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This paper is devoted to introduce a novel fourth-order hyperchaotic system. The hyperchaotic system is constructed by adding
a linear feedback control level based on a modified Lorenz-like chaotic circuit with reduced number of amplifiers. The local
dynamical entities, such as the basic dynamical behavior, the divergence, the eigenvalue, and the Lyapunov exponents of the new
hyperchaotic system, are all investigated analytically and numerically. Then, an active control method is derived to achieve global
chaotic synchronization of the novel hyperchaotic system through making the synchronization error system asymptotically stable
at the origin based on Lyapunov stability theory. Next, the proposed novel hyperchaotic system is applied to construct another
new hyperchaotic system with circuit deformation and design a new hyperchaotic secure communication circuit. Furthermore, the
implementation of two novel electronic circuits of the proposed hyperchaotic systems is presented, examined, and realized using
physical components. A good qualitative agreement is shown between the simulations and the experimental results around 500 kHz
and below 1MHz.

1. Introduction

The Lorenz chaotic system was proposed [1] and later the
chaotic synchronization was implemented in the electronic
circuit [2], which greatly inspiredmany scientists and acceler-
ated the pace of chaos research [3–7]. A hyperchaotic system
is defined as an attractor with at least two positive Lyapunov
exponents and an autonomous system with phase space of
dimension at least four [8]. The sum of Lyapunov exponents
must be negative to ensure that the system is dissipative
[9]. The hyperchaotic systems have more complex structure,
higher unpredictability, andmore randomness than ordinary
chaotic systems. Thus, the hyperchaotic attractors are more
suitable for many important fields in applied nonlinear
sciences such as secure communications, neural network,
image encryption, laser physics, and nonlinear circuits [10–
19].

With the deep development of chaotic systems, synchro-
nization of hyperchaotic systems is an important nonlinear

phenomenon. In recent years, Mahmoud et al. introduced
some chaotic and hyperchaotic systems with complex vari-
ables, analyzed their chaotic behavior, and proposed several
types of synchronization methods [20–25]. Usually, increas-
ingly novel chaotic systems are generated from low-order
chaotic systems to hyperchaotic systems [26–28] and from
two-wing systems to four-wing ormultiloop systems [29–32].
A significant application of chaotic systems is to form chaotic
secure communication circuit [33]. From the perspective of
improving the security of secure communication system, the
novel hyperchaotic system should be selected. Accordingly,
most hyperchaotic systems are generated and verified by
numerical simulations; there is a certain degree of deviation
from the physical circuit system [34]. Therefore, hardware
circuit simulation and physical verification are also important
for hyperchaotic system generation.

The contribution of this paper is that we introduce a
novel fourth-order hyperchaotic system on the basis of a
modified Lorenz-like chaotic circuit with reduced number of
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amplifiers. Then we perform a detailed qualitative analysis,
active control, synchronous stability analysis, and applica-
tions of the novel hyperchaotic system. The active control
and synchronization results derived in this paper are estab-
lished by using Lyapunov stability theory.The corresponding
physical circuit design for the novel hyperchaotic system is
also proposed to show the accuracy and efficiency of circuit
realization. The analog circuit implementation results match
the Multisim and Matlab simulation results. These proposed
circuit design methods can also be applied in other complex
hyperchaotic systems.

This paper is organized as follows. In Section 2, amodified
Lorenz-like chaotic circuit is constructed with reduced num-
ber of amplifiers. Based on the modified Lorenz-like chaotic
circuit, several qualitative issues about a novel hyperchaotic
system, such as the basic dynamical behavior, divergence,
equilibria, Lyapunov exponents, and synchronous stability,
are investigated analytically and numerically in Section 3.
In Section 4, another 𝑧-𝑢-𝑦 hyperchaotic system and a new
hyperchaotic secure communication circuit are proposed
based on the novel (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic circuit. In
Section 5, the proposed hyperchaotic circuits are, respec-
tively, implemented in analog electronic circuits. Finally,
some conclusions and discussions are drawn in Section 6.

2. Circuit Design of a Modified Lorenz-Like
Chaotic System

A modified Lorenz-like chaotic system is proposed by the
following autonomous nonlinear system of differential equa-
tions:

𝑥̇ = 𝑎 (𝑦 − 𝑥)
̇𝑦 = 𝑏𝑥 − 𝑦 + 𝑐𝑥𝑧

𝑧̇ = −𝑑𝑥𝑦 − 𝑒𝑧,
(1)

where 𝑥, 𝑦, and 𝑧 are the state variables and 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are
constant, positive parameters of the system. When choosing
𝑎 = 10, 𝑏 = 45, 𝑐 = 20, 𝑑 = 5, and 𝑒 = 3.7, there exists a
typical chaotic attractor in system (1).

𝑥̇ = −10𝑥 + 10𝑦
̇𝑦 = 45𝑥 − 𝑦 + 20𝑥𝑧

𝑧̇ = −5𝑥𝑦 − 3.7𝑧.
(2)

The two- and three-dimensional chaotic attractors with
Matlab simulation of themodified Lorenz-like chaotic system
(2) are shown in Figure 1. It can be seen from the numerical
simulation results that the numerical range of each variable
parameter is within −10V to +10V, and it fully meets the
requirements of circuit design in practical applications. That
is because the working voltage range of electronic compo-
nents is generally from −15 V to +15V in practical electronic
circuits. Therefore, it must be the equation of scaling if the
circuit is to be implemented.

