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The well-known “Bertrand paradox” describes a price competition game in which two competing firms reach an outcome where
both charge a price equal to the marginal cost. The fact that the Bertrand paradox often goes against empirical evidences has
intrigued many researchers. In this work, we study the game from a new theoretical perspective—an evolutionary game on
complex networks. Three classic network models, square lattice, WS small-world network, and BA scale-free network, are used
to describe the competitive relations among the firms which are bounded rational. The analysis result shows that full price
keeping is one of the evolutionary equilibriums in a well-mixed interaction situation. Detailed experiment results indicate that
the price-keeping phenomenon emerges in a square lattice, small-world network and scale-free network much more frequently
than in a complete network which represents the well-mixed interaction situation. While the square lattice has little advantage
in achieving full price keeping, the small-world network and the scale-free network exhibit a stronger capability in full price
keeping than the complete network. This means that a complex competitive relation is a crucial factor for maintaining the price
in the real world. Moreover, competition scale, original price, degree of cutting price, and demand sensitivity to price show a
significant influence on price evolution on a complex network. The payoff scheme, which describes how each firm’s payoft is
calculated in each round game, only influences the price evolution on the scale-free network. These results provide new and

important insights for understanding price competition in the real world.

1. Introduction

The well-known “Bertrand paradox” describes a game sit-
uation in which two firms engage in price competition in
a static setting [1]. They sell a homogeneous good and
have identical unit costs. The outcome is that both charge
a price equal to the marginal cost. The game is called a para-
dox because the two firms could easily earn positive profits by
charging a higher price. It has been studied by many
researchers, indicating that some reasonable modifications
to the Bertrand setting indeed resolve the paradox. Firstly,
within the homogeneous-good framework, the Bertrand
paradox can be resolved by introducing capacity constraints
[2], sluggish consumers [3], the endogenous choice of pro-
duction technologies [4], or the endogenous timing of price
decisions [5]. Furthermore, differentiation [6, 7], uncertainty

with respect to demand [8, 9] or product quality [10, 11], and
nonconstant unit cost [12-15] are found to be the important
factors for eliminating the Bertrand paradox. Thirdly, many
works in laboratory settings focus on the oligopoly competi-
tion but do not observe the Bertrand equilibrium. This can
be mainly attributed to the relaxation of the assumption
regarding the rationality of economic agents in the labora-
tory environment [16-18].

Recently, the studies about the evolutionary game on
complex networks reveal that topological structures can
directly influence the evolution equilibrium of the game.
In a pioneer work, Nowak and May introduced a two-
dimensional spatial lattice, that is, a square lattice, to analyze
the evolution of a prisoner’s dilemma game (PDG) [19]. They
observed a remarkable cooperation level in this noncoopera-
tive game. Following this work, a wealth of studies provides
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additional evidence for the positive effect of various spatial
lattices on cooperation in PDG [20-24]. Starting from the
discovery of the small-world network [25, 26] and scale-
free network [27], many studies about the evolution of
PDG on these two network styles have emerged [28-32].
Furthermore, other game models, such as the snowdrift
game, public good game, and stag hunt game, have been
introduced to characterize different game situations among
players. The studies about the evolution of these games on
the small-world network and scale-free network yield abun-
dant outcomes [33-38].

Inspired by the above works, we attempt to explore the
Bertrand game from a new theoretical perspective—an evo-
lutionary game on complex networks. The justification of
such a perspective lies in two aspects. First, firms in the real
world are bounded rational, but not complete rational. Huck
et al. provided experimental tests for various learning theo-
ries in Bertrand games and concluded that firms imitate
the most successful behavior [39, 40]. This is evidence of
the bounded rationality of firms facing a price decision in
the real world. Second, the previous works find that compet-
itive relations of firms in the real world have typical structural
properties of complex networks [41-43]. Integrating the two
aspects, we confirm that the evolutionary game theory on
complex networks is suitable to study the price competition
problem of bounded rational firms which have complex
competitive relations.

