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Based on the Lyapunov stability theory, this paper mainly investigates theH∞ synchronization problem for semi-Markovian jump
neural networks (semi-MJNNs) with randomly occurring time-varying delays (TVDs). The continuous-time semi-MJNNs, where
the transition rates are dependent on sojourn time, are introduced to make the issue under our consideration more general. One of
the main characteristics of our work is the handling of TVDs. In addition to using the improved Jensen inequality and the
reciprocal convexity lemma to deal with the integral inequality, we also employ Schur complement and the projection lemma
to achieve the decoupling between the square term of TVDs. Finally, we verify the validity and feasibility of our method by a
couple of simulation examples.

1. Introduction

In recent years, with the unceasingly thorough research on
large data and artificial intelligence, the theory and applica-
tion of neural networks have been greatly developed. It has
tremendous application prospect, especially in robotics [1],
pattern recognition [2, 3], associative memory [4–6], identi-
fication [7, 8], and combinatorial optimization [9–12]. Neu-
ral networks can be simply divided into the deterministic
neural networks and stochastic neural networks based on
whether they are disturbed by outside noise [13]. When the
system is undisturbed, the deterministic neural network can
describe the actual system accurately [13]. Nevertheless, as
far as we know, the actual system is generally uncertain and
most of the physical system will be affected by random
parameter variation and structure change [14–16]. These
changes may be caused by some sudden phenomena, such
as components or connection failure and the deviation of
parameter. In this circumstance, the stochastic neural net-
works can be described by a hybrid model, where a discrete
stochastic variable called mode or pattern is attached to
continuous state variables to describe the random jump of
system parameters as well as the appearance of discontinuous

points. It allows policymakers to respond to discrete events,
which significantly perturb or alter the normal working con-
dition of the system, by combining the empirical knowledge
of events and the statistical information of their rates, ade-
quately [17, 18].

Markovian jump neural networks (MJNNs), as we all
know, as a kind of typical hybrid dynamic systems are widely
used in the field of aerospace, industrial production, and bio-
logical, medical, and social construction in the past few
decades due to its strong modeling ability and therefore draw
great attention from researchers. For instance, the stability
analysis, state estimation, filter design, passivity analysis,
and stochastic synchronization for MJNNs were discussed
in [19, 20], respectively. But one obvious drawback of MJNNs
is that its jump time obeys the exponential distribution,
which is a memoryless distribution and makes the transition
probability of jump system an invariant function matrix; that
is, the transition probability of the system obeys a stochastic
process which is not relevant with the mode of the past [21].
Because of this limitation, it brings great restriction to the
application of MJNNs. Therefore, semi-MJNNs were put for-
ward later, where a transition probability matrix and a fixed
dwell time probability density function matrix are used to

Hindawi
Complexity
Volume 2018, Article ID 8094292, 16 pages
https://doi.org/10.1155/2018/8094292

http://orcid.org/0000-0001-7024-6573
http://orcid.org/0000-0003-0375-699X
https://doi.org/10.1155/2018/8094292


represent the stochastic neural networks [22]. It has a wider
range of application background due to the relaxation to
the constraint condition where the probability density distri-
bution function obeys exponential distribution. Compared
with the abundant research achievements on MJNNs, the
research efforts devoted to semi-MJNNs are relatively scarce.
The robust stochastic stability condition for semi-MJNNs
was derived in [23] and the relevant controller was also
designed there. The synchronization controller for the
semi-MJNNs was designed in [24] where the semi-MJNNs
were transformed into associated MJNNs. An exponential
passive filter was designed, and a cone complementarity
linearization method was applied to manage the nonconvex
feasibility issue in [25]. As mentioned above, the semi-
MJNNs have more extensive application, such as in complex
medical procedures [26].

Due to the finite signal transition speed as well as the lim-
ited switching speed of hardware facilities, the time-delay
phenomenon exists in various practical industrial control
systems widely, such as chemical system, process control sys-
tem, and network control system [27–36]. It is known that
delay argument existing in the system is often unknown or
time-varying and the occurrence of delay tends to be ran-
dom, which makes the analysis and control of the system
more difficult. Also, the existence of time-delay tends to
result in the degradation of the performance index and can
even make the system unstable [37]. Therefore, it has impor-
tant theoretical significance and practical applying value to
study the system with time-varying delays (TVDs). As the
system that considers that time-delay is more in line with
the actual situation, an increasing number of researches have
been made on the time-delay systems in recent years, and
considerable results have been presented. To mention a few,
Gun and Niculescu discussed the problem of stability analy-
sis for the systems with time-delay and gave a summary on
literature about the stability analysis and controller design
of systems with time-delay in [38]. Park andWan Ko studied
the stability and robust stability criteria for TVD systems in
[39], and then the reciprocally convex approach and the
second-order reciprocally convex approach were proposed
for stability analysis of TVD systems in [40].

Synchronization refers to two or more dynamic systems
whose properties are identical or close to each other.
Through the interaction between the systems, the state of
the dynamic system that evolves under different initial con-
ditions is gradually close to each other and finally reaches
the same. Synchronization analysis is particularly impor-
tant in many dynamic behaviors of neural networks and
therefore has been widely studied. Exponential synchroni-
zation, adaptive synchronization, finite-time H∞ synchro-
nization, mixed H∞/passive synchronization, and new
delay-dependent exponential H∞ synchronization were
considered in [41, 42], respectively.

This paper mainly studies the H∞ synchronization of
semi-MJNNs with randomly occurring TVDs. First of all,
by Lyapunov stability theory, we can get that the key point
to establish a Lyapunov functional is to contain more useful
information about the delays, which is useful to obtain the
results with less conservatism [43]. As a result of the

existence of TVDs, some novel inequality techniques derived
from the Park inequality and the improved Jensen inequality
[44] are employed to handle the time-varying items. At the
same time, considering the existence of the square term of
TVDs in the formulas, we use the projection lemma to
achieve the decoupling between time-varying items. By using
convex optimization techniques, the synchronization control
of semi-MJNNs is investigated in this paper. The corre-
sponding main results are presented by three theorems: The-
orem 1 provides sufficient conditions for the stochastic
stability andH∞ synchronization of the closed-loop dynamic
error system; Theorem 2 conducts the decoupling arithmetic;
and Theorem 3 is then presented to get strict LMI-based con-
ditions, and a numerical method to calculate controller gains
is presented, which is simple and easily conducted.

Compared with the existing literature, this article has the
following characteristics: (1) Different from the previous lit-
erature, a more general system model is introduced in this
paper, in which both the semi-MJNNs and the random
TVDs are taken into account simultaneously; (2) with the
introduction of some advanced inequalities, combining with
Schur complement lemma and projection lemma, H∞ syn-
chronization conditions with less conservatism are derived;
(3) we use the LMI control toolbox to carry out the relevant
simulation, and the corresponding controller can be obtained
which can verify the correctness and feasibility of the pro-
posed method. Throughout this work, the notations used
are standard.

