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As it is becoming extremely competitive in software industry, large software companies have to select their project portfolio to gain
maximum return with limited resources under many constraints. Project portfolio optimization using multiobjective evolutionary
algorithms is promising because they can provide solutions on the Pareto-optimal front that are difficult to be obtained by manual
approaches. In this paper, we propose an improved MOEA/D (multiobjective evolutionary algorithm based on decomposition)
based on reference distance (MOEA/D_RD) to solve the software project portfolio optimization problems with optimizing 2, 3,
and 4 objectives. MOEA/D_RD replaces solutions based on reference distance during evolution process. Experimental comparison
and analysis are performed among MOEA/D_RD and several state-of-the-art multiobjective evolutionary algorithms, that is,
MOEA/D, nondominated sorting genetic algorithm II (NSGA2), and nondominated sorting genetic algorithm III (NSGA3). The
results show that MOEA/D_RD and NSGA2 can solve the software project portfolio optimization problem more effectively. For
4-objective optimization problem, MOEA/D_RD is the most efficient algorithm compared with MOEA/D, NSGA2, and NSGA3
in terms of coverage, distribution, and stability of solutions.

1. Introduction

Project portfolio management (PPM) is a management pro-
cess to help project managers to analyze and acquire all infor-
mation of current proposed projects. PPM helps decision
makers to sort and prioritize each project according to cer-
tain criteria, such as business goals, strategic value, cost,
and resource constraints. A key step of PPM is to decide
which projects to invest in an optimal manner. Project port-
folio optimization (PPO) is the effort to make the best deci-
sions to select the best mix of projects from all candidate
projects. Manual approaches include PPO include Q-Sort,
analytic hierarchy process, and portfolio matrices [1–3].
These approaches are time-consuming and limited to the
number of projects they can deal with. The project portfolio
problem may be dealt as a multiobjective optimization

problem, and it is difficult to tackle [4, 5]. Software managers
and researchers used branch-and-bound approach, simu-
lated annealing and Tabu search, and so on to obtain the uni-
formly distributed Pareto-optimal solutions [6–8]. It is hard
to find an algorithm to deal with this problem efficiently
when the complexity of the problem grows exponentially
with the number of projects.

Within this context, multiobjective evolutionary algo-
rithms (MOEA) [9] which can obtain Pareto-optimal
solutions are promising to solve the project portfolio optimi-
zation problem [10–12]. Pareto front-based MOEAs are
superior to manual approaches in a way that they are able
to create a set of efficient portfolios, for which it can be
assured that there exist no solutions in the search space that
promise better values in at least one of the objectives and
offer at least the same values in all the other objectives [5].
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MOEAs can obtain approximate optimal solutions. Further-
more, MOEAs can deal with the computational complexity
with an increasing number of projects. That is why there
are lots of publications devoted to solving portfolio optimiza-
tion problems using MOEAs and also there are many appli-
cations of MOEAs in finance and economics areas [13].

Compared with general project portfolio optimization
using MOEAs, the number of publications dedicated to the
MOEAs’ applications to software project portfolio problems
is scarce. Kremmel et al. [5] introduced a multiobjective evo-
lutionary approach, mPOEMS, to find the Pareto-optimal
front for software project portfolio optimization problem.
However, the paper only studied 2-objective optimization.
In this paper, we first propose an improved MOEA/D [14]
algorithm based on reference distance (MOEA/D_RD) to
alleviate the inefficiency of MOEA/D’s weighted sum
approach. Then, we use MOEA/D_RD to solve the 2-, 3-,
and 4-objective software portfolio optimization problem.
Comparison and analysis experiments are conducted among
MOEA/D_RD, MOEA/D, NSGA2 [15], and NSGA3 [16].

The rest of this paper is organized as follows. Section 2
discusses the related work of portfolio optimization using
evolutionary algorithms. Section 3 describes the software
portfolio selection model we have used. The proposed
MOEA/D_RD is explained in detail in Section 4, and the
empirical experiments are described and discussed in Sec-
tion 5. The last section gives the conclusion and lists the
future work.

2. Related Work

The first formalization of methodology for solving portfolio
optimization problems was proposed by Markowitz [17] in
the 1950s. Markowitz defined a portfolio as a vector of real
numbers that contains the weight corresponding to each
available asset and stated that the investor searches the port-
folio that minimizes the risk while maximizing the return
ideally. However, with the increasing number of projects
and many constraints in real world, the simple assumptions
in Markowitz model are infeasible and it is hard to find an
exact algorithm to deal with the problem. As such, the first
use of genetic algorithm (GA) for optimizing project portfo-
lio was proposed by Arnone et al. in 1993 [18]. The authors
divided the population of a GA into different subpopulations
and produced different portions of the Pareto front.