To this end, some modifications to the Bertrand model
are inevitable. Firstly, the evolutionary game theory studies
the strategy evolution of large populations who are bounded
rational [44, 45]. Then, “two complete rational players” in a
static setting should be modified as “a lot of bounded rational
players” in an evolutionary dynamic setting. Furthermore,
the interactions between players are supposed to happen at
random in the evolutionary game theory, that is, the players
interact in a well-mixed situation [44, 45]. Also, while the
complex network is introduced, the interaction of firms
should be based on the complex competitive relations. We
study price evolution under these new modifications. This
is the first work that understands the price competition prob-
lem with the consideration of competition relations among
the firms who charge the price. Our study explores the emer-
gence of price keeping and identifies the positive effect of a
complex competition relation on price keeping. Some impor-
tant economic factors which influence the price evolution are
also found and analyzed.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the model. Section 3 presents the theoretical
analysis. Section 4 provides the simulation results and expla-
nations. Section 5 summarizes our findings and concludes
the paper.

2. The Evolution of the Price Competition Game
on Complex Networks

As the first attempt of exploring the price competition prob-
lem from the theoretical perspective of the evolutionary game
on complex networks, three widely applied network models
are used to characterize the competitive interactions between
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firms, namely, square lattice [19], WS small-world network
[25, 26], and BA scale-free network [27]. The average con-
nectivity among WS networks and BA networks is set as four
which is identical to that of a square lattice. Each node in net-
works is occupied by a firm. Each edge defines a competitive
relation between two firms.

Based on the Bertrand model, the payoft 7;(p;, p;) of firm
i who has a competitive relation with firm j depends on their
prices p; and p;. That is

(p;i = C) - D(p;)

2 5 lfpl =Pj>
TT; (Pian) ) :=C)-D(py), ifp; <P g
0, ifp;>p;

where C is the constant unit cost and D(p;) is the demand
function which generally has an expression D(p,) =a —u - p;.
In the expression, a is the maximum of demand quantity
while p, =0 and u(u > 0) are the slope of demand function
which indicates the sensitivity of demand to price. Without
losing the generality, we set the constant unit cost as C=0
such that the model is simplified. Accordingly, the payoft
m(p;»p;) becomes

c(a—u-p, .

M, lfpi:pj’
ﬂi(pi’pj)z pi-(a—u-p), ifp,<p, (2)

0, ifp,'>Pj'

Under the framework of the evolutionary game theory,
firms are bounded rational and thus have no capability to
make the perfect decision of setting the price at marginal
cost. They just make a simple decision: keep the original price
p(p>0) or cut the price to p*(p* = Ap,1 > 1 >0), where A is
the degree of price cutting.

All firms simultaneously decide what prices they should
offer. Each firm uses the same price for all of its competitive
relations, that is, for all of its neighbor firms. The payoft of a
firm can be measured by two payoff schemes: accumulated
payoff or average payoff. It is worth mentioning that under
different payoft schemes, the effects of scale-free networks
on cooperation are different accordingly [31, 46-48]. There-
fore, the payoff scheme is one of the important factors to be
examined in the current work.

Price evolution is carried out implementing the rule of
imitate best. In the previous studies of the evolutionary
game on complex networks, various imitation rules are
provided, such as imitate best [46, 49-51], imitate better
with probability [46, 52-54], and imitate better with prob-
ability and error [46, 55, 56]. Here, we use the rule of imitate
best, because the work of Huck et al. provides experimental
evidence that firms imitate the most successful behavior, that
is, the best one [39, 40].

The above price competition game and evolution mecha-
nism can be described more specifically as follows. In each
round of the game, that is, at each game time ¢, each firm
offers a price p;,. The payoff of a firm at game time ¢ is
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TaBLE 1: Order of R, S, T, and P and the corresponding evolutionary equilibrium.

