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Nowadays, haze has become a big trouble in our society. One of the significant solutions is to introduce renewable energy on a large
scale. How to ensure that power system can adapt to the integration and consumption of new energy very well has become a
scientific issue. A smart generation control which is called hierarchical and distributed control based on virtual wolf pack
strategy is explored in this study. The proposed method is based on multiagent system stochastic consensus game principle.
Meanwhile, it is also integrated into the new win-lose judgment criterion and eligibility trace. The simulations, conducted on the
modified power system model based on the IEEE two-area load frequency control and Hubei power grid model in China,
demonstrate that the proposed method can obtain the optimal collaborative control of AGC units in a given regional power
grid. Compared with some smart methods, the proposed one can improve the closed-loop system performances and reduce the
carbon emission. Meanwhile, a faster convergence speed and stronger robustness are also achieved.

1. Introduction

Recently, the thermal power generation makes the environ-
mental pollution more serious, especially the air pollution.
Therefore, more and more clean energies such as wind and
photovoltaics are continuously merged into the strongly cou-
pling interconnected power grid [1]. However, new troubles,
such as voltage over limit and power fluctuations as well as
frequency instability [2–4], are brought out. Meanwhile, the
safe operation of the power grid is also affected. The
traditional centralized automatic generation control (AGC)
cannot obtain the similar control performance with the
decentralized AGC since the energy distributions are more
dispersed. It will be an inevitable trend for the future smart
grid to research the decentralized AGC.

In recent years, many scholars have devoted to the opti-
mal control strategy of decentralized AGC [5–13]. Authors
in [6] put forward the concept of optimal AGC by using
the original dual transformation method, which is based on
the optimal control theory. It showed that the dynamic
equation and the constructed AGC control strategy of the

interconnected system could realize multiarea decentralized
optimal AGC control. However, the used optimal AGC con-
troller needed to feedback all the state variables which were
difficult to be obtained directly in the actual system. In [8],
a new method was proposed based on the model predictive
control. It focused on a decentralized optimal AGC control
strategy based on cooperative synchronous power grid.
While the stability and robustness of the multivariable
predictive control method including the application in actual
AGC system needed to be further studied, the method was a
great amount of calculation and time-consuming. Yu et al.
[11] demonstrated that an optimal AGC can be achieved
under the circumstance that the agents are in small number.
However, the algorithm is only applicable to systems with a
small number of agents and its application is limited. In the
same way, the decentralized control has been studied by the
author in the early stage, namely, decentralized correlated
equilibrium Q(λ)-learning (DCEQ(λ)) [12] based on multia-
gent (MA). It can solve the complex stochastic dynamic char-
acteristics and optimal coordination control of AGC after the
access of distributed energy. Nevertheless, if the number of

Hindawi
Complexity
Volume 2018, Article ID 2782314, 14 pages
https://doi.org/10.1155/2018/2782314

http://orcid.org/0000-0002-5564-9953
http://orcid.org/0000-0002-7805-8486
http://orcid.org/0000-0002-8949-6940
http://orcid.org/0000-0002-0802-554X
http://orcid.org/0000-0002-1721-3729
https://doi.org/10.1155/2018/2782314


MA increases, the searching time for the MA equilibrium
solution is geometric growth, which will limit the application
of DCEQ(λ) in larger systems. Therefore, the decentralized
win or learn fast policy hill-climbing(λ) (DWoLF-PHC(λ))
[13] based on MA was developed, in which by using aver-
age mixed strategy instead of equilibrium strategy. Thus,
the dynamic characteristics of the system are effectively
improved, and the dynamic optimization control of the total
power is also obtained. However, the DWoLF-PHC(λ) still
has multisolution problem. It results in system instability
when the number of MA increases sharply.