An obvious advantage of MOEAs is their ability to pro-
duce, in one single run, a complete approximation of the
Pareto front. MOEAs are suitable to solve the portfolio opti-
mization problem since the aim of the problem is to provide a
set of Pareto front solutions, that is, the best possible tradeoffs
among the objectives, among which the managers can choose
the most appropriate solution. In [19], the Markowitz model
was solved with an MOEA in which the selection is carried
out through a Pareto-ranking procedure. The authors used
Sharpe’s ratio instead of the classical density estimators such
as crowding distance to break ties between solutions from the
same Pareto front. Lin et al. [20] implemented integer encod-
ing, simulated binary crossover, and parameter-based muta-
tion within the NSGA2 to solve the investment portfolio

optimization problem with fixed transaction costs and mini-
mum lots. Subbu et al. [21] combined a Pareto-sorting evolu-
tionary algorithm with linear programming for investment
portfolio optimization. The Pareto-sorting evolutionary algo-
rithm is used to retain the nondominated solutions found
along the search by a small population size and an archive.
Branke et al. [22] combined NSGA2 with the critical line
algorithm to obtain a continuous Pareto front for portfolio
optimization. NSGA2 was first employed to define convex
subset of the original search space, then the critical line algo-
rithm was applied on every subset to form the complete
Pareto front. Bradshaw et al. [23] employed an evolutionary
algorithm similar to SPEA2 [24] to solving the portfolio opti-
mization problem. In [25], the authors compared six MOEAs
on the classical Markowitz model. The results showed that
SPEA2 and NSGA2 performed more effectively among the
six studied algorithms. [26] compared three MOEAs, that
is, NSGA2, SPEA2, and PESA [27], to solve the Markowitz
model with three objectives: return value, risk, and number
of assets in the portfolio and found that SPEA2 can obtain
the best performance for the test cases.

Aforementioned work is based on Markowitz mean-
variance model, and there are also a few publications devoted
to other portfolio optimization models using MOEAs.
Khalili-Damghani et al. [28] presented a hybrid fuzzy
rule-based multiobjective framework for sustainable project
portfolio selection. NSGA2 was applied to obtain the non-
dominated solutions. The proposed framework simulta-
neously considered the accuracy maximization and the
complexity minimization objectives. Fernandez et al. [29]
proposed a nonoutranked ant colony optimization II method
for optimizing portfolio problem. The method incorporates
integer linear programming to avoid clearly suboptimal
regions in the search space and a priori preference system
to focus the algorithmic effort on the most preferred region
in the search space. Doerner et al. [4] introduced a Pareto
ant colony optimization algorithm for solving the portfolio
selection problem. Tofighian and Naderi [30] employed an
ant colony optimization algorithm for solving the project
selection and scheduling to optimize both total expected ben-
efit and resource usage variation. Mavrotas et al. [31] studied
the robustness analysis methodology for multiobjective pro-
ject selection optimization.

Relatively speaking, the publication with respect to soft-
ware project management using MOEAs is scarce. Rodríguez
et al. [32] employed NSGA2 and a system dynamics simula-
tion model to generate the Pareto front needed by software
project managers to find the best values for initial team size
and schedule estimates for a given project with the optimal
cost, time, and productivity. Gueorguiev et al. [33] formu-
lated software project planning problem as biobjective opti-
mization. Robustness and complete time are treated as two
competing objectives, and SPEA2 was employed to obtain
the Pareto solutions. The most closely related to this paper
is the work by Kremmel et al. [5] in which the authors used
Constructive Cost Model II (COCOMO II) [34] and a multi-
objective evolutionary algorithm to find the Pareto front for
software project portfolio optimization. Only 2-objective
Pareto front solutions were studied in Kremmel’s work. In
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this paper, we extend Kremmel’s work and propose an
improved MOEA/D algorithm called MOEA/D_RD for soft-
ware project portfolio optimization. Optimization problems
with 2, 3, and 4 objectives are studied using 50 projects that
follow the validated COCOMO II model criteria, and the
proposed approach is compared with several state-of-the-
art evolutionary algorithms.

The next section presents the list of goals borrowed from
Kremmel’s software portfolio selection model [5]. We only
use the first 4 objectives and use the synergy goal as a con-
straint in our framework.

3. Software Portfolio Selection Model

Generally, a multiobjective optimization problem can be pre-
sented as the following:

Find a vector x ∈Ω, Ω is decision (variable) space.

maximize  Q x = q1 x , q2 x ,… , qn x , Q Ω→ Rn,
1

under some constraints, where Ω is the decision (variable)
space, Q consists of n real-valued objective functions, and
Rn is called the objective space.

Suppose there are two solutions u, v ∈ Rn; u is said to
dominate v if and only if ui ≥ vi for every i ∈ 1, 2,… , n
and uj > vj for at least one index j ∈ 1, 2,… , n . A point
x∗ ∈Ω is Pareto optimal to (1) if there is no point x ∈Ω such
that Q x dominates Q x∗ . Q x∗ is then called a Pareto-
optimal objective vector. In other words, any improvement
in a Pareto-optimal point in one objective must lead to
deterioration in at least one other objective. The set of
all the Pareto-optimal points is called Pareto set, and the
set of all the Pareto-optimal objective vectors is the Pareto
front (PF).