Range of A Range of 8 Order of R, S, T, and P Evolutionary equilibrium
151205 B>1+A T>R>P>S Full price cutting
1+A>B>1 T>P>R>S Full price cutting
1+A>B>1 T>P>R>S Full price cutting
0.5>1>0 (1-2A%)/(1=21)>B>1+A T>R>P>S Full price cutting
B>1-21%1-2A R>T>P>S Full price cutting or full price keeping

calculated by accumulated payoft or average payoff. Under
the accumulated payoff scheme, the payoff U;, of firm i is
the sum over all interactions of its neighbor firms, and can
be written as U;, = Y0 7;,(p;, Pj,)> Where € is the set of
neighbor firms of i. Under the average payoft scheme, the
payoft U;, of firm i is obtained by dividing the accumulated
payoff by the number ng of its neighbor firms, that is,
Uis = Xjea, i (03P ) g, After all firms obtain payoffs in
game time ¢, they update prices simultaneously. When firm
i updates its price, it compares the payofts between itself
and all of its neighbor firms and adopts the price that yields
the highest payoft in game time t. After all firms have
updated their prices, the next game time ¢ + 1 begins.

3. Analysis

According to payoff function (2), for each pair of firms who
have a competitive relation, they both receive p(a — up)/2
upon mutual price p, or p*(a—u-p*)/2 upon mutual price
p*. One offering price p* receives an amount p*(a — up*)
while the other offering price p receives 0 payoft. Such a
price-competitive situation can be described by payoff matrix
M,. That is

*

p p
p(a—up)
A\ £ 0
3
M = p 2 . (3)
* . B *u_u*
P amupty EOZHD)

According to the evolutionary game theory, the relative
order of four elements of payoft matrix M, can lead to differ-
ent evolutionary equilibriums [57, 58]. Denoting four payofts
in the matrix M, respectively, as R=p(a—up)/2, T =p*(a
—up*), P=p*(a—u-p*)/2, and S=0, the relative order of
matrix elements R, S, T, and P is analyzed in the following:

(1) Since the parameters satisfy p>0, u>0, a>up,
p* =Ap, and 1> A >0, the order “R, T, P > §” is sup-
ported. Besides, P =1/2T indicates T > P. It follows
that “The orderR > S, T > P > Sis supported.”

(2) Given R>T, p(a—up)/2>p*(a—up*), denoted as
inequality (1), is supported. Since a > up, we can set
a=Bup(f>1). Then, inequality (1) transforms to
(B-=1)up?* >2A(B-A)up?, denoted as inequality
(2). Furthermore, since up? > 0, inequality (2) trans-
forms to (1) >2A(B-A), denoted as inequality

(3). It follows that B(1—21)>1-2A% denoted as
inequality (4), is supported.

While 1> A > 0.5, inequalities (1 —21) <0 and (1 -
21) <1-2)* are supported. Besides, since > 1,
inequality B(1 —2A) < (1 —2A) is supported. Accord-
ingly, B(1-2A) < 1-2A% denoted as inequality (5),
is supported. However, inequality (5) contradicts
with inequality (4), indicating that “Whilel > A >
0.5,T > R is supported.”

While A=0.5, (8-1) <2A(8 - A) is supported. This
contradicts with inequality (3), indicating that
“While A=0.5,T > R is supported.”

While 0.5> A >0, (1 —2A) > 0 is supported. Inequal-
ity (4) transforms to > (1-2A*)/(1-2A1). This
means that “While0.5 > A > 0,R> Tis supported iff3
> (1-2A%)/(1 - 2A); otherwise, T > Ris supported.”

(3) Given R> P, p(a—up)/2>p*(a—up*)/2, denoted as
inequality (6), is supported. With a = fup and p* = A
p, inequality (6) transforms to (1 — 1) > 1 — A?. Since
1-1>0, B>1+Aissupported. Thus, “Whilefs > 1 +
AR > Pis supported; otherwise,P > Ris supported.”

With the above analysis results, we obtain the order of R,
S, T, and P in Table 1 and present the corresponding evolu-
tionary equilibriums. Full price cutting and full price keeping
mean that all firms offer price p* and price p, respectively.