The above literatures have some limitations that they
only focus on the control strategy of the total power in the
AGC. However, the dynamic optimal allocation of the total
power is not involved. In fact, the modern power grid has
gradually been developed into a hierarchical and distributed
control (HDC) structure, which integrates the large-scale
new energy. For this reason, a single control strategy is diffi-
cult to meet the requirements of control performance
standards (CPS). Therefore, a hierarchical and distributed
control based on virtual wolf pack strategy (HDC-VWPS)
is proposed in order to attenuate the stochastic disturbance
problem caused by massive integration of new energy to the
power grid. The proposed strategy is based on multiagent
system stochastic consensus game (MAS-SCG). It is divided
into two parts. The first part is an AGC optimal control
method which combines a new win-lose judgment criterion,
policy hill-climbing algorithm (PHC) [14], and eligibility
trace [15]. Especially, the new win-lose judgment criterion
is named as policy dynamics-based WoLF (PDWoLF) [16].
Moreover, the control method, which is called PDWoLF-
PHC(λ), is based on multiagent system stochastic game
(MAS-SG) theory. Meanwhile, the second part is the collab-
orative consensus (CC) algorithm [17] which is based on
multi-agent system collaborative consensus game (MAS-
CC) theory. This algorithm is used to distribute the total
power dynamically and optimally. Consequently, the perfect
combination of AGC control and distribution is realized. At
the same time, the intelligence from the whole to the branch
is truly obtained. The significant difference between smart
generation control (SGC) and AGC is that the original
proportional-integral (PI) control in AGC is replaced by
the smart control in SGC.

The rest of the paper is as follows. The SGC framework
based on HDC structure is proposed in Section 2. The HDC-
VWPS is expounded in Section 3. Meanwhile, Section 4 is
the AGC design based on HDC-VWPS. Section 5 covers the
case study, and Section 6 summarizes the full text, respectively.

2. SGC Framework Based on HDC Structure

Hierarchical reinforcement learning (HRL) [18] is a hierar-
chical control method that can solve the problem of “curse
of dimensionality” in traditional reinforcement learning
effectively. A new method, namely, HDC-VWPS, is put for-
ward to obtain the optimal total power and its optimal
dispatch dynamically. The term “virtual wolf pack” is a gen-
erator set group (GSGs) of a certain control area. The
PDWoLF-PHC(λ) with the win or learn fast (WoLF)

attribute based on heterogeneous MAS-SG theory is adopted
to obtain the total power of each GSG. Meanwhile, the ramp
time CC algorithm based on homogeneous MAS-CC theory
is used to distribute the total power to each unit dynamically
in order to achieve the optimal coordination control of each
GSG. The “leader” of virtual wolf pack refers to a new dis-
patcher who is responsible for communicating, contacting
and cooperating with the leaders of the other GSGs, and
sending the instructions to each unit in the GSGs. Each
GSG only has one leader. The SGC framework based on
HDC structure is shown in Figure 1, where ΔPtie is the tie-
line exchange power, Δf is the interconnected power grid fre-
quency error, ΔPi is the total power of GSGi i = 1, 2,… , n ,
and ΔPiu is the regulation power of the uth unit in GSGi.

3. HDC-VWPS

A HDC-VWPS is designed to coordinate and optimize the
operation of GSGs in the SGC system with HDC structure
through the integration of MAS-SG and MAS-CC.

3.1. MAS-SG Framework. Based on the MAS-SG frame-
work, a PDWoLF-PHC(λ) algorithm is proposed to the
game among GSGs to obtain total power command of
each GSG.

The WoLF principle can meet the convergence require-
ment by changing the learning rate without sacrificing ratio-
nality, namely, learn quickly when losing and cautiously
when winning [14]. However, in more than 2 × 2 games,
the players cannot accurately calculate the win-lose criterion
and can only rely on the estimation. Therefore, an improved
WoLF version, PDWoLF, whose judgment criterion can be
accurately computable in more than 2× 2 games, was
explored in [16]. Also, it can converge to Nash equilibrium
in more than 2 action games.

It indicates that PHC algorithm can meet the require-
ment of the rationality in [14]. Therefore, PDWoLF-PHC
can satisfy the requirements of the convergence and the
rationality at the same time. It also converges faster with
a higher learning rate ratio [16]. The PDWoLF-PHC is
the extension of the classical Q-learning [19]. It combines
the multistep backtracking idea of the SARSA(λ) [15] to
search the optimal action-value function through the con-
tinuous trial and error dynamically. The parameter λ refers
to the use of an eligibility trace. It can solve the temporal
credit assignment of time-delayed reinforcement learning.
The optimal value function Vπ∗ s and strategy π∗ s are
as follows.

