
Research Article
A Novel Automatic Generation Control Method
Based on the Ecological Population Cooperative
Control for the Islanded Smart Grid

Lei Xi , Yudan Li , Yuehua Huang , Ling Lu , and Jianfeng Chen

College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

Correspondence should be addressed to Yuehua Huang; hyh@ctgu.edu.cn

Received 15 May 2018; Accepted 8 July 2018; Published 23 August 2018

Academic Editor: Zhile Yang

Copyright © 2018 Lei Xi et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To achieve automatic generation control coordination in the islanded smart grid environment resulted from the increasing
penetration of renewable energy, a novel ecological population cooperative control (EPCC) strategy is proposed in this paper.
The proposed EPCC, based on the new win-loss criterion and the time tunnel idea, can compute the win-loss criterion
accurately and converge to Nash equilibrium rapidly. Moreover, based on a multiagent system stochastic consensus game
(MAS-SCG) framework, a frequent information exchange between agents (AGC units) is implemented to rapidly calculate
optimal power command, which achieves the optimal cooperative control of the islanded smart grid. The PDWoLF-PHC(λ),
WPH strategy (wolf pack hunting), DWoLF-PHC(λ), Q(λ)-learning, and Q-learning are implemented into the islanded smart
grid model for the control performance analysis. Two case studies have been done, including the modified IEEE standard two-
area load frequency control power system model and the islanded smart grid model with distributed energy and microgrids. The
effectiveness, stronger robustness, and better adaptability in the islanded smart grid of the proposed method are verified.
Compared with five other smart ones, EPCC can improve convergence speed than that of others by nearly 33.9%–50.1% and the
qualification rate of frequency assessment effectively by 2%–64% and can reduce power generation cost.

1. Introduction

Microgrid is an effective way to improve the utilization
and permeability of distributed energy, which has attracted
widespread attention from many researchers [1–3]. How-
ever, the lack of support from the power grid and the
uncertainty of environment and load fluctuations make
the control strategy of microgrid a focus research point
[4, 5]. The concept of a virtual synchronous generator in
microgrid was proposed in [6], and the feasibility of
applying centralized frequency control of a traditional
power system into microgrid was analyzed in detail. In [7],
a centralized automatic generation control (AGC) controller
based on reinforcement learning in an island operation mode
was proposed, which realized the AGC and frequency regula-
tion in microgrid. However, considering utilization of

distributed energy, it is difficult to realize cooperative control
between provincial dispatching and regional dispatching in
AGC-centralized control mode [8]. As to the control method,
the reinforcement learning has been applied into traditional
centralized AGC for interconnected power grid to solve the
stochastic disturbance caused by distributed energy access
to the power grid in our previous studies [9–14].

However, all the above are centralized control methods,
which require lots of remote information and have slow
dynamic response and dis-satisfactory control performance
of the centralized control method. Consequently, a study of
the distributed control method becomes particularly neces-
sary. In [15], the energy storage system in microgrid based
on the distributed control multiagent consensus method
was proposed, which solved the active power fluctuation on
the common coupling point. Then a distributed stable
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modular control method for independent microgrid was put
forward in [16], which solved the stability and convergence
of complex microgrid. Moreover, it demonstrated in [17]
that a distributed control method for daily voltage and daily
power could handle the nonlinear integer programming in
distribution grid.

The authors have also completed some previous studies
on distributed control. In the authors’ published paper [18],
based on the heterogeneous multiagent system stochastic
game (MAS-SG) principle, the decentralized win or learn fast
policy hill-climbing(λ) (DWoLF-PHC(λ)) was proposed to
obtain dynamic optimization control on AGC total com-
mand, in which average mixed strategy is used instead of
equilibrium strategy. However, the total power command of
the provincial dispatch center was achieved through a fixed
proportion of the adjustable capacity rather than a dynamic
optimization, and multisolution problem may emerge when
agent number explodes, which may lead to a severe system
stability collapse. So a method should be sought to solve the
above problem.

Homogeneous multiagent system collaborative consen-
sus (MAS-CC) is not only used in military, shipping, robot,
and so on but also used in the power system control field
[19]. In addition, the incremental consensus acceleration
algorithm was proposed to obtain optimal operation of
microgrids in [20]. In [21], the problem of decentralized
autonomy for economic dispatch was effectively resolved
through a collaborative dynamic agent framework. It was
demonstrated in [22] that the PI controller was widely used
to obtain the total power command, while the homogeneous
MAS-CC theory was used to dynamically dispatch the total
power command. However, the distributed dynamic optimal
control is usually ignored in the study of the total power
command. There are so rare available literatures that
included a study on the dynamic optimal control and dis-
patch of AGC total power command simultaneously, which
means a true intelligence from the whole and the part.