It can be seen in Table 1 that under the parameter
condition 0.5>A>0 and B> (1-2A%)/(1-2A), the order
R>T>P>S is supported and full price keeping emerges
as one of the evolutionary equilibriums. Depending on the
initial fraction of firms offering price p, the price competition
system will converge to different evolutionary equilibriums.
If the initial fraction f,(0) of firms offering price p is greater
than x*(x*=(P-S)/(R-T-S+P)), that is, f,(0)>x",
the system will converge to full price keeping. In reverse,
if f,(0) <x”, the system will converge to full price cutting.
Obviously, there is a critical phenomenon about the price
evolutionary equilibrium.

In the study of the evolutionary game on complex
networks, a complete network represents the random inter-
actions in a well-mixed situation [32]. Then, the above
critical phenomenon should be found by implementing
the price competition game on complete networks. For the
competitive interactions described by a square lattice,



TaBLE 2: Summary of model parameters for simulation experiment.

Values used in

Parameter Description experiments
N Competition scale 1000 > N > 50
p Original price 1000=p=>1
P’ Cutting price p>p >0

u Slope of demand function 10>u>0

a The maximum of demand 1000up > a > up

small-world network, and scale-free network, the current
model is analytically intractable. Thus, in Section 4, we
adopt an experimental approach to study its behavior,
and analyze the effects of different parameters on price evolu-
tion. As a verification of the theory analysis and a necessary
comparison to a square lattice, small-world network, and
scale-free network, the results on a complete network are
also provided.

4. Simulation Results and Discussion

All the parameters in our model and their associated ranges
for simulation experiments are summarized in Table 2. The
justification for such a setting is as follows. First, in the liter-
ature studies about social dilemmas on complex networks,
such as the prisoner’s dilemma game, snowdrift game, and
public good game on complex networks, each node in net-
works represents a person, and the node number is usually
set as 5000 or 10,000. In our model, however, the nodes
represent the firms. It is rare in the real world that so
many firms engage in price competition for a homoge-
neous product. Therefore, we set a firm number as 1000
> N > 50, which reflect the appropriate competition scales
in the real world. Second, the original price p is greater
than 0, but we cannot examine an infinite p in a simula-
tion experiment. As such, we set it as 1000 > p > 1, which
is wide enough to explore its effect on price evolution.
Similarly, parameters u and a are set as 10>u>0 and
1000up > a > up, respectively.

In all simulations, the initial prices (p or p*) are randomly
assigned among all firms with equal probability, and no ini-
tial advantage is given to price p or p*. Accordingly, the fre-
quency f,(t) of firms keeping original price p among all
firms at game time ¢ for the initial state is about 0.5 (i.e., f,
(0) =0.5). Then, the price evolution proceeds according
to the model described in Section 2, so that the frequency
f,(t) changes continually. We monitor the value of f,(f)
at each time step. If the value stays unchanged after 50
time steps, the simulation stops and the final value represents
the frequency F, of firms keeping the original price in equi-
librium state. Otherwise, the simulation runs for 11,000 time

steps, and F, is obtained by averaging the frequency f,(t)
over the last 1000 time steps, that is, F, =1/1000, z}jﬁgﬁgm
f p(t). In what follows, F/, is referred to as “the density of price

keeping” for short.
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4.1. Emergence of Price Keeping. In Figure 1, we show the
probability distribution of the density of price keeping
(ie., Fp) based on 20,000 simulations on a complete network,
small-world network, scale-free network, and square lattice,
respectively. In each simulation, the accumulated payoff or
average payoff is randomly indicated, and the parameters
(N,p,p*,u,and a) are generated by randomly sampling
them from their associated ranges.