Vπ∗
s =max

a∈A
Q s, a ,

π∗ s = argmaxQ
a∈A

s, a ,
1

where A is the set of possible actions under state s.
The eligibility trace is updated by

ek+1 s, a =
γλek s, a + 1,  if s, a = sk, ak ,
γλek s, a ,  otherwise,
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where ek s, a denotes the eligibility trace at the kth step
iteration under state s and action a, γ is the discount factor,
and λ is the trace-attenuation factor.

The Q function will be iteratively updated according to

Qk+1 sk, ak =Qk sk, ak + a

R sk, sk+1, ak + γ max
a ∈A

Qk sk+1, a′

−Qk sk, ak ek sk, ak ,

3

where 0 < α < 1 is the Q-learning rate and R sk, sk+1, ak is the
reward function value from state sk to sk+1 under the selected
action ak Q s, a is the Q value function when executing
action a in state s, which uses look-up table method. a′ is a
greedy action. After sufficient trial and error iterations are
done, the state-value function Q s, a will converge to the
Q∗ matrix with the probability of one. Finally, an optimal
control strategy, represented by the optimal Q function
(Q∗ matrix), can be obtained.

The win-lose criterion of PDWoLF-PHC(λ) is deter-
mined by two parameters δwin and δlose for a given agent.
Strategy π sk, ak is updated for an agent according to (4)
in the state state-action pair sk, ak .

πk+1 sk, ak = πk sk, ak + Δskak
, 4

where Δskak
is the variable quantity of the updating strategy.

The updating rule is described as follows.

Δskak
=

−δskak k ,  if ak ≠ arg maxa Qk+1 sk, a′ ,

〠
a ≠ak

δska k ,  otherwise,

5

δskak k =min πk sk, ak , δ

A − 1 6

In (6), ∣A∣ is the number of possible actions. δ is the var-
iable learning rate and δwin < δlose ∈ 0, 1 . Also, φ = δlose/δwin
is defined as the variable learning rate ratio. δ is updated by

δ =
δwin,  if Δk sk, ak ⋅ Δ2

k sk, ak < 0,
δlose,  otherwise,

7

where Δ2
k sk, ak is the decision space slope value and Δk

sk, ak is the decision change rate at the kth step iteration.
Meanwhile, Δ2 sk, ak and Δ sk, ak are updated by

Δ2
k+1 sk, ak = Δskak − Δk sk, ak ,

Δk+1 sk, ak = Δskak

8
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Figure 1: The SGC framework based on HDC structure.
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3.2. MAS-CC Framework. The MAS-CC framework is intro-
duced into the HDC-VWPS to dynamically allocate the total
power command to each unit.

3.2.1. Graph Theory. The topology of MAS can be expressed
as a directed graph G = V , E, B with a set of nodes V =
v1, v2,… , vn , edges EIV ×V , and a weighted adjacency
matrix B = bij ÎR

n×n. Among them vi denotes the ith agent,
edge means the relationship among agents, and constant
bij ≥ 0 is the weight factor between vi and vj. If there is
a connection between any two vertices, then the graph G
is called a strongly connected graph. The Laplacian matrix
L = lij ÎR

n×n of graph G can be written as follows.

lii = 〠
n

j=1,j≠i
bij, lij = −bij, ∀i ≠ j, 9

where the matrix L reflects the topology of the MA network.

3.2.2. Collaborative Consensus. In a MAS, it is usually called
collaborative consensus (CC) [20] while an agent interacts
with the adjacent one to reach the consensus. AMAS consist-
ing of n autonomous agents is regarded as a node in a
directed graph G. The purpose of CC is to obtain a consensus
in each agent and to update state in real time after communi-
cating with neighboring agents. Due to the communication
delay among agents, the first-order CC algorithm of a dis-
crete system is chosen as follows.

