be assessed for
sources of error in their warrants and the backing for these warrants; no one line of evidence can
be assumed secure and exempted from critical scrutiny.

The trajectory of the multiple radiocarbon revolutions | have described can be read as a sustained
process of addressing concerns arising from these conditions. The initial enthusiastic reception of
radiocarbon dating reflected confidence that, given its backing by nuclear physics, it met the first
condition with a vengeance: it seemed uniquely secure. So long as it could be assumed that
radiocarbon dates are determined exclusively by the invariant decay rate of *C, it was plausible that
the method could deliver a universal, non-contingent evidential foundation for dating archaeological
material. There was no need to rely on multiple lines of evidence except when questions of relevance
arose about the bearing of radiocarbon dates on the cultural events of archaeological interest, and
there seemed no question but that the second two conditions of causal and conceptual independence
were met. The physical processes that give rise to a distinctive, time-sensitive ratio of radioactive to
stable carbon in a sample of organic material are, in an obvious sense, causally independent of the
cultural and material processes that produced and preserved the sample in an archaeological context.
Moreover, the background knowledge from nuclear physics on which radiocarbon dating depends
could be assumed to play no role in the construction of archaeological chronologies anchored in
historical records, stratigraphic data, or stylistic seriation. Combined with the assumption of
unimpeachable security, these considerations underwrote the expectation that radiocarbon dating
could (and should) supplant reliance on local, contingent, conceptually entangled chronologies based
on archaeological and historical evidence.

The second radiocarbon revolution was a response to concerns about whether, in fact, radiocarbon
dating met the first condition when it was recognized that a great many factors other than Libby’s
decay rate affect the measured proportion of stable to radioactive carbon in archaeological samples.
Establishing the security of this singular line of evidence put a premium on strategies of secondary
retrieval and source criticism that involve scrutinizing the anchoring facts, and on the painstaking
process of building the warrants that underpin the inference of evidential claims from these facts.
Conceived as a process of calibration this was, in the first instance, a matter of identifying alternative
lines of chronological evidence that are sufficiently secure in their (limited) domains of application that
they could be used to cross-check radiocarbon dates. This, in turn, required that the second and third
conditions be met: these distinct lines of evidence must be shown to originate in the same target
event, but to follow causal pathways that are not vulnerable to the same types of distortion as affect
the ratio of stable to radioactive carbon in tested samples, and they must depend on conceptually
distinct ranges of background knowledge. Dendrochronology seemed to meet these conditions: the
annual growth of tree-rings might be distorted by climatic fluctuations but not by the factors that affect
the decay rate of radioactive carbon, so comparing the count of growth rings with the '“C date for a
well preserved sample of wood should provide just the kind of causally and conceptually independent
control required, at least for some stretches of radiocarbon-based chronologies. This picture becomes
complicated, however, when it is recognized, for example, that sunspots not only have an impact on
the baseline ratios of stable to radioactive carbon in the atmosphere but also can affect climate which,
in turn affects the growing period and growth rate of trees. In the process of assembling the

weigh different lines of evidence, depend on context-specific considerations and come in degrees; ‘pragmatic,
context-sensitive judgments are pervasively involved in scientific research, especially when degree and
relevance appraisals are in play’ (Soler 2014: 212).
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scaffolding of warrants necessary to calibrate radiocarbon curves it became necessary to interrogate
and substantiate the assumptions of independence that had underwritten the optimism of the initial
revolution. The credibility of the calibration curves developed over decades of painstaking
international, cross-field collaborative work ultimately depends on meeting the fourth condition:
bringing into play background knowledge about the nature and effects of potential confounds and
their interaction that justify fine-tuning radiocarbon results but do not already figure in the generation
of these results."”

As the security of radiocarbon dating improved, the need to address the relevance component of the
second condition — establishing how the natural events dated by means of radiocarbon analysis relate
to the cultural events that archaeologists investigate — came sharply into focus. In the context of the
third radiocarbon revolution, multiple lines of evidence are used not just to calibrate radiocarbon dates
but as an essential resource, alongside 'C dates, for building and refining archaeological
chronologies. Pragmatic Bayesians are explicit about this: what they advocate is a practice of
robustness reasoning in which no one line of evidence is presumed to stand as a uniquely secure
empirical foundation for answering questions about the ‘time dimension’ of the cultural past (Shott
1992 226). Considered in this light, the insight central to the third radiocarbon revolution is that
robustness is by no means miraculous; it is the product of hard work on multiple, irreducibly local but
widely networked fronts.

There is much more to say about the range of scaffolding conditions necessary to do this. In
Evidential Reasoning in Archaeology (2016), Chapman and | argue that these include not only
epistemic warrants — domain-specific material postulates of various kinds — but also the social and
institutional conditions that make it possible to cultivate the cross-border ‘interactional’ and ‘meta-*
expertise (Collins and Evans 2002, 2007) necessary to sustain ‘trading zones’ (Galison 2007, Collins,
Evans and Gorman 2007) that foster virtuous, non-circular, robustness reasoning. | leave the details
of this account to future papers.
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