2. Problem Formulation

Firstly, given the following semi-MJNNs with randomly
occurring TVDs Σ ,

x t = −A ξ t x t + B ξ t f x t

+ β t Bθ ξ t f x t − θ t + I t ,
1

z t = C ξ t x t , 2

where x t = xT1 t , xT2 t ,… , xTn t T ∈ℝn is the system
state vector which is associated with the n neurons;

f x t = f T1 x1 t , f T2 x2 t ,… , f Tn xn t
T ∈ℝn denotes

the neuron activation functions of the system, which is
assumed to be bounded and satisfies

l−q ≤
f q a − f q b

a − b
≤ l+q , q = 1, 2,… , n, 3

where f q 0 = 0, a, b ∈ℝ, a ≠ b l−q , and l+q are real known sca-
lars, and they could be zero, positive, or negative. For the pur-
pose of simplifying the symbols, we set

L1 ≜ diag l+1 l
−
1 , l+2 l−2 ,… , l+nl−n ,

L2 ≜ diag l+1 + l−1
2 , l

+
2 + l−2
2 ,… , l

+
n + l−n
2

4

I t stands for external input; θ t denotes the TVDs
satisfying 0 ≤ θ1 ≤ θ t ≤ θ2 <∞ and θ t ≤ μ <∞, where
the nonnegative scalars θ1 and θ2 refer to the minimum

2 Complexity



and maximum time-delay, respectively. ξ t , σ t≥0 =
ξm, σm m∈M≥1

(M is a positive integer) represents a
continuous-time and discrete-state homogeneous semi-
Markovian process whose trajectories are right continuous.
Assuming ξ t takes value in a finite state space ϒ = 1, 2,
… ,N , the transition rate matrix Λ σ ≜ ρij σ N ×N can

be given by

Pr ξm+1 = j, σ + ε ≥ σm+1 ∣ ξm = i, σ < σm+1
= ρij σ ε + o ε , i ≠ j,

Pr ξm+1 = j, σ + ε < σm+1 ∣ ξm = i, σ < σm+1
= 1 + ρii σ ε + o ε , i = j,

5

where ε > 0, limε→0 o ε /ε = 0 and ρij σ ≥ 0 ξ t = i, ξ
t + ε = j ; i ≠ j stands for the transition rates from i to j,
and ρii σ = −∑N

j=1,j≠iρij σ β k is a Bernoulli-distributed
white sequence that takes values of 0 and 1 and obeys
the following probability distribution laws

Pr β k = 1 = β,ℰ β k = β,

Pr β k = 0 = 1 − β,
6

where β ∈ 0, 1 is a known constant.

Remark 1.Different from the previous literature, a more gen-
eral system model is introduced in this paper, in which both
the semi-MJNNs and the random TVDs are taken into
account. The time-delay phenomenon, which occurs ran-
domly and tends to be time-varying, exists in various practi-
cal neural networks. Therefore, the stochastic variable β t is
introduced to express the randomly occurring TVDs in this
paper to make the issue under consideration more practical
and more reasonable.

In this paper, the slave system Σ could be represented as
the following forms

x̂ t = −A ξ t x̂ t + B ξ t f x̂ t

+ β t Bθ ξ t f x̂ t − θ t

+ I t +D ξ t ω t + u t ,
7

ẑ k = C ξ t x̂ k , 8

where x̂ t and ẑ k are the response state vector and
the response output, respectively; u t is the advisable
control input.

For presenting a better explanation to the addressed
problem, we introduce ϱ t = x t − x̂ t as the synchroniza-
tion error vector, ϱ t = z t − ẑ t = C ξ t ϱ t as the out-
put error, and f ϱ t = f x t − f x̂ t as the nonlinear
error. Then, the following error system is obtained:

ϱ t = −A ξ t ϱ t + B ξ t f ϱ t

+ β t Bθ ξ t f ϱ t − θ t

+D ξ t ω t + u t

9

The controller input u t for the error system is estab-
lished as

u t = K ξ t ϱ t , 10

where the controller gain matrix K ξ t ∈ℝn×n will be
designed in the sequel. In order to simplify the notation,
A ξ t , B ξ t , Bθ ξ t , C ξ t ,D ξ t and K ξ t are
denoted by Ai, Bi, Bθi, Ci, Di, and Ki, for each i ∈ϒ,
respectively. Then, the closed-loop dynamic error system
Σ can be obtained:

ϱ t = −Aiϱ t + Bi f ϱ t + β t Bθi f ϱ t − θ t

+Diω t + Kiϱ t

= − Ai − Ki ϱ t + Bi f ϱ t

+ β t Bθi f ϱ t − θ t +Diω t

11

Before making further derivation, we need the definition
and lemmas as shown in the following.

Lemma 1. [24] The following inequalities hold for any diago-
nal matrices Vli > 0, l = 1, 2

ϱ t

f ϱ t

T −L1V1i L2V1i

∗ −V1i

ϱ t

f ϱ t
≥ 0,

ϱ t − θ t

f ϱ t − θ t

T −L2V2i L2V2i

∗ −V2i

ϱ t − θ t

f ϱ t − θ t
≥ 0

12

Lemma 2. [45] (projection lemma) For a symmetric matrix
F, two matrices U , V with the same column dimension of F,
the problem

F +UTXTV +VTXU < 0, 13

can be solved with respect to matrix X if and only if

NT
U FNU < 0, NT

V FNV < 0, 14

where NU andNV are any basis of the nullspace of U , V .

Lemma 3. [30] (Schur complement lemma). Given constant
matrices M11, M12, and M22, where M11 =MT

11 < 0 and
M22 =MT

22 < 0, then, M11 −M12M
−1
22M12 < 0 if and only if

M11 M12

∗ M22
< 0

or
M22 MT

12

∗ M11
< 0

15

Lemma 4. [40] Given a matrix ℛ > 0, a differentiable func-
tion x u ∣ u ∈ a1, a2 , it is easy to obtain the following
inequalities

3Complexity



a2

a1

xT ϖ ℛx ϖ dϖ ≥
1

a2 − a1
ΩT

1ℛΩ1 +
3

a2 − a1
ΩT

2ℛΩ2,

a2

a1

xT ϖ ℛx ϖ dϖ ≥
1

a2 − a1
ΩT

3ℛΩ3 +
3

a2 − a1
ΩT

4ℛΩ4

+ 5
a2 − a1

ΩT
5ℛΩ5,

a2

a1

β

a1

xT ϖ ℛx ϖ dϖdβ ≥ 2ΩT
8ℛΩ8 + 4ΩT

9ℛΩ9,

16

where

Ω1 =
a2

a1

x ϖ dϖ,

Ω2 =
a2

a1

x ϖ dϖ −
2

a2 − a1

a2

a1

a2

β

x ϖ dϖdβ,

Ω3 = x a2 − x a1 ,

Ω4 = x a2 + x a1 −
2

a2 − a1

a2

a1

x ϖ dϖ,

Ω5 = x a2 − x a1 + 6
a2 − a1

a2

a1

x ϖ dϖ

−
12

a2 − a1
2

a2

a1

a2

β

x ϖ dϖdβ,

Ω6 = x a2 −
1

a2 − a1

a2

a1

x ϖ dϖ,

Ω7 = x a2 + 2
a2 − a1

a2

a1

x ϖ dϖ −
6

a2 − a1
2

a2

a1

a2

β

x ϖ dϖdβ,

Ω8 = x a1 −
1

a2 − a1

a2

a1

x ϖ dϖ,

Ω9 = x a1 −
4

a2 − a1

a2

a1

x ϖ dϖ + 6
a2 − a1

2

a2

a1

a2

β

x ϖ dϖdβ

17

Lemma 5. [40] (reciprocal convexity lemma) For any vector
ξ ∈ℝm; matrices R1, R2 ∈ S

+
n , S ∈ℝn×n, W1,W2 ∈ℝn×m; and

nonnegative real scalars α and βmeeting α + β = 1, the follow-
ing inequality holds

1
α
ξTWT

1 R1W1ξ +
1
β
ξTWT

2 R2W2ξ

≥ ξT
W1

W2

T R1 S

ST R2

W1

W2

ξ,
18

subject to
R1 S

ST R2
≥ 0.