ψi k + 1 = 〠
n

j=1
dij k Ψj k , 10

where ψi is the state of the ith agent, k represents the discrete
time series, and dij k denotes the i, j entry of the row

stochastic matrix D = dij ÎR
n×n at discrete time. k dij k is

given by

dij k =
lij

〠n
j=1 lij

11

The CC algorithm can be achieved if and only if the
directed graph is strongly connected on the condition of the
continuous communication and constant gain bij.

3.2.3. Ramp Time Collaborative Consensus. The ramp time is
chosen as the consensus variable among all units in a GSG. A
unit which has a higher ramp rate will be distributed with
more disturbances. The ramp time of the uth unit in GSGi
can be obtained as follows.

tiu =
ΔPiu

ΔPrate
iu

, 12

where ΔPiu is the regulation power of the uth unit in
GSGi. ΔPrate

iu is the ramp rate of the unit and is calculated
as follows.

ΔPrate
iu =

Prate+
iu ,  ΔPi > 0,

Prate−
iu ,  ΔPi < 0,

13

where ΔPrate+
iu and ΔPrate−

ui are the upper and lower bounds of
the ramp rate, respectively.

The ramp time of the uth unit in GSGi can be updated
according to (10) as follows.

tiu k + 1 = 〠
Ui

v=1
d i
uv k tiv k , 14

where Ui is the total number of units in GSGi. D i = d i
uv

∈ RUi×Ui is the row stochastic matrix.
Then the ramp time of the GSGi leader can be updated

as follows.

tiu k + 1 =
〠
Ui

v=1
d i
uv k tiv k + ξiΔPerror−i,  ΔPi > 0,

〠
Ui

v=1
d i
uv k tiv k − ξiΔPerror−i,  ΔPi > 0,

15

where ξi > 0 represents the GSGi’s adjustment factor of the
power error. ΔPerror−i denotes the power error between the
GSGi total power and the total power of all units. It is
obtained from

ΔPerror−i = ΔPi − 〠
Ui

u=1
ΔPiu 16

In the condition of the total power command ΔPi > 0, if
ΔPerror−i > 0, the ramp time tiu needs to be increased; other-
wise tiu needs to be reduced. Oppositely, tiu will be increased
or decreased in condition that ΔPi < 0.

As a ramp time CC algorithm among units is adopted,
the power of some units may exceed their maximum power.
At the same time, the smaller the unit maximum ramp time
tmax
iu is adopted, the faster the power limit is reached. While
the power limit is reached, the uth unit’s power and ramp
time are as follows.

ΔPiu =
ΔPmax

iu ,  ΔPiu > ΔPmax
iu ,

ΔPmin
iu ,  ΔPiu < ΔPmin

iu ,

tiu = tmax
iu =

Δ Pmax
iu

Prate+
iu

,  ΔPiu > ΔPmax
iu ,

Δ Pmin
iu

Prate−
iu

,  ΔPiu < ΔPmin
iu ,

17

where ΔPmax
iu and ΔPmin

iu are the maximum and minimum
reserve capacity of the uth unit in GSGi, respectively. Fur-
thermore, if the power ΔPiu of the uth unit exceeds its limit,
the weight factor becomes as follows.

b i
uv = 0, v = 1, 2… ,Ui 18
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where B = b i
uv ∈ RUi×Ui is the weighted adjacency matrix of

the GSGi.

4. AGC Design Based on HDC-VWPS

4.1. Reward Function Selection. The impact of energy man-
agement system (EMS) on the environment is considered,
and carbon emission (CE) as part of the reward function
is also introduced. Meanwhile, in the load frequency con-
trol (LFC), each regional power grid will control the gen-
erator set in this area according to its own area control

error (ACE). The main purpose is the ACE is zero when
the steady state is reached. Therefore, in the reward func-
tion, the weighted sum of CE and ACE is taken as the
objective function. The reward function in GSGi is defined
as follows.