Specifically, a solution for software project portfolio opti-
mization is represented by a vector with the length of the
maximum available projects. The task can be formalized as
follows:

Find a vector x = x1, x2,… , xp ∈M1 ×⋯×Mp, where
Mi ⊆M, M = 0, 1, 2,… , T × 12 , such that the objective
vector y = q1 x , q2 x ,… , qn x is maximum, where xi is
greater than 0 if project i is selected, and 0 if not; p is the
number of candidate projects; M is a set of the number of
months in the planning horizon; Mi is the months in which
project i can start; T is the number of timeframes in the plan-
ning horizon. qi x is the ith optimization objective. In this
work, we have considered the first 4 objectives defined in
Kremmel’s model, and thus the value of n is 4. These 4 objec-
tives are defined as follows:

(1) Potential revenue (q1 x ). Software project investors
invest human resources, knowledge, and money
into a project, with the goal of obtaining benefits
from this investment. The potential projects for
the project portfolio have to be evaluated with
regard to their potential financial revenue. Thus,
the first objective deals with the need to maximize

potential overall portfolio return. It is calculated as
the following:

q1 x = 〠
p

i=1
ri ⋅wi, 2

where ri is the potential revenue of project i, and wi is
1 if xi> 0 and 0 if xi=0. Obviously, the greater the
overall potential revenue, the better the solution is.

(2) Strategic alignment (q2 x ). Project selection optimi-
zation has to consider the problems with little com-
mitment from business leaders, poor alignment of
projects to strategy, little coordination between pro-
jects, and conflicting project objectives. The strategic
alignment on the portfolio level should be maxi-
mized. It is calculated as follows:

q2 x = 〠
p

i=1
ai ⋅wi, 3

where ai is the strategic alignment value of project i,
and wi is 1 if xi> 0 and 0 if xi=0. The greater the
overall strategic value, the better the solution is.

(3) Resource usage distribution metric (q3 x ).
Resources in each timeframe are limited. This objec-
tive is to maximize the resource usage per timeframe
and at the same time have the best distribution
among the timeframe. Its value is between 0 and
1, where 1 means full resource consumption in
each timeframe and 0 means that, at least in one
timeframe, there is no resource consumed. Thus,
the objective function to maximize is expressed
as follows:

q3 x = ∏
T

t=1

〠l
o=1〠

p
i=1ro,t,i ⋅wi

〠t
o=1Ro,t

, 4

where o is the type of a resource (there are l different
resource types); t is the timeframe; T is the number of
timeframes in the planning horizon; ro,t,i is the type o
resource consumption of project i in timeframe t, and
Ro,t is the type o resource limit in timeframe t. The
closer the q3 x is to one, the better the solution is.

(4) Risk (q4 x ). The risk objective is calculated as
follows:

q4 x = 1 − 1
p
〠
p

i=1
riski x ⋅wi, 5

where riski x is the risk value of project i. The closer
the q4 x is to one, the better the solution is.

The constraints we have used are listed as follows:

(a) Project starting timeframes. Most projects cannot
start in an arbitrary timeframe, but very often in a
few distinct timeframes. It is also possible that a
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project can only start in one timeframe in order to
meet a special market opportunity. A feasible solu-
tion must adhere to the constraint of project starting
time.

(b) The “must-select” restriction. Due to the legal and
economic circumstances, a project may have to be
included in a valid portfolio. Therefore, it should be
possible to define a “must-select” restriction for port-
folio optimization.

(c) Logical relationships. There are several logical rela-
tionships between projects such as linear, dependent,
and mutually exclusive relationships. Linear relation-
ship means if a certain project is selected for a portfo-
lio, one or more predecessor projects must be
selected obligatorily. If two projects are dependent,
it means that the two projects must be selected to a
portfolio together. On the contrary, two projects
may not be selected for the same portfolio and thus
are mutually exclusive.

(d) Synergy effects. The synergy effect constraint is one
of the objectives in the original Kremmel’s model.
We consider it as a constraint when we optimize
the first objective, that is, the potential revenue. If
two projects are selected for the same portfolio,
the total revenue could be more than the sum of
the two project’s revenues or less than the sum.
The synergy effects are also considered in the
Pareto ant colony optimization approach presented
in [4].

In this paper, we consider the aforementioned four objec-
tives and the four constraints for the software project portfo-
lio problem. In the next section, we introduce the algorithm
called MOEA/D_RD to solve the multiobjective optimization
problem for software project selection.

4. An Improved MOEA/D Based on Reference
Distance (MOEA/D_RD)

4.1. MOEA/D Based on Weighted Sum Approach. In this
paper, we improve the weighted sum approach in MOEA/D
algorithm [14] for solving the software project selection opti-
mization problem. The approach considers a convex combi-
nation of the different objectives. Let λ = λ1,… , λm T be a
weight vector; m is the number of objectives; f i x is the ith
objective to be optimized; and λi ≥ 0 for all i = 1,… ,m and
∑m

i=1λi = 1. Then the optimal solution to the following scalar
optimization problem

maximize  gws x ∣ λ = 〠
m

i=1
λi f i x  subject to x ∈Ω 6

is a Pareto-optimal point to (1) as we can see that qi x
corresponds to one of the objectives f i x in (6), where
we use gws x ∣ λ to emphasize that λ is a coefficient vector
in this objective function, where x is the variables to be
optimized. To generate a set of different Pareto-optimal

vectors, one can use different weight vectors λ1, λ2,… , λN
in the above scalar optimization problem and the opti-
mized problem is divided into N subproblems. The greater
N is, the wider the search space is. However, the weighted
sum-based MOEA/D has several drawbacks and we illus-
trate them as follows.