Therefore, this paper attempts to explore an AGC
method with a hierarchical and distributed control (HDC)
structure to solve the above problem. Based on authors’
previous work [23–25], a novel multiagent system stochastic
consensus game (MAS-SCG) framework was designed
through the combination of MAS-SG and MAS-CC frame-
works to solve the basic problem of “homogeneous/heteroge-
neous multiagent mixed stochastic game.” Based on this
framework, an ecological population cooperative control
(EPCC) strategy is proposed, which can realize the total
cooperative control and optimization of a distributed HDC
system, to resolve the multisolution problem and stochastic
disturbance problems arising from distributed energy access.
Two case studies have been done, including the modified
IEEE standard two-area load frequency control power system
model and the islanded smart grid model with distributed
energy and microgrids. The effectiveness, stronger robust-
ness, and better adaptability in the islanded smart grid of
the proposed algorithm are verified. Compared with five
other smart methods, EPCC can improve convergence speed
and the qualification rate of frequency assessment and can
reduce power generation cost.

2. AGC Control Framework Based on
HDC Structure

Taking the high voltage DC separatrix as the boundary,
the large power grid can be virtually divided into multiple
small regional power grids through a graph cut method.
Figure 1 describes the islanded smart grid with an HDC
structure [26], which can obtain the total power command
through the game among each area, along with the unit’s
own optimal power command through the communica-
tion over each unit with its adjacent unit. The distributed
energy group is regarded as a “virtual generation ecosys-
tem (VGE)” in Figure 1. Here, the ecosystem indicates
that various distributed energies are equivalent to a natu-
ral biological population, whose characteristics can be
used to solve the control system. Cyber connection refers
that each VGE area will be disconnected from the main
power grid automatically into the island operation when
a serious failure occurs in the system; the physical con-
nection refers that each VGE area maintains the system
steady-state operation through a physical and network
information connection.

3. Ecological Population Cooperative Control

The ecological population cooperative control (EPCC)
proposed in this paper is developed by the combination of
MAS-SG and MAS-CC to get the distributed equilibrium
solution for the islanded smart grid, which can obtain global
control and optimization of this grid.

3.1. MAS-SG Theory. Based on the MAS-SG, the novel
PDWoLF-PHC(λ) with the idea of time tunnel is put
forward to obtain dynamic optimal power command,
such that the optimal control for the islanded smart grid
is acquired.

The win or learn fast (WoLF) principle has already been
studied thoroughly by many scholars. The learning rate will
be accelerated when the player fails and will be decelerated
when the player wins to maintain the original strategic
advantage [27]. The player’s win-loss is determined by
comparing the current strategy with the average strategy.
But in the 2× 2 game, the player cannot accurately calculate
over WoLF win-loss criterion. The decision of its extended
algorithm can only be gained based on a valuation equilib-
rium reward, such as WoLF-PHC. Therefore, an improved
WoLF version, policy dynamics-based WoLF (PDWoLF)
principle, was put forward in [28], in which the decision
change rate and the decision space slope value were adopted
to be the assessment factors. If the product of them is less
than 0, the player wins.

In [28], by combining the policy hill-climbing (PHC)
with PDWoLF, the extended PDWoLF-PHC algorithm is
proposed. With variable learning rate, the algorithm con-
verges to the optimal solution by reacting to the environmen-
tal changes and adjusting the adaptive self-strategy in the
multiagent system. The algorithm is rational as well as
convergent. In general, WoLF-PHC can estimate the value
directly to acquire decisions based on the valuation
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equilibrium reward. But the way of comparison between the
average strategy and the current strategy cannot be used as a
win-loss criterion in more than 2× 2 games. However,
PDWoLF-PHC can directly obtain the decision according
to the dynamic development of the joint trajectory in its
phase space. This principle provides PDWoLF-PHC a faster
convergence, a lower decision-making error rate, and a better
stability of the global learning process.

For a given agent, the win-loss criterion of PDWoLF-
PHC is determined by two parameters φwin and φlose. Let
the agent in state sk and with reward function R, based on a
mixed strategy table π sk, ak , and after an exploration action
ak, it will transit to state sk+1. The updating rules of π sk, ak
are as follows:

π sk, ak ← π sk, ak + Δskak
,

Δskak
=

−δskak ,  if ak ≠ arg maxak+1Q sk, ak+1 ,

〠δskak+1 ,  otherwise,

δskak =min π sk, ak , φ

Ai − 1 ,

1

where Δskak
is variable quantity during the strategy update,

Ai is the number of action under state sk, φ is the vari-
able learning rate, and φlose > φwin. The updating rule is
described as

φ =
φwin,  if Δ sk, ak ⋅ Δ2 sk, ak < 0,
φlose,  otherwise,

2

where Δ sk, ak is the decision change rate and Δ2 sk, ak
is the decision space slope value. If the product of the
decision change rate Δ sk, ak and the decision space slope
Δ2 sk, ak is less than 0, then the agent wins and selects
φwin, otherwise selects φlose. Δ sk, ak and Δ2 sk, ak are
individually updated by

Δ2 sk, ak ← Δskak
− Δ sk−1, ak−1 ,

Δ sk, ak ← Δskak

3

The PDWoLF-PHC(λ) algorithm which integrates
PDWoLF-PHC [28] and time tunnel idea is put forward
in the paper, and it is based on the Q-learning framework.
Q-learning [29] presented by Watkins in 1989 is a rein-
forcement learning algorithm with a strong self-learning
ability and can obtain the optimal solution through
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Figure 1: AGC control framework based on HDC structure for the islanded smart grid.
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continuous trial-and-error and environmental interaction.
The optimal target value function Vπ∗

s and strategy
π∗ s are as follows:

Vπ∗
s =max

a∈A
Q s, a ,

π∗ s = arg max
a∈A

Q s, a ,
4

where A is the set of actions.

