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Optimal control problems with multiple conflicting objectives in chemical processes are quite challenging. To solve such problems,
we put forward a multistrategy-based multiobjective differential evolution, in which (1) a hybrid selection strategy is incorporated
from the motivation of no single strategy outperforming all other ones in every stage; (2) a multipopulation strategy is applied to
represent the main population and current optimum, and a cyclic crowding estimation is developed to maintain these optimum;
and (3) a multimutation strategy is constructed to improve both exploration and exploitation ability. The effectiveness and
efficiency of the proposed algorithm are validated by comparisons with some representative multiobjective evolutionary
algorithms over 12 test instances. Moreover, the proposed algorithm is applied to solve 3 multiobjective optimal control
problems in chemical processes. The obtained results indicate the efficiency and effectiveness of the proposed algorithm for
solving multiobjective optimal control problems.

1. Introduction

Almost all optimal control problems (OCPs) in engineering
have been considered to be single-objective optimization
problems. In practical, for most of OCPs in chemical process,
they involve multiple conflicting objectives [1]. For instance,
some chemical processes are characterized by improving
both product quality and yield with low energy consumption
[2]. For such multiobjective optimal control problems
(MOOCPs), there does not exist a trajectory which optimizes
all objectives simultaneously. On the contrary, there exist
many optimal trajectories, called Pareto optimal solutions
in a multiobjective optimization community, which repre-
sent some trade-off between the conflicting objectives.

One common and straightforward manner to solve a
given MOOCP is transforming the original problem into a
single-objective optimal control problem (SOOCP) using
some weighted sum methods and then optimizing it [3–5].
One intrinsic characteristic common in the single-objective-
based methods is that they aim at locating just one optimal

solution rather than multiple optimal solutions in a single
run. Thus, many runs should be conducted to obtain the
multiple optimal solutions. Furthermore, the relation between
a uniform grid of weights and the spread on the Pareto
front is unclear.

With the development of evolutionary algorithms (EAs),
multiobjective evolutionary algorithms (MOEAs) have been
widely used in plenty of fields [6]. One advantage of using
MOEAs to solve such problems is that they can find a set of
representative optimal solutions in a single run [7]. Recently,
some researchers have demonstrated that MOEAs not only
are effective for common multiobjective problems (MOPs)
but also can be extended to solve MOOCPs. Sarkar and
Modak used the enhanced version of a nondominated sorting
genetic algorithm (NSGA-II) to solve two fed-batch bioreac-
tors [8]. Logist et al. used the freely available toolkit named
ACADO, to solve different types of MOOCPs appearing in
chemical engineering with different objective numbers [1].
Chen et al. improved the performance of MODE by using a
ranking-based mutation operator and then applied the new
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MODE to solve 4MOOCPs in chemical process [9]. Fan et al.
proposed a multiobjective differential evolution with perfor-
mance metric-based self-adaptive mutation operator for typ-
ical MOOCPs in chemical and biochemical processes [10].
Results showed that the proposed new approach is suitable
for solving actual problems and can obtain some Pareto opti-
mum for decision makers.

When solving the MOOCP by MOEAs, the principle of
it, as shown in Figure 1, can be summarized as follows: firstly,
transforming the MOOCP into common MOPs and then
MOEAs can be applied to solve the transformed problems.
Therefore, questions arising naturally in solving MOOCP
are twofold: how to perform transforming and how to design
effective MOEAs. In this paper, we focus on the second issue
and take the most used control vector parameterization
(CVP) method to meet the first one.

The last two decades have witnessed major developments
in EA-based algorithms for MOPs. Differential evolution
(DE) [11], a simple yet effective nature-inspired stochastic
algorithm, has been widely and successfully applied for solv-
ing various complex problems [9, 12–14]. However, it must
be emphasized that DE was originally proposed for single-
objective problems, while the main goal of a multiobjective
optimization algorithm is to find a set of trade-off solutions.
Thus, to solve MOPs effectively via DE, the following two
issues should be considered:

(1) How to select and/or retain the best solutions? That
is, how to perform elitism.

(2) How to promote diversity into the population.