R sk, sk+1,ak = −η
〠Ui

u=1Ciu ΔPiu k

1000 − 1 − η ACE k 2

 s t  ΔPmin
ui ≤ ΔPiu k ≤ ΔPmax

iu ,
19

Initialize Q0 s, a , π0 s, a and e0 s, a , for all s ∈ S, a ∈ A;
Set parameters δwin, δlose, φ, γ, λ, α, and Tstep = AGC decision time;
Give the initial state s0, k = 0;
Repeat
(1) Choose an exploration action ak based on the mixed strategy set π sk, ak ;
(2) Execute the exploration action ak to AGC units and run LFC system for the next Tstep sec;
(3) Observe a new state sk+1 via CPS1 and ACE;
(4) Obtain a short-term reward R sk, sk+1, ak using Eq. (19);
(5) Update eligibility trace according to Eq. (2);
(6) Update Q function using Eq. (3);
(7) Select variable learning rate δ with Eq. (7);
(8) Compute Δskak

by Eq. (5) and Eq. (6);

(9) Calculate Δ2 sk, ak and Δ sk, ak according to Eq. (8);
(10) Update the mixed strategy π sk, ak according to Eq. (4);
(11) Obtain the total power ΔPiu of the GSGi;
(12) Determine the ramp rate according to Eq. (13);
(13) Execute CC algorithm according to Eq. (14) and Eq. (15);
(14) Calculate the uth unit power ΔPiu in GSGi;
(15) If the power limit is not exceeded, then execute step 17;
(16) Calculate ΔPiu and tiu according to Eq. (17). And update D i using Eq. (9), Eq. (11) and Eq. (18);
(17) Calculate the power error ΔPerror−i according to Eq. (16);
(18) If ΔPerror−i < ΔPmax

error−iis not satisfied, execute step 13;
(19) Output the uth unit power ΔPiu;
(20) Set k = k + 1, and return to step 1.
End

Algorithm 1: Execution steps of the HDC-VWPS.
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where ΔPiu k is the actual output power of the uth unit
in GSGi at the kth iteration; ACE k indicates the instan-
taneous value of ACE at the kth iteration; η and 1 − η
represent the weight factor of controlled area’s CE and

ACE, respectively. Here, η equals 0.5. Ciu is the CE inten-
sity coefficient of the uth unit in GSGi, whose unit is kg/
kWh. ΔPmax

iu and ΔPmin
iu are the upper and lower bounds

of the uth unit’s capacity in GSGi, respectively. The CE

Table 1: Model parameters of GSG units in the Hubei power grid.

GSG number Plant types Unit number ΔPmax
iu (MW) ΔPmin

iu (MW) GRC (MW/min) Ciu (kg/kWh)

GSG1

Coal-fired power plants

G1 200 −200 5 0.99

G2 200 −200 5 0.99

G3 200 −200 5 0.99

G4 176.5 176.5 4.4 0.89

G5 300 −300 7 0.99

G6 300 −300 7 0.99

G7 300 −300 7 0.99

G8 350 −350 8.2 0.89

G9 185 −185 4.6 0.99

Pumped storage power plant

G10 300 0 300 0

G11 300 0 300 0

G12 300 0 300 0

G13 300 0 300 0

GSG2 Coal-fired power plants

G14 220 −220 5.5 0.89

G15 220 −220 5.5 0.89

G16 600 −600 12 0.89

G17 600 −600 12 0.89

G18 300 −300 6 0.99

G19 300 −300 6 0.99

GSG3

Coal-fired power plants

G20 300 −300 6 0.99

G21 300 −300 6 0.99

G22 300 −300 6 0.99

G23 300 −300 6 0.99

G24 600 −600 12 0.89

G25 600 −600 12 0.89

Hydropower plants

G26 150 0 150 0

G27 150 0 150 0

G28 150 0 150 0

G29 150 0 150 0

G30 150 0 150 0

G31 150 0 150 0

G32 170 0 170 0

G33 170 0 170 0

GSG4

Coal-fired power plants

G34 300 −300 6 0.99

G35 300 −300 6 0.99

G36 300 −300 6 0.99

G37 300 −300 6 0.99

G38 1000 −1000 20 0.87

Hydropower plants

G39 1000 −1000 20 0.87

G40 300 0 300 0

G41 300 0 300 0

G42 300 0 300 0

G43 300 0 300 0
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intensity coefficients for each type of generator set are
as follows.