The time-varying multi-step backtrack eligibility trace
[30] can be considered a time tunnel. The frequency of
each joint action strategy is recorded into the time tunnel
to update the iterative Q value of each action strategy.
Furthermore, in each iterative process, the joint state and
action are recorded into the time tunnel, which gives the
reward and punishment of the multistep historical
decision-making in the learning process. The Q function
and time tunnel are recorded in the form of a two-
dimensional state-action lookup table. The frequency and

Evaluate the SARSA(0) value function error Mk (6)

Choose variable learning rate 𝜑 (2)

MAS-SG

Output the total power command ΔP𝛴

Output power command of each unit

Apply a consensus algorithm (11) or (12)

Calculate regulation power ΔPGi (20)

Calculate the consensus variable ωi and the unit
regulation power ΔPGi (14)
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Power disturbance
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Calculate regulation power deviation ΔPerror (13)
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Resolve the mixed strategy 𝜋 (s, a) (1)

Update the Q function Qk(sk, ak) to Qk+1(sk, ak) (7)
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Update Δ(sk, ak) and Δ2 (sk, ak) (3)

The islanded
smart grid 

Figure 2: The execution steps of the EPCC.
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the recency information of the historical decision-making
process are combined in the time tunnel to obtain the
optimal Q function of the AGC controller. The multistep
information updating mechanism of the Q function is
obtained by the backward valuation of the time tunnel.

In the paper, the SARSA(λ) algorithm [31] based on the
time tunnel idea is chosen. The tunnel time based on
SARSA(λ) is expressed as

ek+1 s, a =
γλek s, a + 1,  if s, a = sk, ak ,
γλek s, a ,  otherwise,

5

where ek s, a is the time tunnel at kth step iteration under
state s and action a, γ is the discount factor, and λ is time
tunnel attenuation factor.

The agent calculates the evaluation of the current value
function errors through reward value R obtained in the
current exploring, which is given as

ρk = R sk, sk+1, ak + γQk sk+1, ag −Qk sk, ak ,

Mk = R sk, sk+1, ak + γQk sk+1, ag −Qk sk, ag ,
6

where R sk, sk+1, ak is the agent’s reward function from
state sk to sk+1 under the selected action ak, ag is the
greedy action strategy, ρk is the Q function error of the
agent at the kth iteration, and Mk is the evaluation of Q
function error.

Q λ algorithm [32] is updated iteratively as follows:

Qk+1 sk, ak =Qk+1 sk, ak + αMkek sk, ak ,
Qk+1 sk, ak =Qk+1 sk, ak + α ρk,

7

where α is the learning rate.
With sufficient trial-and-error iterations, the state value

function Qk s, a will converge to Q∗ matrix with the proba-
bility of 1, and finally, an optimal control strategy repre-
sented by Q∗ matrix will be acquired.

3.2. MAS-CC Theory. Based on the MAS-CC, the consensus
algorithm based on the equal incremental principle is
adopted to achieve dynamic optimal AGC unit dispatch, so
that the optimization for the islanded smart grid system is
realized.

3.2.1. Graph Theory. The topology of the MAS can be
expressed as a digraph G = V , E,A with a set of nodes
V = v1, v2,… , vn , the edge set E ⊆V × V , and the weighted
adjacency matrix B = bij R

n×n, where vi represents the ith
agent and the edge stands for the relationship among agents;
constant bij bij ≥ 0 is the weight factor among agents. If
there is a connection between any two vertexes, then the
graph G is called a directed strongly connected graph. The
Laplace matrix L = lij R

n×n of digraph G is given as

lii = 〠
n

j=1,j≠i
bij, lij = −bij, ∀i ≠ j, 8

where L determines the topology of MAS.

3.2.2. The First-Order Consensus Algorithm of a Discrete
System. For the digraph G, an MAS consisting of n autono-
mous agents is treated as a node. The purpose of the consen-
sus algorithm is to obtain a consensus among each agent and
to update state in real time after communicating with adja-
cent agents. Due to the communication delay among agents,
the first-order consensus algorithm of a discrete system can
be written by

xi k + 1 = 〠
n

j=1
dij k xj k , 9

where xi is the state of the ith agent, k represents the discrete
time series, and dij k denotes the i, j item of the row sto-
chastic matrix D = dij k ∈ Rn×n at discrete time k, which is
given as

dij k =
lij

〠n
j=1 lij

, i = 1, 2,… , n 10

The collaborative consensus can be achieved if and only if
the digraph is strongly connected on the condition of contin-
uous communication and constant gain bij.