In fact, the basic DE can be directly applied to solve
MOPs by replacing the selection component [6]. Thus, one
key issue in designing a MODE is designing a proper selec-
tion component. In general, the selection component
includes assigning a fitness value for each candidate solution
and selecting the promising ones for the new population. As
pointed out in [15], different selection components in DE
makes an algorithm differ from others. During the last three
decades, plenty of selection components with different strat-
egies have been developed for solving MOPs. One notable
difference among these strategies is how the Pareto domi-
nance concept is used. From this aspect, we classify the cur-
rent selection strategies into three categories:

1.1. No Pareto Dominance Used. It combines all the multiple
objectives into a single one, such as weighted sum approach,
and then the original EAs can be applied, such as [16–19] and
so on. Among all these algorithms, MOEA/D is a recent
multiobjective evolutionary algorithmic framework which
is based on conventional aggregation approaches [18].
MOEA/D has a fast execution speed and some improved
MOEA/D-based algorithms are proposed [7, 20]. However,
they need to provide a set of uniformly distributed weights
and a decomposition method. This extra information
highly affects MOEA/D’s performance.

1.2. Use Pareto Dominance as a Ranking Method. In this
group, Pareto ranking, also called the nondominated sorting

method [21, 22], is used for fitness assignment for the con-
flicting objectives first and then the selection based on the
ranking numbers can be performed. Much research uses this
method as a selection strategy [21–29].

1.3. Use Pareto Dominance as a Filter. Here, a filter means
finding a set of better solutions from a given set. In this situ-
ation, Pareto dominance is often used in tournament selec-
tion to find a better solution among several candidates or to
identify a set of nondominated solutions [30–37]. Since this
group of strategies puts more efforts on the elitists, it has a
very fast convergence speed. However, it easily gets the
search stuck at local optima for multimodal problems.

According to the no free lunch theorem [38], it is impos-
sible for a single-selection strategy to outperform all other
strategies on all problems at different search stages. In other
words, depending on several selection strategies can be effec-
tive for different problems during different search stages.
Motivated by these observations, we propose a new MOEA
named DEHC using DE with a hybrid selection strategy
(HSS) and cyclic crowding estimation (CCE) for MOOCPs.
For the hybrid selection strategy, the decomposition-based
strategy [18], nondominated sorting strategy [22], and non-
dominated neighbor-based strategy [33] are adopted as the
selection strategy. As for the diversity estimation, in this
paper, we introduce an external population to store all the
found nondominated solutions and then use a cyclic crowd-
ing estimation to maintain this population. Furthermore, a
multiple-mutation strategy-based mutation component is
used as the main reproduction operator.

The remainder of this paper is arranged as follows.
Section 2 briefly presents a basic concept of MOOCP and
conventional DE. Section 3 presents our DEHC in detail.
Section 4 presents simulation and comparative results of
DEHC with other competing algorithms. In Section 5,
DEHC is applied to solve 3 MOOCPs in chemical processes.
Section 6 draws conclusions.

2. Basic Concepts

2.1. MOOCP: Multiobjective Optimal Control Problem.
Consider the system x = f x t , u t , t with state variables
x t ∈ℝD, initial condition x t0 = x0, and control variables
u t ∈ℝK . Then the main goal of solving the problem is to
find the optimal control variables u∗ t , t ∈ t0, t f that drive
the plant along the trajectory x∗ t , t ∈ t0, t f such that all
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Figure 1: The schematic graph to illustrate the principle of solving
an OCP by EAs.
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the cost functions are minimized where the final time t f is
fixed. The structure of a typical MOOCP for a continuous
process can be generally described as follows:

min J1, J2,… JM , 1

subject to

dx
dt

= f x t , u t , t , t ∈ t0, t f ,

L ≤ u ≤U
2

Each of the objective functions Ji i = 1, 2,… ,M in (1)
can be formulated as follows:

Ji u t = φi x t f , t f +
t f

t0

ψi x t , u t , t dt, 3

whereM is the objective number, Ji ⋅ is the total cost func-
tion, ϕi ⋅ is the final time performance index, ψi ⋅ is the
integrated performance during the operation, t0 is the initial
time, and t f is the final time; L ∈ℝK and U ∈ℝK are the
lower and upper boundary of control variables, respectively.

2.2. Multiobjective Optimization. Multiobjective optimiza-
tion algorithms are aimed at optimizing conflicting objectives
simultaneously. To aid descriptions, some definitions regard-
ing multiobjective optimization are introduced.

Definition 1. Solution u1 is said to dominate solution u2,
denoted as u1 ≻ u2, if and only if ∀i ∈ 1,… ,M , Ji u1 ≤ Ji
u2 , and ∃j ∈ 1,… ,M , J j u1 < J j u2 . Reciprocally,
solution u2 is said to be dominated by solution u1, denoted
as u2≺u1.