An outstanding feature of the distribution in Figure 1 is
that there are four large spikes. The first one is at F, =0,

which corresponds to the solution of the Bertrand model,
that is, the equilibrium state of full price cutting. The proba-
bilities here indicate that the price-keeping phenomena
emerge in 37%, 59%, 87%, and 100% of all the simulation
realizations for the complete network, small-world net-
work, scale-free network, and square lattice, respectively.
The second one is at F, =(0,0.1], which means that only

no more than 10% of firms keep the price. The probabil-
ities here indicate that the small-world network, scale-
free network, and square lattice are prominent for price
keeping in a fierce competition environment. The third
one and the fourth one are at F,=(0.9,1) and F,=1,
respectively. The probabilities here indicate that while the
square lattice has little advantage to achieve full price
keeping, the small-world network and scale-free network
exhibit a stronger capability to facilitate full price keeping
than the complete network.

Based on the above results, we know that although the
price-keeping phenomena emerge in four different network
styles, the small-world network and scale-free network are
more beneficial for price keeping than the complete network
and square lattice. The complex competitive relation net-
works in the real world generally have a small-world prop-
erty and scale-free degree distribution at the same time
[41-43]. Therefore, the results in Figure 1 demonstrate the
positive effect of complex competitive relation networks on
price keeping.

The above results are derived from the combination of all
parameters (N, p, p*, u,and a) and two payoft schemes. In
the following subsections, we make further exploration on
the effects of different parameters and payoft schemes on
price evolution. Using Monte Carlo (MC) simulations, we
calculate the average level of density F,. Each data point of
F, in the following results is the average of 100 densities of

F, for the same simulation parameter.

4.2. Effects of Payoff Scheme and Competition Scale on Price
Evolution. Under the two different payoft schemes, we first
explore the level of density F, as a function of competition
scale (N), that is, the number of firms in a competitive envi-
ronment. The results are shown in Figure 2.

It can be observed in Figures 2(a)-2(h) that under two
different payoff schemes, density F, is nearly kept unchanged
on the complete network, small-world network, and square
lattice, but it changes significantly on the scale-free network.
More specifically, for the high price cutting (i.e., (a), (b), (e),
and (f)), the density F, on the scale-free network under the
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F1GURE 1: Probability distribution of the density of price-keeping F, on four different network styles.

average payoft is higher than that under the accumulated
payoft. Nevertheless, for the low price cutting (i.e., (c), (d),
(g), and (h)), the situation is reversed. Such a result confirms
the previous finding that the evolutionary dynamics on the
scale-free network is affected by payoff schemes [31, 46—
48]. The main reason is that the game payoffs of hub nodes
in the scale-free network are noticeably different under dif-
ferent payoft schemes. Figure 3 shows the payoffs of firms
with different degrees on scale-free networks during the
dynamic evolutionary process under two different payoft
schemes. The data with different marks in Figures 3(a) and
3(b) come from 10 different simulation experiments. It is
clear that, under an accumulated payoff scheme, the game
payoffs of hub nodes are much higher than those of low
degree nodes, but under an average payoff scheme, hub
nodes have little advantage in obtaining high game payofts.
According to the price evolutionary mechanism described
in Section 2, game payoff is a crucial factor in the imitation
behaviors of firms. Therefore, such a change in game payoft
of hub nodes inevitably results in different imitation dynam-
ics and evolutionary results.

Moreover, in Figures 2(a)-2(h), a common tendency is
that density F, increases with competition scale N except
for extremely fow values (F, —0) or high values (F, —1).

Such a result is consistent w1th the finding obtained in the lit-
erature where individuals play PDG on adaptive networks
[59], and it is indicated that a big competition scale is benefi-
cial for price keeping in a competition environment.

Based on the above results, we attempt to specify the
effects of the other four parameters (p, p*, u, and a) on price
evolution under three levels of competition scales, that is,
low, middle, and high scales. For the scale-free network,
we provide the results under two different payoff schemes.
For complete networks, small-world networks, and square

lattices, we present the results under an accumulated payoft,
but verify the results under an average payoft.

4.3. Effects of Price Cutting p* and Demand Quantity a
on Price Evolution. Figure 4 shows the effects of price
cutting p* and demand quantity a on price evolution
along the p*-axis and a-axis, respectively.