3.2.3. Consensus Algorithm Based on Equal Incremental
Principle. According to (9), the consensus algorithm based
on equal incremental principle is expressed as

ωi k + 1 = 〠
n

j=1
dij k ωj k , i = 1, 2,… , n 11

When the power deviation is introduced to the con-
sensus update of the chief unit who communicates with
other units and sends an optimal power command to
them [23], which meets the power constraints, it can be
calculated by

ωi k + 1 = 〠
n

j=1
dij k ωj k + εΔPerror, 12

where the ΔPerror is the difference between the total power
and the total regulation power of all units, which is calculated
by

ΔPerror = ΔPΣ − 〠
n

i=1
ΔPGi 13

Therefore, considering the consensus of the generation
constraints, the equation is updated as follows:

ωi = ωi,lower, if ΔPGi < ΔPmin
Gi ,

ωi k + 1 = 〠
n

j=1
dij ωj k , if ΔPmin

Gi ≤ ΔPGi ≤ ΔPmax
Gi ,

ωi = ωi,upper, if ΔPGi > ΔPmax
Gi ,

14

where ωi,lower and ωi,upper are the consensus variables of the
ith agent.
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3.2.4. Virtual Consensus Variable. From (14), it can be seen
that the update of the consensus variable is restricted by the
maximum and minimum of the regulation capacity of the
unit. Basically, if the unit capacity exceeds the active power
limitation, this limitation will be selected as a consensus
variable and will not update anymore. The jump change of
update rules means that the dimensions of the topology
matrix D and its element dij will change frequently. In
addition, it is necessary to seek an effective method to solve
real-time varying topology to meet the demand of plug-
and-play for the islanded smart grid.

Hence, the virtual consensus variable is proposed in this
paper to deal with the above issue. As shown in (14), it is
not necessary to consider the unit power constraint under a
self-update condition, so that the amount of calculation can
be greatly reduced.

Moreover, the real consensus variable ωi can be achieved
by the virtual connection between one and reserve unit
through virtual consensus variables ωi,virtual along with cor-
rection on power constraints. So plug-and-play function
can be accomplished without any further modification of
the system topology.

The real consensus variable ωi is obtained as

ωi =
ωi,lower,  if ωi,virtual < ωi,lower,
ωi,virtual,  if ωi,lower ≤ ωi,virtual ≤ ωi,upper,
ωi,upper,  if ωi,virtual > ωi,upper

15

3.2.5. AGC Power Dispatch Model for the Islanded Smart
Grid. In the islanded smart grid, the generation cost is chosen
as the consensus variable for all units, which is usually
expressed by the following equation:

Ci PGi = aiP
2
Gi + biPGi + ci, 16

where PGi represents the active power of the ith unit, Ci is the
power generation cost of the ith unit, and the positive con-
stants ai, bi, and ci are the coefficients of the power genera-
tion, respectively.

Therefore, the power generation cost for the power dis-
patch of the specified AGC is given as follows:

Ci PGi,actual = Ci PGi,plan + ΔPGi = σiP
2
Gi + βiPGi + ψi,

17

where PGi,actual is the actual active power of the ith unit,
PGi,plan represents the planned generation power of the ith
unit, ΔPGi means the AGC regulation power of the ith unit,

and the positive constant σi, βi, ψi indicates the dynamic
coefficient under the power disturbances, in which σi = ai,
βi = 2aiPGi,plan + bi, and ψi = 2 aiP2

Gi,plan + bi + ci.
For a system consisting of n AGC units, the objective

function of AGC can be written by

min  Ctotal = 〠
n

i=1
σiP

2
Gi + βiPGi + ψi

s t  ΔPΣ − 〠
n

i=1
ΔPGi = 0

ΔPmin
Gi ≤ ΔPGi ≤ ΔPmax

Gi ,

18

where Ctotal is the total actual generation cost, ΔPΣ is the total
power, and ΔPmin

Gi and ΔPmax
Gi are the minimum and maxi-

mum of regulation power, respectively.
According to the equal incremental principle, Ctotal will

reach the minimum when all partial derivatives of the gener-
ation cost to the AGC regulation power of each unit are
equal. The constraint equation is established as

dC PG1,actual
dΔPG1

= dC PG2,actual
dΔPG2

=⋯ = dC PGn,actual
dΔPGn

= ω,

19

where ω denotes the equal incremental rate of generation
costs. ω is selected as the MAS consensus variable which is
calculated as follows:

ωi = 2σi ΔPGi + βi, 20

where ωi is described as the equal incremental rate of the ith
unit generation cost.

3.3. EPCC Procedure. The execution steps of the EPCC are
shown in Figure 2.

3.4. AGC Based on EPCC. This section aims to design the
AGC based on the EPCC strategy. During each iteration,
the PDWoLF-PHC(λ) controls the current operation state
online to update the value function and Q function and then
executes an action based on the mixed strategy.