Given an example, as shown in Figure 1, f1 and f2 are two
objectives; F xi is the objective function of solution xi; PF is
the assumed optimal Pareto front; x1, x2, and x3 are three
solutions corresponding to weight vectors λ1, λ2, and λ3.
The ideal case is that the algorithm moves x1, x2, and x3
to meet the PF. MOEA/D randomly picks up two solu-
tions from the neighborhood of x2 and generates a new
solution using genetic operators. If the fitness value of
the new solution is better than x2, then x2 is replaced by
the new solution. If the new solution is fallen in the over-
lapping area of the search spaces of neighboring solutions
x1 and x2, then both x1 and x2 are replaced by the new
solution. The strategy is efficient at the earlier search stage
of the algorithm, and it can make the search direction
move fast to the PF. But at the late stage of the algorithm,
as shown in Figure 2, there is no overlapping area among
most of the search spaces of solutions. The neighboring
solutions of x2 cannot generate a new effective solution.
The search process would stagnate at the late stage of
the algorithm.

If the PF is a line, as shown in Figure 3, for the weight vec-
tor λ2, all solutions on the PF line are the same optimal solu-
tions with the same fitness values. Among the solutions
between the weight vectors λ1 and λ2, the optimal solution
is the intersection point of PF and f2. Similarly, among the
solutions between the weight vectors λ2 and λ3, the optimal
solution is the interaction point of PF and f1. Assume that
a solution with respect to λ2 during iteration is x2, x2 would
not be replaced by x∗ even if x∗ is closer to λ2 and is a better
solution. It is because x2 and x∗ are equally optimal with the
same fitness values on the PF line. The search process is in a
standstill.

If the PF is a convex curve, as shown in Figure 4, assume
that x2 is the solution with respect to λ2 during iteration;
when the algorithm finds another solution x∗, x2 will be
replaced by x∗ since the fitness value of x∗ is better than x2.
Similarly, the solutions with respect to λ1 and λ3 will be
replaced by the solutions that are located close to the ends
of PF. At the late search process of the algorithm, most of
solutions are aggregated at the ends of PF and the algorithm
suffers in stagnation.

From the above analysis, we can see that the traditional
weighted sum approach of MOEA/D suffers poor search abil-
ity. In the next subsection, we propose an improved MOEA/
D based on reference distance to enhance the search ability of
the algorithm.

4.2. An Improved Algorithm MOEA/D_RD Based on
Reference Distance. To alleviate the aforementioned prob-
lems of MOEA/D, we propose an improved version based
on reference distance, called MOEA/D_RD. Reference dis-
tance is the distance from each solution to the weight vector,

4 Complexity



as shown in Figure 5. For each weight vector, we can calculate
the distance of all solutions to it. For example, the distance of
five solutions to weight vector λ1 is depicted in Figure 6. We
can see that x1 is the solution with the shortest distance to λ1

among the solutions. The calculation of reference distance is
described in the following.

Given: the weight vector λ, the line from original
point to λ L, the solution F x , the projection point from

F x to L is y; then, the distance d1 from original point
to y is

d1 =
F x Tλ

λ
, 7

Reference distance d2 = F x − d1λ 8

MOEA/D_RD is described as follows.

PF
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At each generation t, MOEA/D_RD maintains

(i) N is the number of the subproblems considered in
MOEA/D_RD,

(ii) a population of N points x1, x2,… , xN ∈Ω; where xi
is a vector and is the current solution to the ith sub-
problem; xi corresponds to the weight vector λi,

(iii) FV1,… , FVN , where FVi is the fitness value of xi,
that is, FVi = F xi for each i = 1,… ,N ,

(iv) an external population (EP), which is used to store
nondominated solutions found during the search,

(v) a variable R, 0 < R <N ; N/R stands for the replace
rate; the value of R is empirically set. The variable
Count is used to record the number of solutions
being replaced at each generation.

The algorithm works as follows.
Take Figure 5 as an example. Assume N = 5 and R = 2; if

the solutions corresponding to λ1 and λ4 are replaced, that is,
Count = 2, sinceCount <N/R, the corresponding solutions of
λ2, λ3, λ5 need to be replaced. Because x5 is dominated by x4,
x5 is not in EP. x1, x2, x3, and x4 are in EP. x2 is used to
replace the solution in terms of λ2 since x2 has the shortest
distance to λ2. And x3 is used to replace the solution in terms
of λ3 since x3 has the shortest distance to λ

3. Although x5 has
the shortest distance to λ5, but x5 is not in EP, thus x4 is used
to replace the solution in terms of λ5.

From the above example and algorithm description, we
can see that MOEA/D_RD has the following features:

(1) The replacing strategy of MOEA/D_RD makes some
unselected nondominate solutions in MOEA/D to
generate the new population.

(2) Although MOEA/D uses uniform weight vector,
the subproblems of multiple weight vectors may
fall in the same area and it may bring about the
low diversity of population. MOEA/D_RD brings
the idea of reference distance, and it can help
the individuals that stuck in local area to search
more widely.