Definition 1. (H∞ synchronization) The system Σ is said to
be H∞ synchronization with the disturbance attenuation γ
under the condition that the following requirements are met:

(1) The system Σ is stochastically stable when the
disturbance input ω t is always equal to 0.

(2) For a positive scalar γ, the following inequality is
satisfied under zero initial conditions

Θ =
∞

0
ϱT t ϱ t − γ2ωT t ω t dt

≤ 0 i e sup
ω≠0,ω∈L2 0,∞

ϱ t 2
ω t 2

≤ γ

19

3. Main Results

Theorem 1. Given scalars μ, γ > 0, 0 ≤ θ1 ≤ θ2 <∞, θ = θ2 −
θ1, δ1 > 0, δ2 > 0, and β ∈ 0, 1 , the considered system Σ is
stochastically stable and H∞ synchronized; if there exist sym-
metric matrices Pi ∈ℝ3n > 0, positive definite matrices Q1i,
Q2i,Q3i, R1, R2,G1i,G2i, Z1, Z2, positive definite diagonal
matrices V1i, V2i, matrices Yi, and Sij ∈ℝn, i, j ∈ϒ, such that
for each i ∈ϒ, the following matrix inequalities hold

Φi =Φi + ψi θ t +Π θ t 〠
N

k=1
ρikPk ΠT θ t < 0, 20

Ψi =

G2i +W2i 0 0 S11 S12 S13

0 3 G2i +W2i 0 S21 S22 S23

0 0 5 G2i +W2i S31 S32 S33

ST11 ST21 ST31 G2i 0 0
ST12 ST22 ST32 0 3G2i 0
ST13 ST23 ST33 0 0 5G2i

> 0, 21

M1i = R1 + R2 − 〠
N

k=1
ρikQ1k − 〠

N

k=1
ρikQ2k − 〠

N

k=1
ρikQ3k > 0, 22
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where

with

Ei = 0… 0
i−1 n

In0… 0
14−i n

T

∈ℝ14n×n,

Qi = θ1R1 + θ2R2 +Q1i +Q2i +Q3i,

Gi = θ21G1i + θ2G2i +
θ21
2 Z1 +

θ22 − θ21
2 Z2,

Γ1 = E3 − E4 E3 + E4 − 2E9 E3 − E4 + 6E9 − 6E12
E4 − E5 E4 + E5 − 2E10 E4 − E5 + 6E10 − 6E13 ,

Ψi =

G2i 0 0 S11 S12 S13

0 3G2i 0 S21 S22 S23

0 0 5G2i S31 S32 S33

ST11 ST21 ST31 G2i 0 0
ST12 ST22 ST32 0 3G2i 0
ST13 ST23 ST33 0 0 5G2i

28

Proof 1. We firstly consider a stochastic semi-Markovian
Lyapunov-Krasovskii functional as follows:

M2i = R2 − 〠
N

k=1
ρikQ2k − 〠

N

k=1
ρikQ3k > 0, 23

M3i = R2 − 〠
N

k=1
ρikQ2k > 0, 24

W1i = Z1 − θ1 〠
N

k=1
ρikG1k > 0, 25

W2i = Z2 − θ〠
N

k=1
ρikG2k > 0, 26

Φi = Sym E1P11iE
T
2 + θ1E1P12iE

T
8 + E2P12iE

T
2 − E3P12iE

T
2 + θ1E2P22iE

T
8 − θ1E3P22iE

T
8 + E3P13iE

T
2 − E5P13iE

T
2

+ θ1E3P23iE
T
8 − θ1E5P23iE

T
8 + E2QiE

T
2 − 1 − μ E4Q3iE

T
4 − E5Q2iE

T
5 + E1GiE

T
1 − E2 − E3 G1i E2 − E3

T

− 3 E2 + E3 − 2E8 G1i E2 + E3 − 2E8
T − 5 E2 − E3 + 6E8 − 6E11 G1i E2 − E3 + 6E8 − 6E11

T

− 2 E2 − E8 W1i E2−E8
T − 4 E2 + 2E8 − 3E11 W1i E2 + 2E8 − 3E11

T −
θ

θ1
E2 − E3 W2i E2 − E3

T

−
3θ
θ1

E2 + E3 − 2E8 W2i E2 + E3 − 2E8
T −

5θ
θ1

E2 − E3 + 6E8 − 6E11 W2i E2 − E3+6E8 − 6E11
T

− 2 E3 − E9 W2i E3 − E9
T − 4 E3 + 2E9 − 3E12 W2i E3 + 2E9−3E12

T − 2 E4 − E10 W2i E4 − E10
T

− 4 E4 + 2E10 − 3E13 W2i E4 + 2E10 − 3E13
T − Γ1ΨiΓT1 − Sym δ1E1YiE

T
1 + δ1E1YiAiE

T
2 − δ1E1YiKiE

T
2

− δ1E1YiBiE
T
6 − δ1βE1YiBθi × ET

7 − δ1E1YiDiE
T
14 + δ2E2YiE

T
1 + δ2E2YiAiE

T
2 − δ2E1YiKiE

T
2 − δ2E2YiBiE

T
6

− δ2βE2 × YiBθiE
T
7 − δ2E2YiDiE

T
14 − E2L1V1iE

T
2 + E4L1V2iE

T
4 + Sym E2L2V1iE

T
6 + E4L2V2iE

T
7

− E6V1iE
T
6 − E7V2iE

T
7 + E2C

T
i CiE

T
2 − γ2E14E

T
14,

ψi θ t = Sym θ t − θ1 E1P13iE
T
9 + θ2 − θ t E1P13iE

T
10 + θ t − θ1 E2P23iE

T
9 + θ2 − θ t

× E2P23iE
T
10 + θ t − θ1 E3 P33i − P23i E

T
9 + θ2 − θ t E3 P33i − P23i E

T
10 − θ t −θ1 E5P33iE

T
9

− θ2 − θ t E5P33iE
T
10 − θ t − θ1 E9M2iE

T
9 − 3 θ t − θ1 E9 − E12 ×M2i E9 − E12

T

− θ2 − θ t E10M3iE
T
10 − 3 θ2 − θ t E10 − E13 M3i E10 − E13

T ,

Π θ t = E2θ1E8 θ t − θ1 E9 + θ2 − θ t E10 ,

27
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V ϱs t , ξ t = 〠
5

m=1
Vm ϱs t , ξ t , 29

where

V1 ϱs t , ξ t = ϱT t Piϱ t ,

V2 ϱs t , ξ t =
t

t−θ1
ϱ ϖ Q1iϱ ϖ dϖ

+
t

t−θ2
ϱT ϖ Q2iϱ ϖ dϖ

+
t

t−θ t
ϱT ϖ Q3iϱ ϖ dϖ,

V3 ϱs t , ξ t =
0

−θ1

t

t+β
ϱT ϖ R1ϱ ϖ dϖdβ

+
0

−θ2

t

t+β
ϱT ϖ R2ϱ ϖ dϖdβ,

V4 ϱs t , ξ t = θ1
0

−θ1

t

t+β
ϱT ϖ G1iϱ ϖ dϖdβ

+
0

−θ1

0

y

t

t+β
ϱT ϖ Z1ϱ ϖ dϖdβdy,

V5 ϱs t , ξ t = θ
−θ1

−θ2

t

t+β
ϱT ϖ G2iϱ ϖ dϖdβ

+
−θ1

−θ2

0

y

t

t+β
ϱT ϖ Z2ϱ ϖ dϖdβdy,

30

with

Pi =
P11i P12i P13i

∗ P22i P23i

∗ ∗ P33i

,

ϱ t = ϱT t
t

t−θ1
ϱT ϖ dϖ

t−θ1

t−θ2
ϱT ϖ dϖ

T

31

First of all, we define

ς1 t =

ϱ t

ϱ t

ϱ t − θ1

ϱ t − θ t

ϱ t − θ2

f ϱ t

f ϱ t − θ t

,

ς2 t =

1
θ1

t

t−θ1
ϱ ϖ dϖ

1
θ t − θ1

t−θ1

t−θ t
ϱ ϖ dϖ

1
θ2 − θ t

t−θ t

t−θ2
ϱ ϖ dϖ

2
θ21

0

−θ1

t

t+β
ϱ ϖ dϖdβ

2
θ t − θ1

2

−θ1

−θ t

t−θ1

t+β
ϱ ϖ dϖdβ

2
θ2 − θ t 2

−θ t

−θ2

t−θ t

t+β
ϱ ϖ dϖdβ

ω t

,

ς t =
ς1 t

ς2 t
,

Ei = 0… 0
i−1 n

In0… 0
14−i n

T

∈ℝ14n×n,

ρij =ℰ ρij σ =
∞

0
ρij σ gi σ dσ,

32
where gi σ is the probability density function of sojourn
time σ resting on mode i.

Before further analysis, we consider the weak infinitesi-
mal operator ℒ as the following forms

ℒV ϱs t , ξ t = lim
ε→0+

1
ε
ℰ V ϱs t + ε , ξ t + ε ∣ ϱs t ,

ξ t = i −V ϱs t , ξ t ,
33

and we have

ℒV1 ϱs t , ξ t

= Sym ςT t E1E2 − E3E3 − E5 P
T
i Π θ t ς t

+ ςT t Π θ t 〠
N

k=1
ρikPk ΠT θ t ς t ,

34

ℒV2 ϱs t , ξ t

= ϱT t Q1iϱ t − ϱT t − θ1 Q1iϱ t − θ1

+
t

t−θ1
ϱT ϖ 〠

N

k=1
ρikQ1k ϱ ϖ dϖ

+ ϱT t Q2iϱ t − ϱT t − θ2 Q2iϱ t − θ2

+
t

t−θ2

ϱT ϖ 〠
N

k=1
ρikQ2k ϱ ϖ dϖ

+ ϱT t Q3iϱ t − 1 − μ ϱT t − θ t Q3iϱ t − θ t

+
t

t−θ t
ϱT ϖ 〠

N

k=1
ρikQ3k ϱ ϖ dϖ,

35
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ℒV3 ϱs t , ξ t = ϱT t θ1R1 + θ2R2 ϱ t

−
t

t−θ1

ϱT ϖ R1ϱ ϖ dϖ

−
t

t−θ2
ϱT ϖ R2ϱ ϖ dϖ

36

Considering the integral items in (35) and (36), we can
get that

t

t−θ1

ϱT ϖ 〠
N

k=1
ρikQ1k ϱ ϖ dϖ

+
t

t−θ2
ϱT ϖ 〠

N

k=1
ρikQ2k ϱ ϖ dϖ

+
t

t−θ t
ϱT ϖ 〠

N

k=1
ρikQ3k ϱ ϖ dϖ

−
t

t−θ1

ϱT ϖ R1ϱ ϖ dϖ −
t

t−θ2

ϱT ϖ R2ϱ ϖ dϖ

= −
t

t−θ1

ϱT ϖ R1 + R2 − 〠
N

k=1
ρikQ1k

− 〠
N

k=1
ρikQ2k − 〠

N

k=1
ρikQ3k ϱ ϖ dϖ

−
t−θ1

t−θ t
ϱT ϖ R2 − 〠

N

k=1
ρikQ2k − 〠

N

k=1
ρikQ3k ϱ ϖ dϖ

−
t−θ t

t−θ2
ϱT ϖ R2 − 〠

N

k=1
ρikQ2k ϱ ϖ dϖ

= −
t

t−θ1
ϱT ϖ M1iϱ ϖ dϖ −

t−θ1

t−θ t
ϱT ϖ M2iϱ ϖ dϖ

−
t−θ t

t−θ2

ϱT ϖ M3iϱ ϖ dϖ

37

For the integral items − t
t−θ1

ϱT ϖ M1iϱ ϖ dϖ, − t−θ1
t−θ t

ϱT ϖ M2iϱ ϖ dϖ, and − t−θ t
t−θ2

ϱT ϖ M3iϱ ϖ dϖ in (37), by

using Lemma 4, we can obtain that

−
t

t−θ1
ϱT ϖ M1iϱ ϖ dϖ

≤ −
1
θ1

t

t−θ1

ϱ ϖ dϖ

T

M1i
t

t−θ1

ϱ ϖ dϖ

−
3
θ1

t

t−θ1
ϱ ϖ dϖ −

2
θ1

t

t−θ1

t

β

ϱ ϖ dϖdβ

T

×M1i
t

t−θ1

ϱ ϖ dϖ −
2
θ1

t

t−θ1

t

β

ϱ ϖ dϖdβ

= ςT t −4θ1E8M1iE
T
8 + Sym 3θ1E8M1iE

T
11

− 3θ1E11M1iE
T
11 ς t

38

Similarly, it is easy for us to get the following conditions:

−
t−θ1

t−θ t
ϱT ϖ M2iϱ ϖ dϖ ≤ − θ t − θ1 ςT t

E9M2iE
T
9 + 3 E9 − E12 M2i E9 − E12

T ς t ,

−
t−θ t

t−θ2
ϱT ϖ M3iϱ ϖ dϖ ≤ − θ2 − θ t ςT t

E10M3iE
T
10 + 3 E10 − E13 M3i E10 − E13

T ς t

39

Synthesizing the above results, we can get that

ℒV2 ϱs t , ξ t +ℒV3 ϱs t , ξ t

≤ ςT t E2QiE
T
2 − E3Q1iE

T
3 − E5Q2iE

T
5

− 1 − μ E4Q3iE
T
4 − 4θ1E8M1iE

T
8

+ Sym 3θ1E8M1iE
T
11 − θ t − θ1

· E9M2iE
T
9 + 3 E9 − E12 M2i E9 − E12

T

− 3θ1E11M1iE
T
11 − θ2 − θ t

· E10M3iE
T
10 + 3 E10 − E13 M3i E10 − E13

T ς t

40

ℒV4 ϱs t , ξ t = θ21ϱT t G1iϱ t + θ21
2 ϱT t Z1ϱ t

− θ1
t

t−θ1

ϱT ϖ G1iϱ ϖ dϖ

+ θ1
0

−θ1

t

t+β
ϱT ϖ 〠

N

k=1
ρikG1k ϱ ϖ dϖdβ

−
0

−θ1

t

t+β
ϱT ϖ Z1ϱ ϖ dϖdβ,

41

ℒV5 ϱs t , ξ t = θ2ϱT t G2iϱ t + θ22 − θ21
2 ϱT t Z2ϱ t

− θ
t−θ1

t−θ2
ϱT ϖ G2iϱ ϖ dϖ

+ θ
−θ1

−θ2

t

t+β
ϱT ϖ 〠

N

k=1
ρikG2k ϱ ϖ dϖdβ

−
−θ1

−θ2

t

t+β
ϱT ϖ Z2ϱ ϖ dϖdβ

42
Considering the single integral items in (41) and (42), we

can get that

−θ1
t

t−θ1

ϱT ϖ G1iϱ ϖ dϖ − θ
t−θ1

t−θ2

ϱT ϖ G2iϱ ϖ dϖ

= −θ1
t

t−θ1
ϱT ϖ G1iϱ ϖ dϖ − θ

t−θ t

t−θ2
ϱT ϖ G2iϱ ϖ dϖ

− θ
t−θ1

t−θ t
ϱT ϖ G2iϱ ϖ dϖ

43
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For the integral items −θ1
t
t−θ1