Based on themodified Lorenz-like chaotic system (2), the
normalized resistor is set as 𝑅 = 100kΩ in order to design
the Lorenz-like chaotic circuit.Thus, the state equation of the
Lorenz-like chaotic circuit is obtained as follows:

𝑥̇ = −100k
10k 𝑥 + 100k

10k 𝑦

̇𝑦 = 100k
2.2k 𝑥 − 100k

100k𝑦 + 100k
0.51k × 0.1𝑥𝑧

𝑧̇ = −100k
2k × 0.1𝑥𝑦 − 100k

27k 𝑧.

(3)

Therefore, the Lorenz-like chaotic circuit schematic is
designed as shown in Figure 2. It can be seen from Figure 2
that the circuit is composed of five operational amplifiers and
two analog multipliers. It can output three waveforms and
three phase portraits, and it can output stable third-order
double vortex chaotic signal. Being different from the general
Lorenz-like circuit, it can output inverted phase portrait
shape like butterfly wings. However, lacking of improvement
on the Lorenz-like chaotic circuit precluded comprehensive
statements. Although it can implement the function of (2),
it is not the most optimal circuit. In order to obtain the
most optimal circuit, the Lorenz-like chaotic circuit shown
in Figure 2 needs to be improved.The basic idea of improved
design is to simplify,minimize, andmerge the circuit by using
the main knowledge of circuit theory under the condition of
not changing the circuit function.Thus, an improved Lorenz-
like chaotic circuit consisting of four operational amplifiers
and two analog multipliers is designed based on Figure 2.

The final improved design result of the Lorenz-like circuit
is shown in Figure 3. It consists of 4 operational amplifiers,
2 analog multipliers, 9 resistors, and 3 capacitors. As can be
seen from Figure 3, the number of operational amplifiers is
reduced from 5 to 4, and other passive components are corre-
spondingly reduced. Through improvement, the complexity
of the circuit, the thermal noise of the total resistance, and
the total error of the circuit can also be reduced. Meanwhile,
the cost can be reduced. Thus, the improved Lorenz-like
chaotic circuit is simple, easy to debug, and suitable for mass
production. From this, the various curves of chaos evolution
of the improved Lorenz-like chaotic circuit can be observed.

The beneficial effects of the improved Lorenz-like circuit
are as follows: (i) It can output three chaotic waveform
signals of 𝑥, 𝑦, and 𝑧 and three chaotic phase portraits
of 𝑥𝑦, 𝑥𝑧, and 𝑧𝑦. (ii) A variety of chaotic signals can be
displayed on the oscilloscope. (iii) It can output inverted
phase portrait shape like butterfly wings and other kinds of
experiments can also be carried out by the improved circuit.
Using these values, some simulations are implemented. All
of the electronic components are easily available. The chaotic
phase portraits of the improved Lorenz-like chaotic circuit
by Multisim are shown in Figure 4. It can be seen from
the Multisim simulation results that it is consistent with the
Matlab simulation results shown in Figure 1. That is, it fully
conforms to the requirements of the circuit design in practical
applications.
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Figure 1: The chaotic attractors of the modified Lorenz-like chaotic system.

3. Dynamical Analysis of the Novel
Hyperchaotic System Based on the
Improved Lorenz-Like Chaotic Circuit

It can be seen from the analysis and simulations above that the
improved Lorenz-like chaotic circuit can only output three
chaotic waveforms and three chaotic phase portraits. What
is more, it can only output inverted phase portrait shape like
butterfly wings. However, in order to meet certain conditions
of displaying four chaotic waveforms, six chaotic phase
portraits, and upright phase portrait shape like butterfly
wings, the improved Lorenz-like chaotic circuit as shown in
Figure 3 needs to be deformed from low-order chaotic system
to hyperchaotic system.

3.1. Divergence and Equilibria of the Novel Hyperchaotic
System. On the basis of the improved Lorenz-like chaotic
circuit shown in Figure 3, the input is introduced by (𝑦 + 𝑧)
end, and feedback is given to the𝑥 input stage after the𝑢 stage.
Thus, a novel fourth-order hyperchaotic circuit is constructed

and the proposed hyperchaotic circuit schematic is shown
in Figure 5. It is composed of 5 operational amplifiers, 2
analog multipliers, 12 resistors, and 4 capacitors. In order to
facilitate the narrative, we call this novel circuit (𝑦 + 𝑧)-𝑢-𝑥
hyperchaotic circuit.

The beneficial effects of the novel (𝑦 + 𝑧)-𝑢-𝑥 fourth-
order hyperchaotic circuit are as follows: it not only can
output four chaotic waveforms and six phase portraits, but
also can output stable fourth-order double vortex chaotic
signals. Also, operational amplifier TL082 or TL084 and
analog multiplier AD633 are used. According to the new
(𝑦+𝑧)-𝑢-𝑥 hyperchaotic circuit, the normalized resistor is set
as 𝑅 = 100kΩ. Thus, the state equation of the corresponding
hyperchaotic circuit is obtained as follows:

𝑥̇ = −100k
100k𝑥 − 100k

100k𝑦 − 100k
100k × 0.1𝑢

̇𝑦 = −100k
22k 𝑥 + 100k

510 Ω × 0.01𝑥𝑧
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Figure 2: Lorenz-like chaotic circuit of system (2) using 5 amplifiers.
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Figure 3: Lorenz-like chaotic circuit of system (2) with reduced number of amplifiers.