Input
(i)Multiobjective optimization fitness function, that is, (6)
(ii)R and N
(iii)A uniform spread of N weight vectors: λ1, λ2,… , λN
Output: EP.
Step 1. Initialization:

Step 1.1. Set EP =∅, Count = 0;
Step 1.2. Calculate the Euclidean distances between any two weight vectors and then work out the T closest weight vectors to each

weight vectors. For each i = 1,… ,N , set B i = i1,… , iT , where λi1 ,… , λiT are the T closest weight vectors to λi.
Step 1.3. Randomly generate an initial population x1, x2,… , xN ∈Ω. Compute FVi = F xi .

Step 2. Update:
For i = 1,… ,N , do the following.

Step 2.1. Randomly select two indexes, k and l from B i , and then generate a new solution y from xk and xl by using general genetic
operators.

Step 2.2. Check if y satisfies the constraints; if no, adjust y to meet the constraints and mark y to y∗.
Step 2.3. Update the neighboring solutions. For each index j ∈ B i , if g y∗ ∣ λ ≥ g x j ∣ λ , then set x j = y∗ and FVj = F y∗ ; Cou

nt = Count + 1.
Step 2.4. Update the EP. Remove all the vectors dominated by F y∗ from EP. Add F y∗ to EP if there is no vector in EP that dom-

inates F y∗ .
Step 2.5. If Count ≤ N/R , go to Step 2.6; else, go to Step 3.
Step 2.6. Find all the subproblems where solutions are not replaced and find the corresponding weight vectors to each subproblem.
Step 2.7. Adjust the values of fitness functions for the solutions in EP and normalize them to [0,1].
Step 2.8. For each weight vector found in Step 2.6, calculate the reference distances from the solutions in EP to the vector; find the

solution with the shortest distance and use it to replace the current solution with respect to the corresponding subproblem.
Step 3. Stopping Criteria: If stopping criteria is satisfied, then stop and output EP. Otherwise, go to Step 2.

Algorithm 1
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(3) MOEA/D_RD can bring new individuals when the
algorithm is in stagnation; at the same time, the refer-
ence distance can guarantee that the new individuals
are generated from the parents in neighborhood.

In brief, compared to the original MOEA/D, the replac-
ing strategy based on reference distance in MOEA/D_RD
increases the diversity of population and can obtain well-
distributed solutions. The improved algorithm performs well
in high-dimensional multiobjective optimization.

5. Experimental Evaluation

This section presents the experiments carried out to evaluate
the performance of the proposed approach. First, the test
data set based on the Constructive Cost Model (COCOMO
II) is described. Three evaluating metrics are then intro-
duced. Lastly, we compare MOEA/D_RD with MOEA/D,
NSGA2, and NSGA3. All experiments were run on an Intel

Core i5-2450M CPU@2.50GHz, 4GB memory PC with
Win7 64-bit operating system.

5.1. COCOMO II Test Set. COCOMO II is a model to
estimate the cost, effort, and schedule when planning a
new software development activity. The test set is based
on this model and consists of 50 software projects [5].
The number of lines of source code of these projects is
between 1000 and 37000. The maximum duration of a
project is 18 months, and the planning horizon is set to
3 years. The planning horizon is divided into 3 time-
frames, one year (12 months) per timeframe. There are
1500 person-months in total for the planning horizon
and 500 person-months per timeframe. Each project has
an assigned risk value between 0.2 and 0.8. Potential rev-
enue is set to the maximum of 150% and to the minimum
of 85% of the initial costs. The total strategic alignment
value is calculated by a weight sum of each strategy’s
alignment value which is set randomly. A maximum
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number of 30% of all projects are selected to have synergy
effects with exactly one project where there is 15% of the
positive synergy and 15% of the negative synergy. A num-
ber of 10% of all projects are selected randomly to be
mandatory, and 4 projects are manually selected to be
mutually exclusive.

5.2. Evaluation Metrics. In order to verify the proposed algo-
rithm and compare to other state-of-the-art algorithms, we
use three performance indexes as the following:

(i) Set coverage (C-metric) [14]: Let A and B be the two
approximations to the PF of a multiobjective optimi-
zation problem, C A, B is defined as the percentage
of the solutions in B that are dominated by at least
one solution in A, that is,

C A, B = u ∈ B ∣ ∃v ∈ A v dominates u
B

9

C A, B = 1 means that all solutions in B are dominated by
some solutions in A, while C A, B = 0 implies that no solu-
tion in B is dominated by a solution in A.

(ii) IGD-metric [7]: Let A be a set of nondominated
solutions obtained by the algorithm. Let P∗ be
the true PF. Since we do not know the actual PF
for the software portfolio optimization problem in
this paper, we use the optimal solutions obtained
by all the compared algorithms as the approxima-
tion of P∗. The average distance from P∗ to A is
defined as

IGD A, P∗ = 〠v∈P∗d v,A
P∗ , 10

where d v, A is the minimum Euclidean distance
between v and the points in A. If P∗ is large enough
to represent the PF very well, IGD A, P∗ could
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measure both the diversity and convergence ofA in a
sense. To have a low value of IGD A, P∗ , set Amust
be very close to the PF.