ϱT ϖ G1iϱ ϖ dϖ, −θ
t−θ t
t−θ2

ϱT ϖ G2iϱ ϖ dϖ, and −θ t−θ1
t−θ t ϱ

T ϖ G2iϱ ϖ dϖ in

(43), by using Lemma 4, we can obtain that

−θ1
t

t−θ1
ϱT ϖ G1iϱ ϖ dϖ

≤ − ϱ t − ϱ t − θ1
TG1i ϱ t − ϱ t − θ1

− 3 ϱ t + ϱ t − θ1 −
2
θ1

t

t−θ1
ϱ ϖ dϖ

T

G1i

· ϱ t + ϱ t − θ1 −
2
θ1

t

t−θ1

ϱ ϖ dϖ

− 5 ϱ t − ϱ t − θ1 + 6
θ1

t

t−θ1

ϱ ϖ dϖ

−
12
θ21

t

t−θ1

t

β

ϱ ϖ dϖdβ

T

G1i

× ϱ t − ϱ t − θ1 + 6
θ1

t

t−θ1

ϱ ϖ dϖ

−
12
θ21

t

t−θ1

t

β

ϱ ϖ dϖdβ

= −ςT t E2 − E3 G1i E2 − E3
T

+ 3 E2 + E3 − 2E8 G1i E2 + E3 − 2E8
T

+ 5 E2 − E3 + 6E8 − 6E11 G1i

· E2 − E3 + 6E8 − 6E11
T ς t

44

By using a similar method, it is not difficult to get that

−θ
t−θ t

t−θ2
ϱT ϖ G2iϱ ϖ dϖ

≤ −
θ

θ t − θ1
ςT t

E3 − E4 G2i E3 − E4
T

+ 3 E3 + E4 − 2E9 G2i E3 + E4 − 2E9
T

+ 5 E3 − E4 + 6E9 − 6E12 G2i

E3 − E4 + 6E9 − 6E12
T ς t ,

45

−θ
t−θ1

t−θ t
ϱT ϖ G2iϱ ϖ dϖ

≤ −
θ

θ2 − θ t
ςT t

E4 − E5 G2i E4 − E5
T

+ 3 E4 + E5 − 2E10 G2i E4 + E5 − 2E10
T

+ 5 E4 − E5 + 6E10 − 6E13 G2i

E4 − E5 + 6E10 − 6E13
T ς t

46

Considering the double integral items in (41) and (42),
we can get that

θ1
0

−θ1

t

t+β
ϱT ϖ 〠

N

k=1
ρikG1k ϱ ϖ dϖdβ

−
0

−θ1

t

t+β
ϱT ϖ Z1ϱ ϖ dϖdβ

+ θ
−θ1

−θ2

t

t+β
ϱT ϖ 〠

N

k=1
ρikG2k ϱ ϖ dϖdβ

−
−θ1

−θ2

t

t+β
ϱT ϖ Z2ϱ ϖ dϖdβ

= −
0

−θ1

t

t+β
ϱT ϖ Z1 − θ1 〠

N

k=1
ρikG1k ϱ ϖ dϖdβ

−
−θ1

−θ2

t

t+β
ϱT ϖ Z2 − θ〠

N

k=1
ρikG2k ϱ ϖ dϖdβ

= −
0

−θ1

t

t+β
ϱT ϖ W1iϱ ϖ dϖdβ

−
−θ1

−θ2

t

t+β
ϱT ϖ W2iϱ ϖ dϖdβ

47

For − 0
−θ1

t
t+βϱ

T ϖ W1iϱ ϖ dϖdβ in (47), by using

Lemma 4, we can obtain that

−
0

−θ1

t

t+β
ϱT ϖ W1iϱ ϖ dϖdβ

≤ −2 ϱ t −
1
θ1

t

t−θ1
ϱ ϖ dϖ

T

W1i

· ϱ t −
1
θ1

t

t−θ1

ϱ ϖ dϖ

− 4 ϱ t + 2
θ1

t

t−θ1
ϱ ϖ dϖ −

6
θ21

t

t−θ1

t

β

ϱ ϖ dϖdβ

T

W1i

· ϱ t + 2
θ1

t

t−θ1
ϱ ϖ dϖ −

6
θ21

t

t−θ1

t

β

ϱ ϖ dϖdβ

= ςT t −2 E2 − E8 W1i E2 − E8
T

− 4 E2 + 2E8 − 3E11 W1i E2 + 2E8 − 3E11
T ς t

48

For − −θ1
−θ2

t
t+βϱ

T ϖ W2iϱ ϖ dϖdβ in (47), we firstly

divide it into two parts

−
−θ1

−θ2

t

t+β
ϱT ϖ W2iϱ ϖ dϖdβ

= −
−θ1

−θ2

t

t−θ1
ϱT ϖ W2iϱ ϖ dϖdβ

−
−θ1

−θ2

t−θ1

t+β
ϱT ϖ W2iϱ ϖ dϖdβ

49
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It is easy to find that the first integral term in (49) can
be reduced to a single integral. So we can use Lemma 4 to
handle it:

−
−θ1

−θ2

t

t−θ1
ϱT ϖ W2iϱ ϖ dϖdβ

= −θ
t

t−θ1
ϱT ϖ W2iϱ ϖ dϖ

≤ −
θ

θ1
ςT t E2 − E3 W2i E2 − E3

T

+ 3 E2 + E3 − 2E8 W2i E2 + E3 − 2E8
T

+ 5 E2 − E3 + 6E8 − 6E11 W2i

E2 − E3 + 6E8 − 6E11
T ς t

50

For the second integral term in (49), we firstly divide it
into three parts:

−
−θ1

−θ2

t−θ1

t+β
ϱT ϖ W2iϱ ϖ dϖdβ

= −
−θ1

−θ t

t−θ1

t+β
ϱT ϖ W2iϱ ϖ dϖdβ

−
−θ t

−θ2

t−θ t

t+β
ϱT ϖ W2iϱ ϖ dϖdβ

− θ2 − θ t
t−θ1

t−θ t
ϱT ϖ W2iϱ ϖ dϖ

51

Then, we consider using Lemma 4 to deal with (51) and
the following inequalities can be obtained:

−
−θ1

−θ t

t−θ1

t+β
ϱT ϖ W2iϱ ϖ dϖdβ

−
−θ t

−θ2

t−θ t

t+β
ϱT ϖ W2iϱ ϖ dϖdβ

≤ ςT t −2 E3 − E9 W2i E3 − E9
T

− 4 E3 + 2E9 − 3E12 W2i E3 + 2E9 − 3E12
T

− 2 E4 − E10 W2i E4 − E10
T

− 4 E4 + 2E10 − 3E13 W2i E4 + 2E10 − 3E13
T ς t ,

52

− θ2 − θ t
t−θ1

t−θ t
ϱT ϖ W2iϱ ϖ dϖ

≤ −
θ

θ t − θ1
ςT t E3 − E4 W2i E3 − E4

T

+ 3 E3 + E4 − 2E9 W2i E3 + E4 − 2E9
T

+ 5 E3 − E4 + 6E9 − 6E12 W2i E3 − E4 + 6E9 − 6E12
T ς t

+ ςT t E3 − E4 W2i E3 − E4
T + 3 E3 + E4 − 2E9 W2i

· E3 + E4 − 2E9
T + 5 E3 − E4 + 6E9 − 6E12 W2i

· E3 − E4 + 6E9 − 6E12
T ς t

53

Let us define α = θ t − θ1 /θ and β = θ2 − θ t /θ
Using Lemma 5, we can obtain the following relation from
inequalities (45), (46), and (53):