3.4.1. Reward Function Selection. In general, the absolute
value of the frequency deviation Δf can affect the long-
term benefit of the control effect and restrain the power
fluctuation, while the effect of the energy management sys-
tem to the economy is considered inside generation costs.
As a result, the weighted sum of Δf and Cinstantaneous is
chosen as the reward function, in which the greater

Table 1: Parameter values of EPCC.

Parameters Value

λ (time tunnel attenuation factor) 0.9

γ (discount factor) 0.9

α (Q-learning) 0.5

φ (variable learning rate) 0.06

𝛴 1/(s + TEV)Kp

Time delay
+

—
𝛥PDroop

s
–K

𝛥f 𝛥PEV

𝛼EV

Figure 3: Static frequency control model for electric vehicles.
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weighted sum will lead to the smaller reward. The reward
function is chosen as

R sk, sk+1, ak = − 1 − μ Cinstantaneous
50000 −μ Δf 2, 21

where Δf and Cinstantaneous represent the instantaneous
absolute values of the frequency deviations and the actual
generation costs of all units in the kth iteration, respectively.
μ and 1 − μ are the reward weighted ratios of Δf and
Cinstantaneous, where μ = 0 5.

3.4.2. Parameter Setting. In the paper, the design of the con-
trol system requires a reasonable set of four parameters λ, γ,
α, and φ. Through the repeated simulations and trial-and-
error, it proves that pretty good effects can be obtained by
setting the parameters as shown in Table 1.

4. Example Analysis

4.1. Improved IEEE Standard Two-Area LFC Power System.
Considering the rapid popularization and development
of electric vehicles (EVs), the static frequency characteris-
tic model of EVs is embedded to the traditional IEEE
standard two-area LFC model. EVs are both loads and
power supplies, whose charging power can vary between
the maximum and the minimum charge powers, so each

electric vehicle can be equivalent to a distributed power
supply.

When participating in load primary frequency modula-
tion (FM), the frequency linear droop is adopted by EVs.
When the frequency fluctuation is detected, the droop
control will change the charge and discharge power of EVs
by the frequency deviation in a certain ratio, as shown in

ΔPdroop = kp ⋅ Δf , 22

where ΔPdroop denotes the charging power of the EVs due to
the droop control change, kp is the characteristic coefficient
of EVs, and Δf is the system frequency deviation.

If the frequency of the system is automatically restored
to operate at the rated frequency, secondary regulation will
be needed, which is similar to the secondary FM of the
traditional power system. According to the integral
frequency method, the integral controller is added to the
EVs model for meeting the demand for a transient
response, and the dead zone is applied to it for avoiding
frequent discharge/charge. The EVs frequency control
model is established in Figure 3, in which the frequency
deviation integral signal is obtained after the deviation
signal passing through the integrator, and traditional unit
and EVs are distributed according to a certain proportion,
where αEV is the integral coefficient of EVs. Considering
the delay effect in the communication and control, the
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first-order inertia link is adopted to simulate the delay in
the control process of EVs, where TEV indicates the charge
and discharge time.

In order to test the control performance of the proposed
PDWoLF-PHC(λ), the improved IEEE standard two-area
LFC power system model is chosen, whose parameter set-
tings are from the literature [33]. After adding the static fre-
quency characteristic model of EVs, the frame structure of
the improved model is shown in Figure 4.

The work cycle of the AGC is 4 sec with a 20 sec time
delay Ts in the secondary FM. Note that PDWoLF-PHC(λ)
has to undergo sufficient prelearning through offline

trial-and-error before the final online operation, which
involves a mass of exploration in CPS state spaces to opti-
mize Q function and state value function. In the prelearn-
ing stage, a continuous sinusoidal load disturbance with a
period of 1200 sec and an amplitude of 1000MW is
applied to the improved model. The simulation results
of the typical prelearning procedure of the PDWoLF-
PHC(λ) controller are given by Figure 5. In Figure 5(a),
the output of the PDWoLF-PHC(λ) controller has
completely tracked the load disturbance after a trial-and-
error of about 2530 sec. In addition, Figures 5(b) and
5(c) are the CPS1/ACE index change curves for each
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10min assessment of A and B regions, which shows that
in area A, the index value of CPS1 reaches to 200% from
6600 sec and the index value of ACE keeps 0MW about
6000 sec and in area B, the index value of CPS1 remains
200% from 3000 sec and the index value of ACE keeps
0MW from 5405 sec. When the average index of CPS1/
ACE in the two regions eventually tends to a stable value,
the controller approaches a deterministic optimal strategy
and can be put into the real environment. It is obvious
that the proposed PDWoLF-PHC(λ) converges to both
regions with the best strategy for qualified CPS1 (the aver-
age of 10min CPS1) and EAVE-10-min (the average of
10min ACE).

4.2. The Islanded Smart Grid Model. As shown in Figure 6,
the islanded smart grid model which contains both distrib-
uted energy (small hydro power, wind farms, biomass,
etc.) and several typical microgrids (hybrid diesel genera-
tor-wind, hybrid micro gas-photovoltaic, etc.) has been
built, where inertia constant H and load damping coeffi-
cient D are equal to 20 sec and 1Hz, respectively.