𝑧̇ = −100k
270k𝑧 − 100k

2k × 0.01𝑥𝑦

𝑢̇ = −100k
100k𝑦 − 100k

100k𝑧 − 100k
20k × 0.1𝑢.

(4)

Then, a novel fourth-order hyperchaotic system is
obtained by (4):

𝑥̇ = −𝑥 − 𝑦 − 𝑎𝑢
̇𝑦 = −𝑏𝑥 + 𝑐𝑥𝑧
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(a) 𝑥𝑦 phase portrait (b) 𝑥𝑧 phase portrait (c) 𝑧𝑦 phase portrait

Figure 4: Chaotic phase portraits of the Lorenz-like chaotic circuit with reduced number of amplifiers.
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Figure 5: (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic circuit schematic.

𝑝𝑡]𝑧̇ = −𝑑𝑧 − 𝑒𝑥𝑦
𝑢̇ = −𝑦 − 𝑧 − 𝑒𝑢,

(5)

where 𝑥, 𝑦, 𝑧, and 𝑢 are the state variables and 𝑎, 𝑏, 𝑐, 𝑑,
and 𝑒 are constant, positive parameters of the system. When
choosing 𝑎 = 0.1, 𝑏 = 4.55, 𝑐 = 1.96, 𝑑 = 0.37, and 𝑒 =
0.5, the novel system (5) is chaotic. Substituting the specific
parameter values, (5) becomes

𝑥̇ = −𝑥 − 𝑦 − 0.1𝑢
̇𝑦 = −4.55𝑥 + 1.96𝑥𝑧

𝑧̇ = −0.37𝑧 − 0.5𝑥𝑦
𝑢̇ = −𝑦 − 𝑧 − 0.5𝑢.

(6)
This is the novel fourth-order hyperchaotic system. The

divergence of the hyperchaotic system (5) is easily calculated
as

∇ = 𝜕𝑥̇
𝜕𝑥 + 𝜕 ̇𝑦

𝜕𝑦 + 𝜕𝑧̇
𝜕𝑧 + 𝜕𝑢̇

𝜕𝑢 = −1 − 𝑑 − 𝑒 = −1.87 < 0. (7)

The divergence is less than 0. A necessary and sufficient
condition for system (5) to be dissipative is that the diver-
gence of the vector field is negative when the time tends to be
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infinite, and the corresponding dynamic characteristics will
be presented.

Consider 𝑥̇ = ̇𝑦 = 𝑧̇ = 𝑢̇ = 0; then the equilibrium
equation of system (5) is easily obtained as follows:

𝑥̇ = −𝑥 − 𝑦 − 𝑎𝑢 = 0
̇𝑦 = −𝑏𝑥 + 𝑐𝑥𝑧 = 0

𝑧̇ = −𝑑𝑧 − 𝑒𝑥𝑦 = 0
𝑢̇ = −𝑦 − 𝑧 − 𝑒𝑢 = 0.

(8)

Clearly, the solution of (8) is the origin; that is, the
equilibrium point of system (5) is obtained as

𝑥 = 0,
𝑦 = 0,
𝑧 = 0,
𝑢 = 0.

(9)

The Jacobian matrix for system (5) at equilibrium point
(9) is obtained as

𝐽 =
[[[[[
[

−1 −1 0 −𝑎
−𝑏 + 𝑐𝑧 0 𝑐𝑥 0

−𝑒𝑦 −𝑒𝑥 −𝑑 0
0 −1 −1 −𝑒

]]]]]
]

, (10)

where 𝑎 = 0.1, 𝑏 = 4.55, 𝑐 = 1.96, 𝑑 = 0.37, and 𝑒 = 0.5.
Then, the Jacobian matrix for system (5) at equilibrium point
is easily obtained as

𝐽 =
[[[[[
[

−1 −1 0 −0.1
−4.55 + 1.96𝑧 0 1.96𝑥 0

−0.5𝑦 −0.5𝑥 −0.37 0
0 −1 −1 −0.5

]]]]]
]

. (11)

The characteristic polynomial of the Jacobian matrix (11)
is described as follows:

det (𝜆𝐼 − 𝐽) = 0. (12)

Therefore, the solutions of (12) are obtained as 𝜆1 =
−2.7368, 𝜆2 = 1.6419, 𝜆3 = −0.4050, and 𝜆4 = 0.3700.
Because there are two positive values in the four eigenvalues
above, the equilibrium point {𝑥 = 𝑦 = 𝑧 = 𝑢 = 0} is an
unstable equilibrium point. It shows that the novel fourth-
order hyperchaotic system is unstable in two directions and
stable in the other two directions.

3.2. Chaotic Attractors and Lyapunov Exponents. All of the
electronic components are easily available. The hyperchaotic
phase portraits of the new hyperchaotic circuit by Multisim
are shown in Figure 6. And the hyperchaotic phase portraits
by Matlab are shown in Figure 7. It can be seen from

the simulation results that it can output six chaotic phase
portraits of 𝑥𝑦, 𝑥𝑧, 𝑧𝑦, 𝑥𝑢, 𝑦𝑢, and 𝑧𝑢. More importantly,
being different from the modified Lorenz-like circuit, it can
output upright phase portrait shape like butterfly wings.
Moreover, it can be seen from the numerical simulation
results that the numerical range of each variable parameter is
within −10V to +10V, and it is consistent with the Multisim
andMatlab simulation results shown in Figures 6 and 7.That
is, it fully conforms to the requirements of circuit design in
practical applications. A variety of hyperchaotic signals can
be displayed on the oscilloscope.