It can be seen in Figure 4 that under different competition
scales and payoff schemes, density F, decreases with p* on
four network styles, and a high level of F, is achieved when
p* is low. This means that it is easier for the price competition
system to maintain the original price while the price cutting
behavior of some firms is more severe at the beginning.
However, the effect of demand quantity a on density F,
is not significant. Besides, a critical phenomenon predicted
by theoretical analysis in Section 3 appears at p* =3,4 in
complete networks with N =500 and N =1000 except for
the demand quantity a=10. We understand the above
experiment results based on the following reasoning.

Firstly, according to the theoretical analysis in Section 3,
the price evolutionary equilibrium depends on the initial
fraction f,(0) and the value of x*. In our simulation experi-
ment, the initial fraction f,(0) = 0.5. Therefore, the value of
x* is crucial for the evolutionary results. With R = p(a — up)/
2, T=p*(a—up*), P=p*(a—u-p*)/2, S=0, a= Pup, and
p* =Ap, the equation x* =(P-S)/(R-T—-S+P)=P/(R-
P)=(MB-N)up®)/((B-1)up® — A(B— A)up?) is supported.
In Figure 4, the effects of p* and a on the density of price-
keeping F), are investigated by fixing p and u at p=10 and
u=0.1. Then, the value of x* is just decided by S(f>1)
and A(1>A>0), that is, x* =A(f-A)/((B-1) - A(B-A)).

We show the relation between x* and f3, A in Figure 5.
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F1GURE 2: Density of price keeping, F,,, as a function of competition scale N for specific parameter combinations (a) p=1,p* =0.3,and
a=10up, (b) p=1,p* =0.3,anda =1000up, (c) p=1,p* =0.7,and a=10up, (d) p=1,p* =0.7,and a=1000up, (e) p=1000, p* =300,
and a = 10up, (f) p=1000,p* =300,and a=1000up, (g) p=1000,p* =700,and a=10up, and (h) p=1000,p* =700, and a =1000up.
For all the cases, the slope of the demand function is set as u = 1. Note that for the competition scales N = 50~1000, the number of firms
on the square lattice are N =49, 100, 186, 289, 400, 484, 576, 676, 784, 900, and 1024, and the corresponding dimensions of the square
lattices are 7, 14, 17, 20, 22, 24, 26, 28, 30, and 32, respectively.
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It can be seen in Figure 5 that x* increases with A, but
hardly changes with 3. As such, while p* increases, the value
of A increases, and x* increases accordingly. This means that
for a given f,(0) = 0.5, the price keeping is more difficult to
achieve under a higher p*. Thus, it can be seen from
Figure 4 that the density of price-keeping F, decreases
with p*. On the other hand, with the increase of a, the value
of 3 increases, but the value of x* is not affected. As a result,
although the value of a increases significantly, the density of
price-keeping F, nearly stays the same.

Secondly, in Table 3, we list the values of x* for p* = 3,4
(i.e., A=0.3,0.4), where a critical phenomenon of F, is
observed in complete networks with N =500 and N = 1000
in Figure 4. All data are accurate to three digits after the
decimal point.

It can be seen in Table 3 that while p* changes from
p* =3 to p* =4, the values of x* change from x* < 0.5 to
x* > 0.6. Based on the analysis in Section 3, it can be obtained
that if the initial fraction f,(0) =~ 0.5 is less than x, full price
cutting is the evolutionary equilibrium. Then, p* >4 corre-
sponds to x* > 0.6, and thus f,(0) <x" is inevitable in 100
repeated simulation experiments. As a result, full price cut-
ting is achieved on complete networks for p* > 4. Inversely,
while p* =3, the value of f,(0) = 0.5 is larger than x*, full
price keeping is the evolutionary equilibrium according to
the theoretical analysis. However, for the demand quantity
a = 10, the value of f,(0) = 0.5 is close to x*. Then, it is pos-
sible that f,(0) <x* happens several times in 100 repeated
simulation experiments. As a result, in Figures 4(b) and
4(c), we observe a high level of density of price keeping, but
not full price keeping for p* =3 anda = 10. In Figure 4(a),
the anticipated full price keeping is not achieved for p* = 3.
The discrepancy can be attributed to the difference in compe-
tition scale. The theoretical analysis in Section 3 is suitable for
a large competition scale, which is difficult to be satisfied for
N =50 in Figure 4(a).