(iii) GD-metric [7]:

GD A, P∗ = 〠v∈Ad v, P∗

A
, 11

where P∗ and A have the same definitions as in IGD-
metric. d v, P∗ is the minimum Euclidean distance
between v and the points in P∗. The smaller value
GD-metric is, the more stable the algorithm.

To decide the value of R in MOEA/D_RD suitably, we
first analyze the impact of R to the performance. Figure 7
shows the different IGD-metric values with different R values
in the objectives of q2 and q3 optimization task. For every R
value, the algorithm is run 20 times and the reference PF
consists of all the nondominated solutions of the 20 runs.

Table 1: Comparison of C-metric of MOEA/D_RD and MOEA/D.

C-metric (MOEA/D_RD,
MOEA/D)

C-metric (MOEA/D,
MOEA/D_RD)

q1-q2 0.559 0.071

q1-q4 0.527 0.0628

q2-q3 0.768 0.021

q3-q4 0.75 0.018

q1-q2-q3 0.825 0.005

q1-q2-q4 0.265 0.321

q1-q4-q3 0.81 0.01

q2-q4-q3 0.632 0.063

q1-q2-q3-
q4

0.43 0.176
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Figure 10: The final population of MOEA/D.
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Table 2: Comparison of IGD-metric of MOEA/D_RD and
MOEA/D.

IGD-metric
(MOEA/D)

IGD-metric
(MOEA/D_RD)

q1-q2 3669.74 313.09

q1-q4 4273.46 818.957

q2-q3 0.037 0.001

q3-q4 0.007 0.001

q1-q2-q3 1701.49 46.68

q1-q2-q4 212.82 544.87

q1-q4-q3 1732.64 31.49

q2-q4-q3 0.021 0.002

q1-q2-q3-q4 100.86 57.68

Table 3: Comparison of GD-metric of MOEA/D_RD and
MOEA/D.

GD-metric
(MOEA/D)

GD-metric
(MOEA/D_RD)

Mean Deviation Mean Deviation

q1-q2 4361.43 5017.01 2751.47 3548.01

q1-q4 4364.78 5496.39 2435.11 3272.23

q2-q3 0.062 0.063 0.043 0.058

q3-q4 0.013 0.011 0.011 0.011

q1-q2-q3 1741.47 2734.43 662.37 1422.7

q1-q2-q4 338.23 503.61 310.92 459.31

q1-q4-q3 1591.24 3665.13 559.19 1084.4

q2-q4-q3 0.022 0.02 0.018 0.016

q1-q2-q3-q4 116.19 215.604 142.091 213.107
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Calculate the IGD-metric for every single R value. When R
equals to 0, it means reference distance is not used in the
algorithm. We can see that the IGD-metric is the best when
R is 3. The algorithm performs similarly when R is between
3 and 8. Considering that the convergence is slow if R is too
small and the stagnation in search process is serious if R is
too large, we set R to 5 in the following experiments.

5.3. Comparison betweenMOEA/D_RD andMOEA/D.As for
the 4 objectives we mentioned in Section 3, q1 and q3 are pos-
itively correlated; that is, high revenue can be expected only
when resources are effectively used throughout the whole
planning horizon and vice versa. For q2 and q4, usually the
project with either the lowest risk or the highest strategic
alignment value is selected to the portfolio. Thus, q1-q3 and
q2-q4 are not studied in our 2-objective optimization experi-
ments. The experiments are conducted on 2-objective
optimization problems: q1-q2, q1-q4, q2-q3, and q3-q4; 3-

objective optimization problems: q1-q2-q4, q1-q2-q3, q1-q3-
q4, and q2-q3-q4; and 4-objective optimization problem: q1-
q2-q3-q4. There are 150 weight vectors in 2-objective optimi-
zation experiments, 351 weight vectors in 3-objective optimi-
zation experiments, and 455 weight vectors in 4-objective
optimization experiment. The number of neighborhood is
10. The mutation rate is 0.01. The number of generation
is 500 for 2-objective optimization and 1000 for 3- and 4-
objective optimization problems. We run 20 independent
runs with each of the compared algorithms where each
run produced a set of nondominated solutions. The final
population of nondominated solutions is plotted in
Figures 8 and 9. We can see that MOEA/D-RD obtains
more nondominated solutions.

Tables 1–3 give the comparisons between MOEA/D-RD
and MOEA/D in terms of C-metric, IGD-metric, and GD-
metric. The better performance is marked in bold. From
Tables 1 and 2, we can see that MOEA/D outperforms
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MOEA/D-RD in only one item of q1-q2-q4. MOEA/D_RD
performs better in the other 8 optimization problems with
smaller C-metric and IGD-metric.

Figures 10 and 11 illustrate the improvement of the diver-
sity of population and the distribution uniformity of solutions
in MOEA/D_RD. Figure 10 presents the final population
in one random run for q1-q4 problem. The number of

population is 150, and there are only 9 different solutions at
the last generation. We can see that the solutions in the
neighborhood are almost the same and there is no new solu-
tion generated through genetic operators. The algorithm suf-
fers in stagnation. Figure 11 gives the final population after
20 runs for q1-q4 problem. We can see that the nondomi-
nated solutions obtained by MOEA/D_RD are distributed
more uniformly than the solutions by MOEA/D.
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Figure 13: Comparison of PF between MOEA/D_RD (red circle) and NSGA2 (green ∗) for 3-objective optimization.