In order to further verify the chaotic dynamical behavior
of the novel hyperchaotic system (5), the Lyapunov exponents
of the novel hyperchaotic system are determined numerically.
With the parameters chosen as 𝑎 = 0.1, 𝑏 = 4.55, 𝑐 = 1.96,𝑑 =
0.37, and 𝑒 = 0.5, the corresponding Lyapunov exponents are
obtained as follows: 𝐿1 = 0.0717, 𝐿2 = 0.0209, 𝐿3 = −0.4187,
and 𝐿4 = −1.5439. Thus, the Lyapunov dimension [8, 21] of
the new hyperchaotic system (5) is also calculated as

𝐷𝐿 = 𝑀 + 1󵄨󵄨󵄨󵄨𝐿𝑀+1󵄨󵄨󵄨󵄨
𝑀

∑
𝑖=1

𝐿 𝑖. (13)

such that 𝑀 is the largest integer, for which

𝑀

∑
𝑖=1

𝐿 𝑖 > 0,
𝑀+1

∑
𝑖=1

𝐿 𝑖 < 0.
(14)

This means that system (5) is a hyperchaotic system since
𝐿1 and 𝐿2 are positive values and a dissipative system since
the sum of the Lyapunov exponents is negative. It meets
the condition of at least two positive Lyapunov exponents
for the hyperchaotic systems. The Lyapunov dimension of
this hyperchaotic attractor using (13) and (14) is 𝐷𝐿 =
2.2211. Therefore, we conclude that the Lyapunov dimension
of the new hyperchaotic system (5) is fractional. And the
corresponding Lyapunov exponents diagram of the novel
hyperchaotic system (6) is shown in Figure 8.

3.3. Synchronous Stability Analysis. From a physical point of
view, synchronization means that the trajectory of a system
converges to another system and maintains a consistent
dynamic phenomenon. Consider two chaotic systems, and
one of the chaotic systems is described as

𝑋̇ = 𝐹 (𝑋, 𝑡) . (15)

This system can be referred to as the drive system or, as
being called in the communication system, the transmitter.

Another chaotic system is described as

𝑌̇ = 𝐹󸀠 (𝑌, 𝑡) + 𝐺, (16)

where 𝐺 is the controller. Usually, this system is called the
response system or, as being referred to in the communi-
cation system, the receiving system. Here 𝑡 is the time, and
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(a) 𝑥𝑦 phase portrait (b) 𝑥𝑧 phase portrait (c) 𝑧𝑦 phase portrait

(d) 𝑥𝑢 phase portrait (e) 𝑦𝑢 phase portrait (f) 𝑧𝑢 phase portrait

Figure 6: (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic phase portraits with Multisim.

vectors 𝑋, 𝑌 ∈ 𝑅𝑛. They have dimensional components
(𝑥1, 𝑥2, . . . , 𝑥𝑛) and (𝑦1, 𝑦2, . . . , 𝑦𝑛), respectively. The two
chaotic systems can be the same or different, but their
initial conditions are different. If the two chaotic systems
are connected in some way by the controller, we consider
𝑋(𝑡; 𝑡0, 𝑋0) and𝑌(𝑡; 𝑡0, 𝑌0) are the solutions of system (15) and
system (16), respectively, and satisfy the smooth condition of
the function. If 𝑅𝑛 has a subset of 𝐷(𝑡0) and the initial value
𝑋0, 𝑌0 ∈ 𝐷(𝑡0), then, when 𝑡 → ∞, the following exists:

𝜁 ≡ lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑋 (𝑡; 𝑡0, 𝑋0) − 𝑌 (𝑡; 𝑡0, 𝑌0)󵄩󵄩󵄩󵄩 󳨀→ 0. (17)

Then, the response system (15) is synchronized with the
drive system (16). In short, the synchronization error system
of the chaotic systems is defined as ̇𝑒 = ̇𝑦 − 𝑥̇. Chaotic
synchronization means the asymptotic stability of the error
system for the drive system and the response system at the
origin; that is, lim𝑡→∞‖𝑒(𝑡)‖ → 0. Obviously, the controller
plays a key role, and the goal of the controller is to stabilize
the synchronization error system at the origin. Therefore,
through the design of a variety of different controllers, there
will be a variety of synchronization methods.

Thus, we consider the novel drive system described by

𝑥̇1 = −𝑥1 − 𝑥2 − 𝑎𝑥4
𝑥̇2 = −𝑏𝑥1 + 𝑐𝑥1𝑥3
𝑥̇3 = −𝑑𝑥3 − 𝑒𝑥1𝑥2
𝑥̇4 = −𝑥2 − 𝑥3 − 𝑒𝑥4,

(18)

where 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are the states and 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are
system parameters. When choosing 𝑎 = 0.1, 𝑏 = 4.55, 𝑐 =
1.96, 𝑑 = 0.37, and 𝑒 = 0.5, the novel system (18) is chaotic.
Next, we consider the novel response system described by

̇𝑦1 = −𝑦1 − 𝑦2 − 𝑎𝑦4 + 𝑢1
̇𝑦2 = −𝑏𝑦1 + 𝑐𝑦1𝑦3 + 𝑢2
̇𝑦3 = −𝑑𝑦3 − 𝑒𝑦1𝑦2 + 𝑢3
̇𝑦4 = −𝑦2 − 𝑦3 − 𝑒𝑦4 + 𝑢4,

(19)

where 𝑦1, 𝑦2, 𝑦3, 𝑦4 are the states and 𝑢1, 𝑢2, 𝑢3, 𝑢4 are
the controllers to be designed so as to achieve global chaos
synchronization between systems (18) and (19).
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Figure 7: (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic phase portraits with Matlab.
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Figure 8: Lyapunov exponents of the new system (6).