−
1
α
ςT t E3 − E4 G2i +W2i E3 − E4

T

+ 3 E3 + E4 − 2E9 G2i +W2i E3 + E4−2E9
T

+ 5 E3 − E4 + 6E9 − 6E12 G2i +W2i

· E3 − E4 + 6E9 − 6E12
T ς t −

1
β
ςT t

E4 − E5 G2i E4 − E5
T

+ 3 E4 + E5 − 2E10 G2i E4 + E5 − 2E10
T

+ 5 E4 − E5 + 6E10 − 6E13 G2i

· E4 − E5 + 6E10 − 6E13
T ς t + ςT t

E3 − E4 W2i E3 − E4
T

+ 3 E3 + E4 − 2E9 W2i E3 + E4 − 2E9
T

+ 5 E3 − E4 + 6E9 − 6E12 W2i

· E3 − E4 + 6E9 − 6E12
T ς t ≤ −Γ1ΨiΓT1

54

Synthesizing inequalities (41), (42), (44), (48), (50), (52),
and (54), we can get that

ℒV4 ϱs t , ξ t +ℒV5 ϱs t , ξ t

≤ ςT t − E2 − E3 G1i E2 − E3
T − 3 E2 + E3 − 2E8 G1i

· E2 + E3 − 2E8
T − 5 E2 − E3 + 6E8 − 6E11 G1i

· E2 − E3 + 6E8 − 6E11
T − 2 E2 − E8 W1i

· E2 − E8
T − 4 E2 + 2E8 − 3E11 W1i

· E2 + 2E8 − 3E11
T −

θ

θ1
E2 − E3 W2i E2 − E3

T

+ 3 E2 + E3 − 2E8 W2i E2 + E3 − 2E8
T

+ 5 E2 − E3 + 6E8 − 6E11 W2i

· E2 − E3 + 6E8 − 6E11
T − 2 E3 − E9 W2i

· E3 − E9
T − 4 E3 + 2E9 − 3E12 W2i

· E3 + 2E9 − 3E12
T − 2 E4 − E10 W2i E4 − E10

T

− 4 E4 + 2E10 − 3E13 W2i E4 + 2E10 − 3E13
T

− Γ1ΨiΓT1 + E1GiE
T
1 ς t

55

After that, some free-weight matrices are utilized. For any
scalars δ1 and δ2 and the matrix Yi of appropriate dimen-
sions, we have
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2 δ1ϱT t Yi + δ2ϱT t Yi

−ϱ t − Ai − Ki ϱ t + Bi f ϱ t

+ βBθi f ϱ t − θ t +Diω t

= ςT t Sym δ1E1YiE
T
1 + δ1E1YiAiE

T
2 − δ1E1YiKiE

T
2

− δ1E1YiBiE
T
6 − δ1βE1YiBθiE

T
7 − δ1E1YiDiE

T
14

+ δ2E2YiE
T
1 + δ2E2YiAiE

T
2 − δ2E1YiKiE

T
2

− δ2E2YiBiE
T
6 − δ2βE2YiBθiE

T
7

− δ2E2YiDiE
T
14 ς t

56

On the other hand, considering the nonlinear part and
according to Lemma 1, one has that for any matrices Vki >
0, k = 1, 2:

ϱ t

f ϱ t

T −L1V1i L2V1i

∗ −V1i

ϱ t

f ϱ t

= ςT t −E2L1V1iE
T
2 + Sym E2L2V1iE

T
6

− E6V1iE
T
6 ς t ≥ 0,

ϱ t − θ t

f ϱ t − θ t

T −L2V2i L2V2i

∗ −V2i

ϱ t − θ t

f ϱ t − θ t

= ςT t −E4 L1V2i E
T
4 + Sym E4L2V2iE

T
7

− E7V2iE
T
7 ς t ≥ 0

57

Furthermore, considering the H∞ synchronization, in
view of Definition 1, we can get

ϱT t ϱ t − γ2ωT t ω t = ςT t E2C
T
i CiE

T
2 − γ2E14E

T
14 ς t

58

Above all, we can get that

ℰ ℒV ϱs t , ξ t + ϱT t ϱ t − γ2ωT t ω t

≤ ςT t Φi +∏ θ t 〠
N

k=1
ρikPk ∏

T
θ t ς t

59

According to (20), one can obtain that

ℰ ℒV ϱs t , ξ t + ϱT t ϱ t − γ2ωT t ω t < 0
60

With ω t = 0, we can get from (59) that ℒV ϱs t ,
ξ t < 0, which implies that the system Σ is stochasti-
cally stable.

Furthermore, considering the system Σ , from (60) one
could obtain the following inequality under zero initial con-
ditions for any γ > 0:

ℰ
∞

0
ϱT t ϱ t − γ2ωT t ω t dt

≤ℰ
∞

0
ℒV ϱs t , ξ t + ϱT t ϱ t − γ2ωT t ω t dt

≤ 0,
61

which means that

Θ =
∞

0
ϱT t ϱ t − γ2ωT t ω t dt ≤ 0 62

Therefore, the condition in Definition 1 holds.
In view of the above, we can conclude that the considered

system is stochastically stable and satisfies H∞ synchroniza-
tion with the disturbance attenuation γ.

From the stochastic stability and H∞ synchronization
analysis criterion for the system in Theorem 1, it is not
difficult to find that the inequalities may not be easily
verified as the existence of TVD term θ t and nonlinear
delay term θ2 t , especially the quadratic term ∏ θ t
∑N

k=1ρikPk ∏T θ t . So, we utilize projection lemma and
Schur complement to achieve matrix decoupling.

Remark 2. For the quadratic term ∏ θ t ∑N
k=1ρikPk ∏T

θ t , it is not difficult to find that ρii, i ∈ϒ are negative
terms while ρij, i, j ∈ϒ, i ≠ j are positive terms. Therefore,
we use different methods to deal with this problem. When
i ≠ j, ρij > 0, we can use Schur complement to handle it.
When i = j, ρii < 0, it is quite clear that Schur complement
cannot be applied to it directly. So we use projection lemma
to cope with it. By using this way, we can achieve the decou-
pling between nonlinear terms properly.

Remark 3. From stochastic Lyapunov functional (29) as
well as inequality (16), sufficient conditions which guarantee
the stochastically stable and H∞ synchronization of system
Σ are obtained. The term ϱ t = ϱT t t

t−θ1
ϱT ϖ dϖ t−θ1

t−θ2
ϱT ϖ dϖ T in V1 ϱs t , ξ t is used to include more infor-
mation about state delays. The semi-Markovian parameters
are introduced to V2 ϱs t , ξ t , V4 ϱs t , ξ t , and V5 ϱs
t , ξ t for the consideration of mode-dependent Lyapunov
functional. Inequality (16) is used to deal with the integral
terms. By using this way, we can obtain sufficient conditions
with less conservatism.