Cwater
iu = 0,

Ccoal−f ired
iu =

0 87,  ΔPiu > 600,
0 89,  300 < ΔPiu ≤ 600,
0 99,  ΔPiu ≤ 300,

20

where ΔPiu is the uth unit regulation power of the GSGi
in MW.

4.2. Parameter Setting. A reasonable set of six parame-
ters λ, γ, α, δ, φ, and ξi is required in the design of the
control system.

The trace-attenuation factor λ allocates the credits
among state-action pairs. Usually, the parameter λ is located

between 0 and 1. It determines the convergence rate and the
non-Markov decision process (MDP) effects for large time-
delay systems. Generally, the factor λ can be interpreted as
a time scaling element in the backtracking. For Q-function
errors, a small λmeans that few credit will be given to the his-
torical state-action pairs while a large λ denotes that much
credit will be assigned. Through trial and error, it shows that
0.7<λ < 0.95 is acceptable. Here, λ = 0 9 is selected.

The discount factor γ is between 0 and 1, which discounts
the future rewards in Q functions. A value close to 1 should
be chosen as the latest rewards in the thermal-dominated
LFC process which is the most important. Experiments dem-
onstrate that 0.6< γ < 0.95 is proper. Here, γ = 0 9 is chosen.

The Q-learning rate α is set between 0 and 1, which
weighs the convergence rate of the Q-functions, namely,
algorithm stability. Note that a larger α can accelerate the
learning rate, while a smaller α can enhance the system
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stability. In the prelearning process, the initial value of α is
chosen to be 0.1 to obtain the overall search. After that, in
order to gradually increase the stability of the system, it will
be reduced in a linear way.

The variable learning rate δ is between 0 and 1, which
derives an optimal policy by maximizing the action value.
Especially, the algorithm will be degraded into Q-learning if
δ equals 1. The main reason is that a maximum value action
is permanently executed in every iteration. For a fast con-
vergence rate, the greedy strategy with a variable learning
rate ratio φ = δlose/δwin = 4 is selected in a stochastic game.
Through trial and error, it shows that δwin = 0 06 can obtain
stable control characteristics.

The value of power error adjustment factor ξi in GSGi is
related to ΔPi, which is shown in

ξi =

0 0025,  ΔPi > 500,
0 005,  0 < ΔPi < 500,
0 008,   − 500 < ΔPi < 0,
0 02,   − 1000 < ΔPi < −500,
0 03,  ΔPi < −1000

21

ΔPi is the total power of GSGi in MW.

4.3. HDC-VWPS Procedure. The Overall HDC-VWPS Proce-
dure Is Described in Algorithm 1.

5. Case Study

5.1. The Modified Model with Two-Area LFC Power System in
IEEE. In order to test the control performance of the pro-
posed strategy, an IEEE-modified model with two-area LFC
power system [21] is selected as the simulation object, whose
framework is shown in Figure 2. The system parameters are
taken from [22], and those of GSG1 and GSG2 are provided
in Table 1.

The work cycle of the AGC is set to be 4 s. Note that
HDC-VWPS has to undergo a sufficient prelearning through
off-line trial and error before the final online implementa-
tion. It includes extensive explorations in CPS state space
for the optimization of Q-functions and state-value functions
[23]. Figure 3 presents the prelearning of each area produced
by a continuous 10min sinusoidal disturbance. It is obvious
that the HDC-VWPS can converge to the optimal strategy
in each GSG with qualified CPS1 (the average of 10min
CPS1) and EAVE 10 min (the average of 10min ACE).