The synchronization error is defined as

̇𝜉𝑖 = ̇𝑦𝑖 − 𝑥̇𝑖, (𝑖 = 1, 2, 3, 4) . (20)

Then, the synchronization error system between the drive
system (18) and the response system (19) is easily obtained as

̇𝜉1 = −𝜉1 − 𝜉2 − 𝑎𝜉4 + 𝑢1
̇𝜉2 = −𝑏𝜉1 + 𝑐 (𝑦1𝑦3 − 𝑥1𝑥3) + 𝑢2
̇𝜉3 = −𝑑𝜉3 − 𝑒 (𝑦1𝑦2 − 𝑥1𝑥2) + 𝑢3
̇𝜉4 = −𝜉2 − 𝜉3 − 𝑒𝜉4 + 𝑢4.

(21)

Construct the following controller system:

𝑢1 = 𝜉1 + 𝜉2 + 𝑎𝜉4 − 𝑘1𝜉1
𝑢2 = 𝑏𝜉1 − 𝑐 (𝑦1𝑦3 − 𝑥1𝑥3) − 𝑘2𝜉2
𝑢3 = 𝑑𝜉3 + 𝑒 (𝑦1𝑦2 − 𝑥1𝑥2) − 𝑘3𝜉3
𝑢4 = 𝜉2 + 𝜉3 + 𝑒𝜉4 − 𝑘4𝜉4,

(22)

where 𝑘𝑖 > 0 (𝑖 = 1, 2, 3, 4), for the use of controlling the
synchronization speed. Substituting (22) into (21), we can
obtain the error dynamics:

̇𝜉1 = −𝑘1𝜉1
̇𝜉2 = −𝑘2𝜉2
̇𝜉3 = −𝑘3𝜉3
̇𝜉4 = −𝑘4𝜉4.

(23)

Then, the Lyapunov function 𝑉 is considered as

𝑉 = (𝜉21 + 𝜉22 + 𝜉23 + 𝜉24)
2 . (24)

Clearly,𝑉 is a positive definite function. Differentiating𝑉
from (24), we can obtain

𝑉̇ = 𝜉1 ̇𝜉1 + 𝜉2 ̇𝜉2 + 𝜉3 ̇𝜉3 + 𝜉4 ̇𝜉4
= 𝜉1 (−𝑘1𝜉1) + 𝜉2 (−𝑘2𝜉2) + 𝜉3 (−𝑘3𝜉3)

+ 𝜉4 (−𝑘4𝜉4) = −𝑘1𝜉21 − 𝑘2𝜉22 − 𝑘3𝜉23 − 𝑘4𝜉24 .
(25)

Thus, we can easily obtain 𝑉̇ = −𝑘1𝜉21−𝑘2𝜉22−𝑘3𝜉23−𝑘4𝜉24 ≤
0, which shows that 𝑉̇ is a negative semidefinite function.
According to the Lyapunov stability theory, it follows that if𝑉
is a positive definite function and 𝑉̇ is a negative semidefinite
function, then the system is consistent and stable at the origin
of the equilibrium state. Hence, it follows that 𝜉1(𝑡) → 0,
𝜉2(𝑡) → 0, 𝜉3(𝑡) → 0, and 𝜉4(𝑡) → 0 exponentially as
𝑡 → ∞. That is, the active synchronization error system (21)
is asymptotically stable at the origin and the synchronization
is effectively realized. This completes the proof.

For the numerical simulations, the fourth-order Runge-
Kutta method is used to solve the novel drive system (18) and
the novel response system (19) with active control method. In
the following simulations, suppose that the initial values of
the novel drive system are chosen as 𝑥1(0) = −14, 𝑥2(0) = −5,
𝑥3(0) = 43, and 𝑥4(0) = 0.3. The initial values of the novel
response system are chosen as 𝑦1(0) = −12, 𝑦2(0) = −3,
𝑦3(0) = 35, and 𝑦4(0) = 0.2. The control gains are chosen
as 𝑘1 = 1, 𝑘2 = 0.5, 𝑘3 = 0.8, and 𝑘4 = 0.5. The history
of the synchronization errors is shown in Figure 9. It can
be seen from Figure 9 that the synchronization errors 𝜉1, 𝜉2,𝜉3, 𝜉4 are asymptotically stabilized at the origin. The timing
diagrams of 𝑥1-𝑦1, 𝑥2-𝑦2, 𝑥3-𝑦3, 𝑥4-𝑦4 are shown in Figure 10.
The synchronous waveforms of the two chaotic systems are
shown to be the same in a very short period of time; thus the
active control synchronization is implemented.