Theorem 2. Given scalars μ, γ > 0, 0 ≤ θ1 ≤ θ2 <∞, θ = θ2 −
θ1, δ1 > 0, δ2 > 0, and β ∈ 0, 1 , the considered system Σ is
stochastically stable and H∞ synchronized; if there exist sym-
metric matrices Pi ∈ℝ3n > 0, positive definite matrices Q1i,
Q2i,Q3i, R1, R2,G1i,G2i, Z1, Z2, positive definite diagonal
matrices V1i, V2i, matrices Yi and Sij ∈ℝn, i, j ∈ϒ such that
for each i ∈ϒ, k = 1, 2, conditions (21), (22), (23), (24), (25),
and (26) and the following inequality hold
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Φ k
i =

Φi + ψ
k
i + Sym Π k X −XT Π k NiP i

∗ ρiiPi 0
∗ ∗ −P i

< 0,

63

where

ψ
1
i = sym θE1P13iE

T
10 + θE2P23iE

T
10

+ θE3 P33i − P23i E
T
10 − θE5P33iE

T
10

− θE10M3iE
T
10 − 3θ E10 − E13 M3i E10 − E13

T ,

ψ
2
i = Sym θE1P13iE

T
9 + θE2P23iE

T
9

+ θE3 P33i − P23i E
T
9 − θE5P33iE

T
9

− θE9M2iE
T
9 − 3θ E9 − E12 M2i E9 − E12 T ,

Π 1 = E2θ1E8θE10 ,

Π 2 = E2θ1E8θE9 ,

Ni = ρi1I, ρi2I,… , ρi,i−1I, ρi,i+1I,… , ρiN I ,

P i = diag P1, P2,… , Pi−1, Pi+1,… , PN ,
64

with the other notations are the same as in Theorem 1.

Proof 2. From Theorem 1, we can know that when condi-
tions (20), (21), (22), (23), (24), (25), and (26) are satis-
fied, the considered system Σ is stochastically stable. In

order to achieve decoupling between nonlinear time-
delay terms in (20), further processing will be made for
inequality (20).

First of all, the inequality (20) can be rewritten as

NT
PΞiNP < 0, 65

where

NP = I14n Π θ t T ,

Ξi =
Φi + ψi θ t +Π θ t 〠

N

k=1,k≠i
ρikPk ΠT θ t 0

0 ρiiPi

,

66

From inequality (65) we can also get from quadratic form
knowledge that Ξi < 0, then we can obtain the following
inequality

NT
QΞiNQ < 0, 67

where NQ = 0 I3n
T

We define P = ΠT θ t −I14n ,Q = I14n 0 It is
not difficult to know that PNP = 0, QNQ = 0 Therefore, NP

and NQ are the elements of the nullspace of P and Q.
Then, by using projection lemma to inequalities (65) and

(67), we can know that

Ξi + sym PTXQ < 0, 68

which means

Then, we use Schur complement to deal with the cou-
pling term Π θ t ∑N

k=1,k≠iρikPk ΠT θ t in (69) and we
can obtain that

Φi + ψi θ t + sym Π θ t X −XT Π θ t NiP i

∗ ρiiPi 0
∗ ∗ −P i

< 0,

70

where

Ni = ρi1I, ρi2I,… , ρi,i−1I, ρi,i+1I,… , ρiN I ,

P i = diag P1, P2,… , Pi−1, Pi+1,… , PN

71

By using the above decoupling method, we achieve that
there is only linear TVD term θ t in inequality (70). As
0 ≤ θ1 ≤ θ t ≤ θ2 <∞, therefore inequality (70) is satisfied
under the condition that θ t = θ1, θ t = θ2,, respectively.
It can guarantee that once inequality (70) is satisfied under
the condition that θ1 ≤ θ t ≤ θ2, then the correctness of
inequality (70) can be readily deduced as (63) holds. So,
(20) holds if inequality (63) is satisfied. This completes
the proof.

Since a stochastic stability andH∞ synchronization anal-
ysis criterion for the system in Theorem 2 is developed, the
procedure of H∞ synchronization can be developed in The-
orem 3 in the further analysis. Therefore, in this section we
derive H∞ synchronization conditions for the drive-
response dynamic systems. The main result about the design
of a desired controller will be presented, and the controller
gain will be presented.

Φi + ψi θ t +Π θ t 〠
N

k=1,k≠i
ρikPk ΠT θ t + sym Π θ t X −XT

∗ ρiiPi

< 0 69
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Theorem 3. Fixed scalars μ, γ > 0, 0 ≤ θ1 ≤ θ2 <∞, θ = θ2 −
θ1, δ1 > 0, δ2 > 0, and β ∈ 0, 1 , the considered system Σ
is stochastically stable and H∞ synchronized, if there exist
symmetric matrices Pi ∈ℝ3n > 0, positive definite matrices
Q1i,Q2i,Q3i, R1, R2,G1i,G2i, Z1, Z2, positive definite diago-
nal matrices V1i, V2i, matrices Yi and Ki, and Sij ∈ℝn, i, j
∈ϒ, such that for each i ∈ϒ, and k = 1, 2,, the conditions
(21), (22), (23), (24), (25), and (26) and the following
inequality hold:

Φ̌i + ψ
k
i + sym Π k X −XT Π k NiP i

∗ ρiiPi 0
∗ ∗ −P i

< 0, 72

where

Φ̌i = Sym E1P11iE
T
2 + θ1E1P12iE

T
8 + E2P12iE

T
2 − E3P12iE

T
2

+ θ1E2P22iE
T
8 − θ1E3P22iE

T
8 + E3P13iE

T
2

− E5P13iE
T
2 + θ1E3P23iE

T
8 − θ1E5P23iE

T
8

+ E2QiE
T
2 − 1 − μ E4Q3iE

T
4 − E5Q2iE

T
5

+ E1GiE
T
1 − E2 − E3 G1i E2 − E3

T

− 3 E2 + E3 − 2E8 G1i E2 + E3 − 2E8
T

− 5 E2 − E3 + 6E8 − 6E11 G1i E2 − E3 + 6E8 − 6E11
T

− 2 E2 − E8 W1i E2−E8
T − 4 E2 + 2E8 − 3E11 W1i

E2 + 2E8 − 3E11
T −

θ

θ1
E2 − E3 W2i E2 − E3

T

−
3θ
θ1

E2 + E3 − 2E8 W2i E2 + E3 − 2E8
T

−
5θ
θ1

E2 − E3 + 6E8 − 6E11 W2i E2 − E3 + 6E8 − 6E11
T

− 2 E3 − E9 W2i E3 − E9
T − 4 E3 + 2E9 − 3E12 W2i

E3 + 2E9 − 3E12
T − 2 E4 − E10 W2i E4 − E10

T

− 4 E4 + 2E10 − 3E13 W2i E4 + 2E10 − 3E13
T − Γ1ΨiΓT1

− Sym δ1E1YiE
T
1 + δ1E1YiAiE

T
2 − δ1E1KiE

T
2

− δ1E1YiBiE
T
6 − δ1βE1YiBθi × ET

7

− δ1E1YiDiE
T
14 + δ2E2YiE

T
1 + δ2E2YiAiE

T
2

− δ2E1KiE
T
2 − δ2E2YiBiE

T
6 − δ2βE2Yi

× BθiE
T
7 − δ2E2YiDiE

T
14 − E2L1V1iE

T
2

+ E4L1V2iE
T
4 + Sym E2L2V1iE

T
6 + E4L2V2iE

T
7

− E6V1iE
T
6 − E7V2iE

T
7 − E2C

T
i CiE

T
2 − γ2E14E

T
14,

73

then the system Σ is stochastically stable. In this regard, the
available gain of the controller can be calculated by

Ki = Y−1
i Ki, i ∈ϒ 74

Proof 3. We define

Ki = YiKi 75

By using this way, the freedom variable Yi and the con-
troller gain Ki can be merged, which makes sure inequality
(72) can be solved by dealing with a convex optimization
problem. This completes the proof.