Considering that the PDWoLF-PHC(λ) controller is used
to obtain total power command in the first stage of
AGC, the output of the controller is obtained by frequency
deviation value and regulation cost. The islanded smart
grid contains 5 hydropower units, 2 biomass units, 6
micro gas turbine units, 2 fuel cell units, 4 diesel generator
units, and other units with uncontrollable generation
power, of which total regulation power is 2760 kW.

Note that photovoltaic, wind farms, and EVs are con-
sidered disturbance loads and not included in FM, so the
model is simplified in a certain degree. The models for
small hydropower units, biomass generators, micro gas
turbines, fuel cells, diesel generators, flywheel energy stor-
age, and so on are applied according to typical models in
[34–37], respectively. The corresponding models of photo-
voltaics are built by imitating light intensity changes of the
full day in [38]; the wind farm model is established by
adopting stochastic wind of the finite bandwidth white
noise with a 3m/sec cut-in wind speed and a 20m/sec
cut-off wind speed; the model of EVs access to power grid
is selected from [33]. In addition, the relevant parameters
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Figure 6: The structure of the islanded smart grid model.
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of each unit, as shown in Table 2, are taken from the lit-
eratures [23, 24, 39]. Moreover, each regulation unit has a
corresponding agent, while connection weight bij between
agents is set as 1.

4.2.1. Prelearning of Model. Note that EPCC has to under-
take sufficient prelearning through offline trial-and-error
before the final online operation; a given continuous sinu-
soidal load disturbance (the light blue line in Figure 7(a))
is applied. The prelearning result of the islanded smart
grid model is demonstrated in Figure 7, and it is obvious
that the EPCC can converge to the optimal strategy.

Besides, in this optimal strategy, Q matrix 2 norm
Qik s, a –Qi k−1 s, a 2 ≤ ς (ς = 0 0001 is a specified pos-

itive constant) is chosen as the termination criterion for
the prelearning. Both the Q values and look-up table will
be saved after prelearning to ensure the application of
EPCC into a real power system. The deviation conver-
gence of the Q function during the prelearning process is
shown in Figure 8, in which the convergence speed of
EPCC is faster than those of other algorithms by nearly
33.9%–50.1%.

4.2.2. Step, Impulsive, andWhite Noise Load Disturbance. For
online operation mode, the step load disturbance (the light
blue line in Figure 9(a)) is introduced into the model to
simulate an often occurring sudden load increase in the

islanded smart grid, taking the 24-hour load disturbance as
the assessment period to evaluate the control performance
of the EPCC strategy.

Six types of controllers are tested: EPCC strategy, WPH
[25], PDWoLF-PHC(λ), DWoLF-PHC(λ) [18], Q(λ)-learn-
ing [32], and Q-learning [29]. Figure 9 shows the control
performances of different methods under step load distur-
bance. Figure 9(a) indicates that the EPCC strategy can
quickly track a given power curve. And Figure 9(b) pre-
sents that the overshoots of six controllers are around
2.6%, 8.3%, 2.8%, 3.3%, 4.8%, and 4.9%, respectively, while
the average of Δf is 0.0013Hz, 0.0017Hz, 0.0033Hz,
0.0065Hz, 0.0413Hz, and 0.0452Hz, respectively. Com-
pared with other smart methods, EPCC can decrease over-
shoots than that of others by 0.2%–5.7% and Δf by
0.0004–0.04Hz. It can be seen that the EPCC controller
has a significant control effect on Δf with less output fluc-
tuation, which can provide better control performance for
AGC units in the condition of reducing control costs and
the unit abrasion.

A more practical operation is considered in this study,
which can further verify the control performance of the
proposed strategy. The impulsive load disturbance (the
light blue line in Figure 10(a)) is introduced into the
islanded smart grid model to simulate a series of sudden
regular load increase and decrease, and white noise load
disturbance (the light blue line in Figure 11(a)) is

Table 2: System parameters of units used in the islanded smart grid model.

Unit type Unit number ΔPmax
Gi (kW) ΔPmin

Gi (kW)
Ci/($/h)