The advantages of active control method are presented
as follows: this method is a simple but applicable tool for
analyzing synchronization stability, and the synchronization
speed is very fast. In practical applications, it has always
been known that the less the control signal is, the more
easily the hardware circuit of the control process is realized.
Therefore, the active control synchronizationmethod is easier
to be realized in the hardware circuits because of its less
control signal and lower cost compared with other control
methods [20–22]. By the use of this controlmethod in chaotic
secure communication, the number of signals transmitted
through the public channel can be greatly decreased to
further guarantee the security and good robustness.Thus, it is
easy to be implemented in engineering. But the disadvantage
of this control method is that the anti-interference ability is
weaker.

4. Applications of the Novel
Hyperchaotic System

4.1. Circuit Deformation. In the following, another new
fourth-order hyperchaotic circuit is constructed successfully
through circuit deformation based on the novel (𝑦 + 𝑧)-𝑢-𝑥
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Figure 9: The history of synchronization errors.

hyperchaotic circuit. The circuit deformation principle is
given as follows: according to the fourth-order (𝑦 + 𝑧)-𝑢-𝑥
hyperchaotic circuit, the input is introduced from the 𝑧
end, and feedback is given to the 𝑦 input stage after the 𝑢
stage. Thus, another novel fourth-order hyperchaotic circuit
is proposed, and the novel hyperchaotic circuit schematic is
shown in Figure 11. It is composed of 5 operational amplifiers,
2 analog multipliers, 11 resistors, and 4 capacitors. In order to
facilitate the narrative, we call this novel fourth-order circuit
𝑧-𝑢-𝑦 hyperchaotic circuit.

The beneficial effects of the novel fourth-order 𝑧-𝑢-𝑦
hyperchaotic circuit are as follows: it not only can output
four chaotic waveforms and six phase portraits, but also
can output upright phase portrait shape like butterfly wings
and stable fourth-order double vortex chaotic signals. Also,
operational amplifier TL082 or TL084 and analog multiplier
AD633 are used. According to the novel 𝑧-𝑢-𝑦 hyperchaotic
circuit shown in Figure 11, the normalized resistor is set as

𝑅 = 100kΩ. Thus, the state equation of the corresponding
𝑧-𝑢-𝑦 hyperchaotic circuit is obtained as follows:

𝑥̇ = −100k
100k𝑥 − 100k

100k𝑦

̇𝑦 = −100k
22k 𝑥 + 100k

510 Ω × 0.01𝑥𝑧 − 100k
100k × 0.1𝑢

𝑧̇ = −100k
270k𝑧 − 100k

2k × 0.01𝑥𝑦

𝑢̇ = −100k
100k𝑦 − 100k

20k × 0.1𝑢.

(26)

Then, another novel fourth-order hyperchaotic system is
obtained by (26):

𝑥̇ = −𝑥 − 𝑦
̇𝑦 = −𝑎𝑥 + 𝑏𝑥𝑧 − 𝑐𝑢
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Figure 10: Synchronization of the two chaotic systems.

𝑧̇ = −𝑑𝑧 − 𝑒𝑥𝑦
𝑢̇ = −𝑦 − 𝑒𝑢.

(27)

When choosing 𝑎 = 4.55, 𝑏 = 1.96, 𝑐 = 0.1, 𝑑 = 0.37, and 𝑒 =
0.5, the novel system (27) is chaotic. Substituting the specific
parameter values, (27) becomes

𝑥̇ = −𝑥 − 𝑦
̇𝑦 = −4.55𝑥 + 1.96𝑥𝑧 − 0.1𝑢

𝑧̇ = −0.37𝑧 − 0.5𝑥𝑦
𝑢̇ = −𝑦 − 0.5𝑢.

(28)

This is another novel hyperchaotic system through circuit
deformation based on the (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic circuit.
Similarly, the divergence of the novel chaotic system (27) is
easily calculated as

∇ = 𝜕𝑥̇
𝜕𝑥 + 𝜕 ̇𝑦

𝜕𝑦 + 𝜕𝑧̇
𝜕𝑧 + 𝜕𝑢̇

𝜕𝑢 = −1 − 𝑑 − 𝑒 < 0. (29)

The divergence is less than 0. A necessary and sufficient
condition for system (27) to be dissipative is that the diver-
gence of the vector field is negative when the time tends to be
infinite, and the corresponding dynamic characteristics will
be presented.

All of the electronic components are easily available. In
order to illustrate the effectiveness of the proposed 𝑧-𝑢-𝑦
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Figure 11: 𝑧-𝑢-𝑦 hyperchaotic circuit schematic.

(a) 𝑥𝑦 phase portrait (b) 𝑥𝑧 phase portrait (c) 𝑧𝑦 phase portrait
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Figure 12: 𝑧-𝑢-𝑦 hyperchaotic phase portraits with Multisim.

hyperchaotic circuit, some simulations are presented by
Multisim. The 𝑧-𝑢-𝑦 hyperchaotic phase portraits are shown
in Figure 12 withMultisim. It can be seen from the simulation
results that it can output six chaotic phase portraits of 𝑥𝑦,

𝑥𝑧, 𝑧𝑦, 𝑥𝑢, 𝑦𝑢, and 𝑧𝑢. A variety of chaotic signals can
be displayed on the oscilloscope. Similarly, other kinds of
experiments can also be implemented through the novel
𝑧-𝑢-𝑦 hyperchaotic circuit.
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Figure 14: Lyapunov exponents of system (28).