Furthermore, a Q matrix Qik s, a –Qi k−1 s, a 2 ≤ ς

with 2 norms is used as the criterion for the prelearning ter-
mination of an optimal strategy [24]. ς = 0.1 is a specified
positive constant. Both the Q value and look-up table will
be automatically saved after the prelearning, such that
HDC-VWPS can be applied into a real power system. The
convergence result of Q-function differences is given in
Figure 4. The result is obtained in each GSG during the
prelearning, in which the HDC-VWPS can accelerate the
convergence rate by nearly 26.7%~40% over that of Q(λ).
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In order to evaluate the robustness of each algorithm,
the control performances of DWoLF-PHC(λ), Q(λ), and
Q-learning are compared with that of HDC-VWPS under
a step and a stochastic load disturbance in GSG1. The sim-
ulation results under a step load disturbance are shown in
Figure 5. In Figure 5(a) it is shown that the overshoots are
around 6.3758%, 4.907%, 7.2614%, and 13.0435%, respec-
tively. Meanwhile, in Figure 5(b), it refers that the average
values of ACE are 0.1261MW, 1.0682MW, 1.2216MW, and

1.0438MW, respectively. In addition, in Figure 5(c), it is illus-
trated that the minimum CPS1 is 189.6487%, 186.7696%,
189.6426%, and 190.1703%, respectively. In the meantime,
the simulation results under a stochastic load disturbance
are described in Figure 6. In Figure 6(a), it is demonstrated
that HDC-VWPS has the strongest robustness. Besides, in
Figure 6(b), it refers that the average values of ACE are
22.7175MW, 45.1846MW, 66.6484MW, and 75.7486MW,
respectively. Moreover, in Figure 6(c), it is presented that
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Figure 5: Control performance of four AGC controllers under a step load disturbance.
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the minimum CPS1 is 167.7471%, 159.4400%, 150.6757%,
and 127.3168%, respectively. Therefore, HDC-VWPS can
provide better control performances for AGC units.

The stochastic white noise is used as the load distur-
bance after the prelearning process, in which the control
performance of each algorithm obtained in each GSG is
summarized in Figure 7. CE, Δf (average values of the fre-
quency deviation), EAVE 1 min (average values of 1min

ACE), and CPS1 are the average values over 24 h. It can
be seen from Figure 7 that compared with the other
methods, HDC-VWPS can reduce CE by 1.21%~1.51%, Δ
f by 4.5647× 10−4~7.5851× 10−4Hz, and EAVE 1 min by
5.79%~44.22% and increase CPS1 by 0.0007%~0.02%.

5.2. Four-Area Model of Hubei Power Grid. Four-area model
of Hubei power grid is shown in Figure 8. As shown in
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Figure 6: Control performance of four AGC controllers under a stochastic load disturbance.
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Figure 9, an AC/DC hybrid Hubei power grid model, which
consists of totally 43 units of four GSGs, is analyzed in the
paper. The control performance is CPS, and the work cycle
of AGC is set to be 4 s. The L10 of Hubei power grid model
is 118MW.ΔXg is the governor output, andΔPg is the turbine

output. At the same time, Tg is the time constant of the gov-
ernor, T t is the time constant of the turbine, andKp/ 1 + sTp
is the equivalent function of AC frequency response,
respectively. Related parameters are set as follows. Tg =
0 078, T t = 0 32, Kp1 = 0 0027, Kp2 = 0 0029, Kp3 = 0 0027,
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Kp4 = 0 0025, and Tp = 20. Generation rate constraint
(GRC) is the Prate+

iu / Prate−
iu in this study. GRC and all the

other system parameters are given in Table 1.
The system includes coal-fired power plants, hydro-

power plants, and pumped storage power plants. The out-
put of each plant is relative to its own governor, and the
setting point of AGC is obtained according to the optimal
dispatch. The long-term AGC control performance based
on MA is evaluated by a statistic experiment with 30-day
stochastic load disturbance. Four types of controllers are
simulated, that is, Q-learning, Q(λ), DWoLF-PHC(λ),
and HDC-VWPS. The statistic experiment results obtained
under the impulsive perturbations and stochastic white
noise load fluctuation are showed in Figures 10 and 11,
respectively. Especially, Δf and ACE are the average
values of the frequency deviation and ACE. CPS1, CPS2,
and CPS are the monthly compliance percentages. The
same weight of HDC-VWPS in each GSG is chosen, which
has a more effective joint cooperation than other policvies.
As a result, a higher scalability and self-learning efficiency
can be achieved.