ai bi ci
Microgrid 1

Hydropower

G1 250 −250 0. 0001 0. 0346 8. 5957

G2 150 −150 0. 0001 0. 0335 8. 0643

G3 150 −150 0. 0001 0. 0335 8. 0643

G4 100 −100 0. 0001 0. 0314 7. 6248

Small hydropower G5 100 −100 0. 0001 0. 0314 7. 6248

Biomass
G6 200 −200 0. 0004 0. 0656 8. 7657

G7 200 −200 0. 0004 0. 0656 8. 7657

Microgrid 2

Micro gas turbine

G8 100 −100 0. 0002 0. 1088 5. 2164

G9 100 −100 0. 0002 0. 1088 5. 2164

G10 150 −150 0. 0002 0. 1164 5. 4976

G11 150 −150 0. 0002 0. 1164 5. 4976

Microgrid 3

Micro gas turbine
G12 150 −150 0. 0002 0. 1164 5. 4976

G13 150 −150 0. 0002 0. 1164 5. 4976

Fuel cell
G14 150 −150 0. 0003 0. 1189 3. 5442

G15 150 −150 0. 0003 0. 1189 3. 5442

Microgrid 4

Diesel generator

G16 120 −120 0. 0004 0. 2348 10. 9952

G17 120 −120 0. 0004 0. 2348 10. 9952

G18 120 −120 0. 0004 0. 2348 10. 9952

G19 120 −120 0. 0004 0. 2348 10. 9952
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employed to simulate stochastic load disturbance after
unknown distributed energy accessing into. The output
of each unit is controlled by its own governor and control-
ler, of which the set value is obtained according to the
optimal allocation principle.

In the assessment period with 24-hour load disturbance,
six types of controllers are tested: EPCC strategy, WPH,

PDWoLF-PHC(λ), DWoLF-PHC(λ), and Q(λ)-learning,
and Q-learning.

Figures 10 and 11 show the controller output curves and
frequency curves of different methods under impulsive load
disturbance and white noise load disturbance, respectively.
As shown in these two graphs, compared with other
methods, the EPCC strategy can track impulsive load

−1000

0

1000

EP
CC

0 5000 10000 15000
−1000

0

1000

Q
(𝜆

)

Time (sec)

−1000

0

1000

D
W

oL
F-

PH
C(

𝜆
) −1000

0

1000

W
PH

0 5000 10000 15000
−1000

0

1000

Time (sec)

Q

−1000

0

1000
C

on
tro

lle
r o

ut
pu

t (
kW

)

PD
W

oL
F-

PH
C(

𝜆
)

(a) The controller output of different methods and given sinusoidal load disturbance

49.5

50

50.5

EP
CC

49.5

50

50.5

Fr
eq

ue
nc

y 
(H

z)

PD
W

oL
F-

PH
C(

𝜆
)

0 5000 10000 15000
49.5

50

50.5

Q
(𝜆

)

Time (sec)

49.5

50

50.550.5

W
PH

49.5
50

50.5

D
W

oL
F-

PH
C(

𝜆
)

0 5000 10000 15000
49.5

50

50.5

Time (sec)

Q

(b) The system frequency of different methods

Figure 7: The prelearning performance under sinusoidal load.

0

0.05

0.1

Q
 fu

nc
tio

n 
di

ffe
re

nc
e

PD
W

oL
F-

PH
C(

𝜆
)

0 5000 10000 15000
0

0.05

0.1

Q
(𝜆

)

Time (sec)

0

0.05

0.1

W
PH

0
0.15

0.1
0.15

D
W

oL
F-

PH
C(

𝜆
)

0

0.05

0.1

EP
CC

0 5000 10000 15000
0

0.05

0.1

Time (sec)

Q

Figure 8: The convergence of different methods obtained during the prelearning.

11Complexity



disturbances and white noise load disturbances more quickly
and accurately and has small output fluctuations, good stabil-
ity, and accuracy.

In addition, considering Δf , if 50± 0.2 is selected as the
operating frequency range of the islanded smart grid, the
evaluation of the frequency index of the different algorithms
under impulsive load disturbance and white noise load dis-
turbance is shown in Table 3. From the data in the table, it
can be seen that compared with other methods, EPCC signif-
icantly reduces the average value of Δf under impulsive
load disturbance, and the qualification rate increases by
4.52% to 11.09%. The average value of Δf in EPCC
under white noise load disturbance is decreased by
0.0005–1.6484Hz, and the maximum value is decreased
by 0.0404–90.8175Hz. The standard deviation is decreased
by 0.0023–1.2359Hz, and the frequency qualification rate
is increased by 2%–64%. It is further proved that EPCC
has optimal control performance under load disturbance
conditions, as well as faster dynamic optimization speed
and stronger robustness.

4.2.3. Stochastic Load Disturbance.A real-time simulation of
24-hour stochastic load is conducted in the islanded smart
grid model, in which the stochastic load disturbance

consisting of square wave, wind farms, photovoltaics, and
electric vehicles can be regarded as a square stochastic
load with a cycle of 3600 sec and a disturbance amplitude
smaller than 2000 kW.

The active power of wind farms, photovoltaics, and EVs
produced during 24 hours is shown in Figure 12(a).
Figure 12(b) illustrates that the total active power can
accurately and quickly track the load disturbance. Note that
the peak of AGC active power is used to balance the stochas-
tic power disturbance of wind farms, photovoltaics, and EVs.
The 24-hour power regulation for each type of AGC is given
by Figure 12(c). It can be seen from the figure that for a
positive disturbance, small hydropower plants and micro
gas turbines with low regulation cost will be regulated posi-
tively at first; otherwise, biomass units and diesel generators
with high regulation cost will be regulated negatively at first.
Due to the output power of the AGC unit, the principle of
equal increment is met. Therefore, each unit can achieve
the economic dispatch.