Table 4: Comparison of C-metric of MOEA/D_RD and NSGA2.

C-metric
(MOEA/D_D, NSGA2)

C-metric
(NSGA2, MOEA/D_RD)

q1-q2 0.048 0.44

q1-q4 0.036 0.188

q2-q3 0 0.78

q3-q4 0 0.702

q1-q2-q3 0.027 0.531

q1-q2-q4 0.183 0.15

q1-q4-q3 0.024 0.385

q2-q4-q3 0.052 0.524

q1-q2-q3-q4 0.24 0.14

Table 5: Comparison of IGD-metric of MOEA/D_RD and NSGA2.

IGD-metric (NSGA2) IGD-metric (MOEA/D_RD)

q1-q2 313.793 2024.71

q1-q4 427.488 619.194

q2-q3 0 0.0127

q3-q4 0 0.006

q1-q2-q3 189.272 324.263

q1-q2-q4 40949.7 207.512

q1-q4-q3 138.696 326.496

q2-q4-q3 0.008 0.026

q1-q2-q3-q4 6633.18 67.3109
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5.4. Comparison between MOEA/D_RD and NSGA2. NSGA2
has performed effectively in various optimization problems
since it is invented. We also employ NSGA2 to solve our soft-
ware project portfolio optimization model. The number of

population of NSGA2 is 160, 360, and 500, respectively, for
2-objective, 3-objective, and 4-objective optimization prob-
lems. The mutation rate is 0.01. The number of generation
is 500 for 2-objective optimization problem and 1000 for

Table 6: Comparison of GD-metric of MOEA/D_RD and NSGA2.

GD-metric (NSGA2) GD-metric (MOEA/D_RD)
Mean Deviation Mean Deviation

q1-q2 957.144 2152.5 2751.47 3548.01

q1-q4 1223.3 2475.81 2435.11 3272.23

q2-q3 0.003 0.011 0.043 0.058

q3-q4 0.002 0.003 0.011 0.011

q1-q2-q3 591.726 2347.86 662.374 1422.7

q1-q2-q4 228.112 437.182 310.917 459.31

q1-q4-q3 459.115 1074.91 559.196 1084.4

q2-q4-q3 0.01 0.011 0.018 0.016

q1-q2-q3-q4 184.506 324.817 142.091 213.107
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Figure 14: Comparison of PF between MOEA/D_RD (red circle) and NSGA3 (green ∗) for 2-objective optimization.
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3- and 4-objective optimization problems. The final popula-
tion of nondominated solutions is plotted in Figures 12 and
13 after 20 independent runs. We can see that NSGA2 per-
forms better and obtains more nondominated solutions in
2- and 3-objective optimization problems. Tables 4–6 give
the comparisons between MOEA/D-RD and NSGA2 in
terms of C-metric, IGD-metric, and GD-metric. The better
performance is marked in bold. MOEA/D_RD outperforms
NSGA2 for 4-objective optimization problem.

5.5. Comparison between MOEA/D_RD and NSGA3. NSGA3
is the newest version of NSGA2 designed for many objective
optimization problems. We use NSGA3 to solve the software
project portfolio optimization problem especially the 3- and
4-objective optimization problems. The number of popula-
tion for NSGA3 is set to 152, division parameter ρ 150, refer-
ence points 151 for 2-objective optimization experiments.
The number of population is set to 352, division parameter
ρ 25, reference points 351 for 3-objective optimization exper-
iments. The number of population is 456, division parameter
ρ 12, reference points 455 for 4-objective optimization exper-
iments. The mutation rate is 0.01. The number of generation
is 500 for biobjective optimization and 1000 for 3- and 4-

objective optimization problems. The final population of
nondominated solutions is plotted in Figures 14 and 15 after
20 independent runs. For 2-objective optimization problem,
MOEA/D_RD can obtain more nondominated solutions
and the distribution of solutions is more uniformly than
NSGA3. For 3-objective optimization problem, the solutions
obtained by NSGA3 are distributed in smaller area than
MOEA/D_RD.

Tables 7–9 give the comparisons between MOEA/D_RD
and NSGA3 in terms of C-metric, IGD-metric, and GD-
metric. The better performance is marked in bold. From
Tables 7 and 8, we can see that NSGA3 outperforms
MOEA/D_RD in terms of C-metric while MOEA/D_RD
outperforms NSGA3 in terms of IGD-metric. It means that
NSGA3 can get better PF, but the distribution of solutions
is worse than MOEA/D_RD. Table 9 indicates that NSGA3
can have better mean values but worse deviation values than
MOEA/D_RD and we can have the same conclusion from
Tables 7 and 8.

5.6. More Experiments.We also conducted some experiments
to compare the four studied algorithms. The results using the
PF obtained by the four algorithms and the correspondingly
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computed IGD-metric are shown in Table 10. NSGA2
performs the best in 6 2- and 3-objective optimization
problems with the smallest IGD-metric values. But for the
4-objective optimization problem, MOEA/D_RD outper-
forms the other algorithms.