Figure 10 shows that the HDC-VWPS in GSG1, com-
pared with other methods, reduces CE by 11.48%~29.45%,
Δf by 0.237~0.0325Hz, and ACE by 8.57%~90.37% and
increases CPS1 by 1.03%~29.9%.

Figure 11 shows that the HDC-VWPS in GSG1,
compared with other methods, reduces CE by
0.17%~20.24%, Δf by 0.003~0.078Hz, ACE by 45%~94%
and increases CPS1 by 0.03%~4%. Similar results can be
obtained in other GSGs.

It can be seen from the simulation results that the
HDC-VWPS has stronger adaptability and better control
performance than that of other three methods. In each
GSG area, the win-lose criteria of the unit depend on
the sign of the product of Δ sk, ak and Δ2 sk, ak . By
determining the “lose” or “win” of an agent, the corre-
sponding variable learning rate is selected to obtain the
optimal Q function through updating the Q value
dynamically. Meanwhile, the variable quantity is deter-
mined in the mix strategy updating. Finally, the optimal
mixed strategy is gained by the dynamic updating con-
tinuously. The results also demonstrate that the proposed
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Figure 9: Hubei power grid model.
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strategy can effectively reduce the CE and improve the
utilization rate of new energy.

6. Conclusion

Based on theMAS-SCG theory, a novel HDC-VWPSmethod
with new win-lose judgment criterion and eligibility trace is
proposed to dynamically obtain the optimal total power
and its optimal dispatch. Also, it can attenuate the stochastic
disturbance caused by massive integration of new energy to
the power grid.

Based on MAS-SG, a PDWoLF-PHC(λ) algorithm is
proposed to solve the universality problem which usually a
strict knowledge system is required for agents under the tra-
ditional MAS-SG system. It also solved the problem which
the agents cannot accurately calculate the judgment criterion
and converge to Nash equilibrium slowly in more than 2× 2
games. Based on MAS-CC theory, the ramp time CC algo-
rithm is used to allocate the total power command to each
unit dynamically.

The simulation results verify the effectiveness of the
proposed strategy using modified power system model in
the IEEE two-area LFC and Hubei power grid model in
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Figure 10: Statistic experiment results obtained under the impulsive perturbation in the Hubei power grid model.

GSG4

GSG3

GSG2

GSG1

0 200 400 600 800

GSG4

GSG3

GSG2

GSG1

0 50 100 150 200

GSG4

GSG3

GSG2

GSG1

0 0.02 0.04 0.06 0.08

GSG4

GSG3

GSG2

GSG1

0 20 40 60 80 100

GSG4

GSG3

GSG2

GSG1

0 100 200 300 400

GSG4
100
100100
100
100
100
100100
100
10092.5

73
GSG3

GSG2

GSG1

98.5 99 99.5 100

HDC-VWPS
DWoLF-PHC(�휆)

Q(�휆)-learning
Q-learning

CE (t/h)

CPS1 (%)

|Δf| (Hz)

CPS2 (%)

|ACE| (MW)

CPS (%)

173.0113219.2221234.2504 269.2922
592.5897 597.6702 581.7271 730.4897
649.3591 645.9525 657.5408 764.3758
572.6473

199.989

199.9567

199.9604

199.9665

200.8974

199.4113

198.0741

198.8328

200.0304

199.4396

199.8848

200.0254

113.0715

204.8607

202.6867

208.3543

573.5986 579.8962 717.9819

0.00120.00570.005 0.0796
0.00160.00620.0059
0.00150.00640.0048 0.0794
0.00180.00650.0048 0.0794

1.166812.67771.992 404.7457
1.67824.786523.828 125.1563
1.842215.38325.886131.5736
2.70688.54484.913244.3237

0.0794

100100100100
100100100
100100100100
100100100

99.23

99.02

Figure 11: Statistic experiment results obtained under the white noise load fluctuation in the Hubei power grid model.
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China. Compared with other four smart methods, the pro-
posed one can satisfy the CPS requirements and improve
the performance of the closed-loop system. Also, it can
reduce the CE and maximize the utilization rate of energy.
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