4.4. Effects of Original Price p and Demand Slope u on Price
Evolution. According to the results in Section 4.3, demand

quantity a has little effect on price evolution. Therefore, in
this experiment it is fixed as a = 1000, which is large enough
that D(p;) =a —u - p, > 0 can be satisfied while the values of
parameters p and u change. Then, we choose Figures 4(a),
4(e), 4(i), 4(k), and 4 (o) to make a further experiment explo-
ration, which covers three competition scales, four network
styles, and two payoff schemes. For each subgraph, we set
p*=3,4,5, which covers the main characteristics of F,
shown in Figure 4.

Figure 6 shows the effects of original price p and
demand slope u on price evolution along p-axis and
u-axis, respectively.

It can be seen in Figure 6 that under different competition
scales and payoff schemes, both original price and demand
slope have significant influence on the density F, on four
network styles. For the low demand slopes (e.g., u <25),
F, increases with p, and a high level of F), is achieved when
p is high. Nevertheless, for some higher slope values of u,
F,, increases with p at the beginning and then decreases with
it. If the slope u is extremely high, it is difficult for the whole
system to keep the price. Besides, F, decreases with demand
slope u for various original prices p. We understand these
results in the following.

Firstly, with R=p(a—up)/2, T=p*(a—up*), P=p"
(a—u-p*)/2, S=0, the equation x* =p*(a—up*)/p(a—u
p)—p*(a—up*) is supported. While parameters p*, a, and
u keep invariable, the numerator p*(a — up*) is constant
and greater than 0. Then, the value of x* is just decided by
the denominator p(a—up) — p*(a— up*). For the function
y=p(a—up)—-p*(a—up*), differential coeflicients dy/dp =
a—2up and d*y/dp* = —2u are supported. Since u >0, d*
yldp* <0 is supported. Then, the function y = p(a — up) —
p*(a—up*) is convex with the parameter p, and its
maximum is achieved while p =a/2u. Accordingly, x* =
pr(a—up*)/(p(a—up)—p*(a—up*)) is concave with p and
its minimum is achieved while p = a/2u. Then, for a given
initial fraction f,(0) ~ 0.5, the density of price-keeping F), is
convex with p, that is, F, increases with p initially, peaks at
p =al2u, and then decreases with it. Such an analysis result
is verified by the experiment data of F,, for some slope values
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TaBLE 3: Values of x* for price cutting p* =3, 4.
;* 10 100 200 300 400 500 600 700 800 900 1000
3 0.478 0.433 0.431 0.430 0.430 0.429 0.429 0.429 0.429 0.429 0.429
4 0.744 0.673 0.670 0.669 0.669 0.669 0.668 0.668 0.668 0.667 0.667

of u>25 in Figure 6. For the slope values less than 25, we
cannot observe such a theoretical analysis result. This can
be reasonably explained as follows. While the value of u is
low, the value of p = a/2u is high. Accordingly, F,, increases
with p under a broad range of p. Thus, for the low values of
u in Figure 6, the only observation is the increase of F, with
p- In order to verify such an explanation, we make further
simulation experiments for the low values of u < 25. With
the continuously increased value of p, we indeed find the
decrease of F,, with p.