In order to further study the chaotic dynamical behavior
of the novel 𝑧-𝑢-𝑦 hyperchaotic system (27), some numer-
ical analysis and simulations are implemented. The three-
dimensional chaotic attractor of the 𝑧-𝑢-𝑦 hyperchaotic
system is shown in Figure 13. And the Lyapunov exponents
of the novel 𝑧-𝑢-𝑦 hyperchaotic system are also strictly
calculated. With the parameters chosen as 𝑎 = 4.55, 𝑏 = 1.96,
𝑐 = 0.1, 𝑑 = 0.37, and 𝑒 = 0.5, the corresponding Lyapunov
exponents are obtained as 𝐿1 = 0.1067, 𝐿2 = 0.0142, 𝐿3 =
−0.5042, and 𝐿4 = −1.4866.

Thismeans that system (28) is a hyperchaotic system since
𝐿1 and 𝐿2 are positive values and a dissipative system since
the sum of the Lyapunov exponents is negative. It meets the
condition of at least two positive Lyapunov exponents for
the hyperchaotic systems. And the corresponding Lyapunov
exponents diagram of the novel hyperchaotic system (28) is
shown in Figure 14. It is further verified that the novel system
(28) is a hyperchaotic system.

4.2. Hyperchaotic Secure Communication. It is well known
that the hyperchaotic signals are especially suitable for the

secure communication field. In order to improve the security
of secure communication system, it is considered that the
novel hyperchaotic system should be selected as the chaotic
system. In the proposed hyperchaotic secure communication
scheme, the hyperchaotic secure communication circuit is
implemented by using some electronic components contain-
ing analog multipliers, operational amplifiers, resistors, and
capacitors with a novel hyperchaotic system as chaos gener-
ator. On the basis of the proposed fourth-order (𝑦 + 𝑧)-𝑢-𝑥
hyperchaotic circuit, the hyperchaotic secure communication
circuit schematic byMultisim is shown in Figure 15. Its circuit
principle is carefully presented as follows.

It consists of 12 operational amplifiers together with
4 analog multipliers. Its basic circuit is composed of two
identical (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic circuit units with a little
change. The left side of the circuit is the transmitting system
and the right side is the receiving system. The inverting
input end of transmitter-modulator is connected with the
transmitted signal to be transmitted. The same-phase input
end is connected with the 𝑥 output terminal of the novel
(𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic circuit. The inverting input end of
receiver-demodulator is connected with the communication
channel signal, and the same-phase input end is connected
with 𝑥 output end of the novel (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic
circuit. The signal at the output is the output of the receiver.
In this way the receiving system is more easily synchronized
with the transmitting system and the robustness of the
(𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic circuit is maintained. This method
can effectively prevent the useful information from being
intercepted in the communication process [34].

The advantages of the novel hyperchaotic secure commu-
nication circuit are described as follows: the implementation
cost of the novel hyperchaotic system is reduced to improve
the practicability of the secure communication system, the
number of the state variables and transmission channels
needed to access the drive system is also reduced, and the
circuit structure of the designed control system is greatly
simplified. In the following, some simulation experiments
are presented to verify whether two identical parameters of
the (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic circuits can effectively achieve
the signal transmission and reception without distortion.
For example, an input sine wave with amplitude of 1 V and
frequency of 1 kHz is given; the transmitting and receiving
signal waveforms by Multisim are shown in Figure 16. It
can be seen from the simulation results that, no matter
what kinds of signals are input, the full synchronization can
be realized in two identical (𝑦 + 𝑧)-𝑢-𝑥 chaotic circuits if
the component parameters of the transmitting circuit are
completely consistent with the receiving circuit. Negligible
distortion can be observed.

To illustrate the effectiveness of the proposed scheme,
the intensity limit and stability of the transmitted signal, the
broadband characteristics, and the accuracy requirements of
electronic components are simulated by Multisim [34].

First of all, in order to verify whether the proposed
hyperchaotic secure communication circuit has a choice for
various input signals intensity, sine waves with frequency
of 1 kHz and amplitude of 100mV, 5V, 15V, 16V, and 25V
are input. It can be concluded from these waveforms that
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Figure 15: A novel hyperchaotic secure communication circuit by Multisim.

Figure 16: Transmitting and receiving waveforms with amplitude of 1 V and frequency of 1 kHz.

the signal transmission distortion will occur when the signal
amplitude reaches 16V, as shown in Figures 17, 18, 19, and 20.
When the signal amplitude exceeds 16V, the signal distortion
is quite evident, as shown in Figures 21 and 22.

Secondly, in order to verify whether the proposed hyper-
chaotic secure communication circuit has a choice for the
input signal frequency, sine waves with amplitude of 1 V and
frequency of 100Hz, 10 kHz, 100 kHz, 500 kHz, and 1MHz are
given. It can be seen from thesewaveforms that it can transmit

the signal from 1Hz to 500 kHz without distortion. This is
due to the frequency limitations of the amplifiers, as already
shown in [32]. When the signal frequency reaches 500 kHz
to 1MHz, the signal distortion is quite evident, as shown in
Figures 23, 24, 25, and 26. Thus, it can be concluded that the
circuit has the characteristic of broadband.

From the simulation results above, we can draw the
conclusion that the proposed hyperchaotic secure commu-
nication circuit based on the (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic
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Figure 17: 15 V.