4. Numerical Examples

In this section, two numerical examples are given for demon-
strating the feasibility and validity of the proposed method.
In the first example, the existence of the desiredH∞ synchro-
nization controller is verified. The second example gives a set
of figures to reveal the correctness of our method.

Example 1. For the proposed system Σ and Σ with three
modes i = 1, 2, 3 , the parameters are chosen as follows:

A1 =
2 20 0
0 1 80

,

A2 =
0 20 0
0 3 40

,

A3 =
1 00 0
0 0 80

,

B1 =
0 80 0 40
−0 20 0 10

,

B2 =
0 70 1 10
0 20 −0 05

,

B3 =
1 00 1 00
−1 00 −1 00

,

Bθ1 =
1 20 1 00
−0 20 0 30

,

Bθ2 =
−2 40 −4 80
−0 32 2 00

,

Bθ3 =
0 88 1 00
1 00 1 00

,

C1 =
0 10 0
0 0 10

,

C2 =
0 20 −0 30
−0 30 0 20

,

C3 =
−0 80 1 00
1 00 0 60

,

D1 =
0 20 −0 10
−0 10 0 20

,
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D2 =
0 20 −0 32
−0 32 0 20

,

D3 =
0 10 0 10
0 10 0 10

76
Considering the activation functions f i s , i = 1, 2, 3 with

the parameters l−q = 0 and l+q = 0 4, then it is easy to get that

L1 =
0 0
0 0

,

L2 =
0 2 0
0 0 2

77

The expectation of β t is taken as β = 0 6 Assuming
that I t = 0, and the TVDs θ t = 1 1 + sin 0 5t , then
we can obtain that 0 1 ≤ θ t ≤ 2 1 and θ t ≤ 0 5, which
means θ1 = 0 1, θ2 = 2 1, and μ = 0 5. Besides, the transi-
tion rates of ξ t are selected as the same as in [24], where
the probability distribution function is also chosen as Wei-
bull distribution. Therefore, the corresponding mathematical
expectation of Λ σ is

ℰ Λ σ =
−1 7724 0 8862 0 8862
1 7725 −3 5450 1 7725
2 6587 2 6587 −5 3174

78

We set δ1 = 1, δ2 = 2, and γ2 = 0 4. Then, solving LMIs
(21), (22), (23), (24), (25), (26) and (72) by using the LMI
control toolbox, the H∞ synchronization controller gain
matrixes can be obtained as follows:

K1 =
−8 6398 3 1022
3 1631 −7 3662

,

K2 =
−28 0246 −13 5891
−13 6663 −17 7993

,

K3 =
−10 4938 −2 2998
−2 7691 −9 9076

79

Remark 4. When we set β = 1 and D1 =D2 =D3 = 0 and do
not consider the H∞ performance index and the other
parameters remain the same, then our system is the same as
Example 13 in [24]. In this condition, we can get the control-
ler gain matrixes as follows:

K1 =
−1 5988 −0 0753
0 0621 −0 3183

,

K2 =
−6 9360 1 1315
1 4177 0 8950

,

K3 =
−1 6030 −0 3402
0 0094 −1 3144

80

Then, we can find that when μ = 0 5, θ1 = 0 1, the maximum
allowable upper delay bound θ2 in [24] is 0 984, while we set
θ2 = 2 1. The desired controller gains can also be obtained in
this paper. This indicates that our method is superior to [24]
and can lead to less conservatism for time-delay systems.

Example 2. The parameters of the systems Σ and Σ are
given with N = 3 as follows:

A1 =
1 00 0
0 1 00

,

A2 =
1 10 0
0 0 90

,

A3 =
1 20 0
0 0 80

,

B1 =
1 40 −0 30
1 05 1 50

,

B2 =
1 75 −0 40
0 95 1 65

,

B3 =
1 25 −0 25
1 10 1 30

,

Bθ1 =
−2 20 1 00
−0 80 −2 10

,

Bθ2 =
−2 70 1 10
−0 70 −2 30

,

Bθ3 =
−2 80 1 20
−0 50 −2 10

,

C1 =
0 10 0
0 0 10

,

C2 =
0 20 −0 30
−0 30 0 20

,

C3 =
−0 80 1 00
1 00 0 60

,

D1 =
0 20 −0 10
−0 10 0 20

,

D2 =
−0 20 −0 32
−0 32 −0 20

,
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D3 =
0 10 0 10
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81
The activation functions are assumed as f i s = tanh s

, i ∈ϒ with the parameters l−q = 0 and l+q = 1; then, it is easy
to get that

L1 =
0 0
0 0

,

L2 =
0 5 0
0 0 5

82

The expectation of β t is chosen as β = 1 Assuming that
I t = 0, ω t = 1/1 + t2 1/1 + t2 T and the TVDs θ t
= 1 + 0 3 sin 2t , then we can obtain that θ1 = 0 7, θ2 = 1 3,
and μ = 0 6 The mathematical expectation of the transition
rate matrix is taken as the same as Example 1. Then, we set
δ1 = 1, δ2 = 5, γ2 = 0 4, and we can get the desired controller
gain matrixes as follows:

K1 =
−14 8258 −0 4952
−0 4985 −14 6980

,

K2 =
−22 0351 −1 4217
−0 7621 −20 2739

,

K3 =
−24 5083 −0 6844
0 2891 −21 1654

83

Under the obtained gain matrixes and x 0 =
0 2 0 25 T and x̂ 0 = 0 05 −0 15 T , we simulate the
system and obtain a set of figures. Figure 1 shows the mode
transitions ξ t of the system. Figures 2 and 3 show the state
vector’s behaviors of systems Σ and Σ , respectively.
Figure 4 shows the state responses of the system Σ . In view
of Figure 4, we can observe that although under different ini-
tial conditions, the error between systems Σ and Σ grad-
ually tends to zero which indicates that the gain matrixes
derived from this paper can guarantee the synchronization
between the systems Σ and Σ effectively. Therefore, it
confirms the validity of the developed method.

5. Conclusion

In this paper, the H∞ synchronization problem for semi-
MJNNs, where the randomly occurring TVDs have been
considered to make the neural networks under consideration
more practical, has been investigated. By constructing an
appropriate semi-Markovian Lyapunov-Krasovskii func-
tional, combining with the derivation of an infinitesimal gen-
erator for the Lyapunov functional and the sufficient H∞
synchronization condition for semi-MJNNs has been

14 Complexity



established. To deal with the TVD items, some improved
inequalities, together with Schur complement lemma and
projection lemma, have been introduced. By using a lineari-
zation technique, the desired controller has been designed
and the existence of the desired controller can be verified
by the feasibility of a set of LMIs. Finally, two meaningful
examples have been given to validate the feasibility and valid-
ity of the developed approach. Considering that the condi-
tions established in this paper are sufficient, how to reduce
the conservatism of current results will therefore be our
future work. In addition, how to extend our results to cope
with the controller design problem for more complex net-
works, such as genetic regulatory networks, will also be one
of our future research directions.
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