Table 11 presents the average running time of the four
algorithms in 20 runs for the 9 optimization problems. We
can see that MOEA/D consumes the least time and MOEA/
D_RD costs the similar time compared with MOEA/D.
NSGA2 needs several or more than ten times than MOEA/
D_RD, and NSGA3 consumes the most time. To sum up,
MOEA/D needs the least time but it is easy to suffer in stag-
nation and cannot obtain good nondominated solutions.
NSGA3 is not likely suitable to solve the software project
portfolio optimization problem. It needs the most time, and
the distribution of solutions is not good. NSGA2 performs
well in 2- and 3-objective optimization problems, but it needs
much more running time than MOEA/D_RD. Generally
speaking, MOEA/D_RD has the excellent overall perfor-
mance. It can get the uniformly distributed nondominated
solutions and performs the best for the 4-objective optimiza-
tion problem. Although MOEA/D_RD is a little worse than
NSGA2 in 2- and 3-objective optimization problems, but it
consumes much less running time. In conclusion, we can
say that MOEA/D_RD is an effective approach to the soft-
ware project portfolio optimization problem.

5.7. Conclusion and Future Work. Based on Kremmel’s
model, a compact model with 4-objective optimization
model for software project portfolio problem is proposed in
this paper. The model is adaptive for software companies

Table 8: Comparison of IGD-metric of MOEA/D_RD and NSGA3.

IGD-metric (NSGA3) IGD-metric (MOEA/D_RD)

q1-q2 8664.81 2028.22

q1-q4 2556.45 1077.42

q2-q3 0.027 0.013

q3-q4 0.001 0.006

q1-q2-q3 156706 43.468

q1-q2-q4 4337.33 179.436

q1-q4-q3 203970 54.698

q2-q4-q3 0.013 0.019

q1-q2-q3-q4 125345 81.746

Table 11: Average running time of the four compared algorithms.

MOEA/D_RD MOEA/D NSGA2 NSGA3

q1-q2 1.7 1.56 19.26 52.74

q1-q4 1.75 1.68 23.05 50.14

q2-q3 0.97 1.11 18.21 49.05

q3-q4 1.54 2.11 21.68 50.21

q1-q2-q3 14.62 14.75 102.95 516.95

q1-q2-q4 10.54 10.45 47.16 445.15

q1-q4-q3 19.61 19.01 136.11 493.5

q2-q4-q3 10.94 10.76 80.32 460.74

q1-q2-q3-q4 34.28 33.25 106.57 934.84

Table 9: Comparison of GD-metric of MOEA/D_RD and NSGA3.

GD-metric (NSGA3)
GD-metric

(MOEA/D_RD)
Mean Deviation Mean Deviation

q1-q2 517.813 2271.78 2751.47 3548.01

q1-q4 746.94 1970.08 2435.11 3272.23

q2-q3 0.002 0.014 0.043 0.058

q3-q4 0.001 0.002 0.011 0.011

q1-q2-q3 258.735 1916.26 662.374 1422.7

q1-q2-q4 249.137 594.39 310.917 459.31

q1-q4-q3 463.686 4324.19 559.196 1084.4

q2-q4-q3 0.006 0.016 0.018 0.016

q1-q2-q3-q4 67.996 393.873 142.091 213.107

Table 10: IGD-metric of the compared four algorithms.

MOEA/D_RD MOEA/D NSGA2 NSGA3

q1-q2 2327.95 4616.15 844.444 9693.75

q1-q4 1771.3 4314.13 1924.44 3258.74

q2-q3 0.013 0.056 0 0.027

q3-q4 0.007 0.011 0.001 0.001

q1-q2-q3 334.079 1908.11 222.284 120820

q1-q2-q4 615.151 341.423 39321.5 5671.34

q1-q4-q3 344 1893.54 138.744 148423

q2-q4-q3 0.026 0.04 0.012 0.019

q1-q2-q3-q4 136.089 146.714 5616.01 113234

Table 7: Comparison of C-metric of MOEA/D_RD and NSGA3.

C-metric
(MOEA/D_RD, NSGA3)

C-metric
(NSGA3, MOEA/D_RD)

q1-q2 0.02 0.422

q1-q4 0.005 0.285

q2-q3 0.024 0.773

q3-q4 0.007 0.667

q1-q2-q3 0.144 0.065

q1-q2-q4 0.194 0.142

q1-q4-q3 0.156 0.055

q2-q4-q3 0.009 0.498

q1-q2-q3-q4 0.083 0.107
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who can revise the objectives and constraints according to
their own requirements. To solve the proposed model, an
improved MOEA/D algorithm called MOEA/D_RD based
on reference distance is proposed accordingly. The algorithm
uses reference distance to select some solutions to generate
new solutions. Compared with MOEA/D, NSGA2, and
NSGA3, MOEA/D_RD performs well in terms of the quality
of solutions and running time, especially for 4-objective opti-
mization problem. Future work could cover several topics. A
great number of projects for the test set could be conducted.
It also would be important to test the approach on a test set
with real-world data which may include some incomplete
and uncertain data.
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