Figure 18: Synchronous phase portrait of 15 V.
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Figure 19: 16V.

Figure 20: Synchronous phase portrait of 16V.
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Figure 21: 25V.

Figure 22: Synchronous phase portrait of 25V.
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Figure 23: 500KHZ.

Figure 24: Phase portrait of 500KHZ.
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Figure 25: 1MHZ.

Figure 26: Phase portrait of 1MHZ.
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(a) 𝑥 waveform (b) 𝑦 waveform

(c) 𝑧 waveform (d) 𝑢 waveform

(e) 𝑥𝑦 phase portrait (f) 𝑥𝑧 phase portrait (g) 𝑧𝑦 phase portrait

(h) 𝑥𝑢 phase portrait (i) 𝑦𝑢 phase portrait (j) 𝑧𝑢 phase portrait

Figure 27: The output waveforms and phase portraits signal photos of the novel (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic system.
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(a) 𝑥 waveform (b) 𝑦 waveform

(c) 𝑧 waveform (d) 𝑢 waveform

(e) 𝑥𝑦 phase portrait (f) 𝑥𝑧 phase portrait (g) 𝑧𝑦 phase portrait

(h) 𝑥𝑢 phase portrait (i) 𝑦𝑢 phase portrait (j) 𝑧𝑢 phase portrait

Figure 28: The output waveforms and phase portraits signal photos of the novel 𝑧-𝑢-𝑦 hyperchaotic system.
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circuit has the following advantages: (i) higher intensity limit
and stability of the transmitted signal, (ii) wider broadband
characteristic than ordinary chaotic secure communication
circuits, (iii) more stable working performance and smaller
distortion, (iv) easier debugging and more convenience for
mass production. Moreover, if three jumper pins are added,
it can be used to control the new hyperchaotic secure
communication circuit to realize the experiments of chaotic
synchronization and chaotic nonsynchronization as well as
experiments without signal and with signal. Similarly, the
proposed chaotic secure communication method can also be
applied to the 𝑧-𝑢-𝑦 hyperchaotic circuit and other complex
hyperchaotic systems.

5. Hardware Implementation of the Novel
(𝑦+𝑧)-𝑢-𝑥 and 𝑧-𝑢-𝑦 Hyperchaotic Circuits

Despite the fact that chaotic circuits have many advantages,
the study of chaotic circuit is still in the phase of laboratory
research. Because most researchers still concentrate on the
study of chaos theory in numerical simulations, there is a
certain deviation from the physical circuit system. In order
to verify that the novel (𝑦 + 𝑧)-𝑢-𝑥 and 𝑧-𝑢-𝑦 hyperchaotic
circuits have high accuracy and good robustness and further
study the chaotic dynamical characteristics of the novel
hyperchaotic systems (5) and (27), two practical electronic
circuits are constructed using some general electronic com-
ponents such as operational amplifiers, analog multipliers,
resistors, and capacitors. Figures 27(a), 27(b), 27(c), and 27(d)
show the output waveform photos of the novel (𝑦 + 𝑧)-𝑢-𝑥
hyperchaotic circuit. Figures 27(e), 27(f), 27(g), 27(h), 27(i),
and 27(j) show the output phase portraits photos of the novel
(𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic circuit. Figures 28(a), 28(b), 28(c),
and 28(d) show the output waveform photos of the novel
𝑧-𝑢-𝑦 hyperchaotic circuit. Figures 28(e), 28(f), 28(g), 28(h),
28(i), and 28(j) show the output phase portraits photos of the
novel 𝑧-𝑢-𝑦 hyperchaotic circuit.

It can be seen from the experimental results that the
existence of the hyperchaotic attractors is proved, and it is
also proved by the Multisim and Matlab simulation results.
The proposed circuit design and circuit deformationmethods
of the novel fourth-order hyperchaotic system provide a
reliable straightforward way of realizing chaotic circuits. The
methods are easy to handle and prevent the output voltage
from exceeding the limitation of the amplifier linear region
efficiency.

6. Conclusion

In this paper, a novel hyperchaotic system is proposed
based on a modified Lorenz-like chaotic circuit with reduced
number of amplifiers. This paper is an attempt to investigate
the dynamical behavior, synchronous stability, and applica-
tions in circuit deformation and secure communication field
of the new hyperchaotic system. In order to enhance the
confidentiality and security of the transmitted signals, the
active control method is applied to achieve chaotic synchro-
nization of the novel (𝑦 + 𝑧)-𝑢-𝑥 hyperchaotic system based

on the Lyapunov stability theory. Comparisons between
Multisim as well as Matlab simulation results and physical
experimental results show that they are consistent with each
other and demonstrate that an attractor of the hyperchaotic
system exists. However, the chaotic secure communication
method proposed in this paper still has some limitations.
Since conventional amplifiers and current conveyors have
frequency limitations, they have limited performance in the
implementation of nonlinear circuits. And another important
problem is how to improve the unpredictability of chaotic
communication system. If the chaotic oscillator has higher
positive Lyapunov exponents, those designs can be improved
because it determines the unpredictability grade of chaotic
oscillators.

That way, our future research will focus on the opti-
mization of Lyapunov exponents and circuit implementation
using embedded systems like FPGA, which can lead us to
observe complex attractors with high Lyapunov exponent
values.
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