For further verification of the application of EPCC, the
simulation comparison of the WPH [25], gray wolf
optimizer (GWO) [40], PROP method [41], quadratic pro-
gramming (QP) [42], and genetic algorithm (GA) [43] has
been made here.

900

1000

EP
CC

900

1000

W
PH

900

1000
C

on
tro

lle
r o

ut
pu

t (
kW

)

PD
W

oL
F-

PH
C(

𝜆
)

900

1000

D
W

oL
F-

PH
C(

𝜆
)

0 40000 80000

900

1000

Time (sec)

Q

0 40000 80000

900

1000

Time (sec)

Q
(𝜆

)

(a) The controller output of different methods and given step load disturbance

49.9
50

50.1

Fr
eq

ue
nc

y 
(H

z)

PD
W

oL
F-

PH
C(

𝜆
) 49.9

50
50.1

EP
CC

49.9
50

50.1

D
W

oL
F-

PH
C(

𝜆
)

49.9
50

50.1

W
PH

0 40000 80000

49.9
50

50.1

Time (sec)

Q

0 40000 80000

49.9
50

50.1

Time (sec)

Q
(𝜆

)

(b) The system frequency of different methods during step load disturbance

Figure 9: The control performance of different methods during step load disturbance.

12 Complexity



The generation costs of different algorithms and the
24-hour total power generation cost are represented in
Figure 13. As shown in Figure 13(a), the generation costs
of PROP are the highest among the six algorithms while
those of EPCC are the lowest. In Figure 13(b), the EPCC
can save about $8878 than that of PROP.

Consequently, the EPCC has better adaptability and self-
learning capability than other algorithms in various opera-
tion conditions, especially when the system is affected by
the stochastic load disturbance. Based on the application of
both joint decision actions and historical state action, EPCC
uses the condition that the product of the decision change
rate and the decision space slope value is less than 0 to design
variable learning rate, so that win-loss judgment criterion can
be calculated easily by EPCC without knowing the equilib-
rium strategy. This rate can adapt to the learners’ learning
rate of the instantaneous location in the joint strategic space,
so cooperative control for the islanded smart grid model can
be obtained.

Moreover, it is easy to obtain a related weight of each
unit, which can dynamically update its Q function look-up
table by experience sharing, so that the controller can
properly and timely regulate its mixed strategy table to obtain
the total optimal control performance. The real-time
information interaction among multiagents ensures the

convergence speed and robustness of the algorithm. The
experimental results verify that the utilization rate of distrib-
uted energy has been effectively increased with reduced
generation costs.

5. Conclusion

The contribution of this paper can be summarized as follows.
Considering the basic theory, mixed homogeneous and

heterogeneous MAS-SCG problem is solved by the proposed
EPCC strategy and the multisolution problem due to explo-
sion in the number of agents is solved too. From an engineer-
ing application, the strategy can acquire the total optimal
power command and dynamic optimal dispatch, so the dis-
turbance caused by the access of large-scale distributed
energy into power grid can be handled.

Based on the MAS-SG principle, a novel PDWoLF-
PHC(λ) algorithm with new win-loss criterion along with
the time tunnel idea is proposed to solve the agent problem
without a strict knowledge system in comparison to the tra-
ditional MAS-SG system and also solve inaccurate calcula-
tion and slow convergence to Nash equilibrium under the
traditional MAS-SG win-loss criterion in 2× 2 game. And
its effectiveness is verified by simulation on the improved
IEEE standard two-area LFC power system model.
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When multimode disturbances such as step, impulsive,
and white noise disturbances are introduced to the
islanded smart grid model, compared with other smart
methods, the proposed EPCC strategy has a faster

convergence speed and can significantly improve the
robustness and adaptability of the islanded smart grid, to
increase the qualification rate of frequency assessment
and decrease the cost of power generation.
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Figure 11: The control performance of different methods during white noise load disturbance.

Table 3: Frequency index assessment under impulsive load disturbance and white noise load disturbance.

Type of disturbances Algorithms
Frequency index

Average value
(Hz)

Maximum value
(Hz)

Standard deviation
(Hz)

Qualification rate
(100%)

Impulsive load disturbance

EPCC 0.0341 0.6147 0.0058 94.24

PDWoLF-PHC(λ) 0.0476 0.6145 0.0030 89.72

WPH 0.0512 0.6677 0.0015 89.43

DWoLF-PHC(λ) 0.0521 0.6573 0.0020 89.14

Q(λ) 0.0733 0.6973 0.0375 86.71

Q 0.1439 1.9009 0.0272 83.15

White noise load disturbance

EPCC 0.0042 0.3736 0.0006 99.96

PDWoLF-PHC(λ) 0.0047 0.4140 0.0029 99.94

WPH 0.0055 0.4144 0.0046 99.91

DWoLF-PHC(λ) 0.0074 0.4728 0.0029 99.81

Q(λ) 0.0091 0.6193 0.0032 99.48

Q 1.6531 91.1911 1.2365 99.32
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