Secondly, we transfer the equation x* =p*(a—up*)/
(pla—up) —p*(a—up*)) to x*=(alp” —u)/(a(p-p*)/p*
—u((p* —p**)/p*?)). While parameters p*,a,and p keep
invariable, a/p*, a(p — p*)/p*?, and (p* — p**)/p*? are all con-
stant.GivenA = a/p*,B=a(p — p*)/p**,andC = (p* — p**)/p*?,
we transfer x* = a/p* — ul(a(p — p*)Ip** — u((p* — p**)/p*?))
tox* = (A—u)/(B-Cu)=1/C(1+ (AC - B)/(B - Cu)).Since
1/C is constant, the value of x* is decided by (AC - B)/
(B—Cu). Furthermore, the numerator AC—B=(ap* -
app*)/p*? is constant and greater than 0, and then the value
of x* increases with the demand slope u. As a result, for a
given initial fraction f,(0) =~ 0.5, the density of F, decreases
with demand slope u, as observed in Figure 6. This means
that if the demand of a product is sensitive to price change,
it is difficult for all the firms to keep the original price.

5. Conclusions

The evolutionary game is the theory of dynamic adaption
and learning in repeated games played by bounded rational
players. It is one of the key paradigms behind many scientific
disciplines from biology to behavioral sciences to econom-
ics. When the interacting players in a game are linked in a
specific complex network style, the evolutionary game on
complex networks, which integrates the evolutionary game

theory and complex network theory, provides an effective
method to obtain the solution of the game.

In this work, based on the Bertrand model, we study the
price competition problem from the perspective of the evolu-
tionary game on complex networks. To the best of our
knowledge, this is the first work that attempts to understand
the price competition problem under the consideration of the
complex competition relations among the firms who charge
the price. We find that once the firms are considered as a
bounded rationality and just make a simple decision on keep-
ing the price or cutting the price, full price keeping is one of
the evolutionary equilibriums. More importantly, the price-
keeping phenomenon emerges in the small-world network,
scale-free network, and square lattice much more frequently
than in the complete network. In the fierce competition envi-
ronment where more than 90% of the firms cut their price,
the small-world network, scale-free network, and square lat-
tice are a prominently beneficial example for the other less
than 10% of the firms to keep the price. While the square lat-
tice has little advantage to achieve full price keeping, the
small-world network and scale-free network exhibit a stron-
ger capacity in full price keeping than the complete network.
These results indicate that the complex competition relation
among firms is a crucial factor to maintain the price in the
real world. Besides, competition scale, original price, degree
of price cutting, and demand sensitivity to price also influ-
ence the price evolution. Specifically, the larger the competi-
tion scale, the easier for the whole system to keep the original
price; the more severe the price cutting of some firms at the
beginning, the easier for all the firms to keep the original
price at the evolutionary equilibrium state; the more sensitive
the demand to the price cutting, the more difficult for all the
firms to keep the original price. The effect of original price on
price evolution is relatively complex. Both extremely low and
high original prices are not beneficial for price keeping. There
exists a medium range of original price under which an
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FIGURE 6: Density of price-keeping, F,, as a function of original price p and demand slope u along the p-axis and u-axis, respectively, in (a) a
complete network with N =50, p* = 3, (b) complete network with N =50, p* =4, (c) complete network with N =50, p* =5, (d) small-world
network with N =500, p* =3, (e) small-world network with N =500, p* =4, (f) small-world network with N =500, p* =5, (g) scale-free
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optimal price-keeping equilibrium is achieved. Lastly, the
payoff scheme, which describes how each firm’s payoff is cal-
culated in each round game, influences the price evolution on
the scale-free network. Under the accumulated payoff and
average payoff, there are significant differences in the density
of firms keeping the price in the evolution system. These
results provide new and important insights for understand-
ing price competition in the real world.

Based on the current results, we can also envision some
important extension work in the future. Firstly, the WS
small-world network model and BA scale-free network
model are two of the most classic network models in the
complex network theory. Several network models are based
on the two models for characterizing various structural prop-
erties of a complex network, such as degree correlation and
community structure and mixing pattern [60]. These struc-
tural properties have significant effects on cooperation evolu-
tion [53, 54, 61, 62]. Then, it would be interesting to
investigate the possible influence of running the current price
competition model on other network models. Besides, this
study adopts a simple linear demand function to describe
the relation between demand quantity and price change. It
is valuable to explore whether the current results are sup-
ported under more complex demand function patterns.
These considerations will further advance the study of the
price competition problem on complex networks.
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