Definition 2. Solution u∗ is said to be a Pareto optimum only
if ¬∃u ∈ S, u ≻ u∗. All Pareto optima constitute a Pareto opti-
mal set, denoted as X∗.

Definition 3. Pareto optimal front is defined as PF = J u∗

∣ u∗ ∈ X∗ , that is, the mapping of the Pareto optimal set in
the objective space.

2.3. Differential Evolution Algorithm. Like other EAs, DE
begins with a randomly initialized population in the search
space and then adopts trial vector generation and selection
operators sequentially at each generation to move the main
population toward the global optimum.

The trial vector generation comprises two operators:
mutation and crossover operators. The following are the five
frequently used mutation strategies in the literature:

(1) DE/rand/1

vgi = xgr1 + F ⋅ xgr2 − xgr3 4

(2) DE/best/1

vgi = xgbest + F ⋅ xgr1 − xgr2 5

(3) DE/current-to-best/1

vgi = xgi + F ⋅ xgbest − xgi + F ⋅ xgr1 − xgr2 6

(4) DE/best/2

vgi = xgbest + F ⋅ xgr1 − xgr2 + F ⋅ xgr3 − xgr4 7

(5) DE/rand/2

vgi = xgr1 + F ⋅ xgr2 − xgr3 + F ⋅ xgr4 − xgr5 8

where indices ri, i = 1,… , 5 are mutually exclusive integers
randomly generated within 1,N , respectively, that are also
different from index i; xgbest is the best vector in the popula-
tion at generation g; F is the scale factor and is usually chosen
between 0 and 1.

The most frequently used binomial crossover operation is
performed as follows:

ugi,j =
vgi j, if rand ≤ CR or j = sn,

xgi,j, otherwise,
 j = 1,… , n,

9

where sn is an arbitrary number in 1, 2,… , n and ui,j is the
jth element of the ith new trial vector.

After generating the trial vectors, a greedy selection oper-
ator is performed as follows:

xg+1i =
ugi , if f ugi ≤ f xgi ,

xgi , otherwise,
10

where xg+1i is the ith solution in the main population of the
next generation.

3. Our Proposed DEHC

Because of the conflicting objectives, the DE can not be
applied to solve MOPs directly. To overcome this limitation,
the proposed DEHC has the following features:

(1) In the mutation step, (4) and (5) constitute a strategy
candidate population pool and a random strategy is
determined fromthis candidate pool for each solution.
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(2) In the selection step, the greedy strategy-based selec-
tion component is replaced by a new selection com-
ponent based on hybrid selection strategy.

(3) An external population is introduced to store the best
solutions found so far and to provide best solutions
when strategy (5) is adopted.

The overall flowchart of DEHC is shown in Figure 2.
Below, we elaborate on some of the main steps in detail.

3.1. Mutation Component with Two Strategies. For any
MOPs, there is always more than one best solution, which
are also called nondominated solutions. In our approach,

an external population, denoted as E, is introduced and the
best solutions found are stored in it. This has two purposes:

(1) The solutions in the external population are the final
results reported to the performer(s).

(2) The external population is the best solution candidate
pool for the best solution based on mutation strategy.

In DEHC, (4) and (5) are selected to constitute a strategy
candidate pool. In the mutation step, a strategy is randomly
selected from the pool for each solution. To perform the best
solution-based strategy (5), a best solution must be deter-
mined. Inspired by Coello et al.’s method [39], the best

Start
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Add all the nondominated solutions to the external population

Exceed the size limit?

Yes

No

Truncate the external population using CCE

Selection using the HSS strategy
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3

Figure 2: The flowchart of DEHC.
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solution is determined as follows: first, the crowding distance
of every solution in E is calculated [22], and then two solu-
tions are randomly selected from the population. Their
crowding distances are compared and the greater will be
the final best solution for participating in the mutation oper-
ator. Note that a new best solution needs to be selected for
each solution if the mutation strategy is (5). The purposes
for this extension are twofold:

(1) Strategy (4) has advantage of putting more effort into
improving the search engine’s exploration ability.

(2) Strategy (5) has advantage of putting more effort into
improving the search engine’s exploitation ability.
Furthermore, it has advantage of putting more effort
into exploiting the less crowded area.

3.2. Selection Component Based on Hybrid Selection Strategy.
Selection component is the most essential step for any
MOEAs because it is responsible for guiding the selection
process at the various stages of the algorithm toward a Pareto
optimal front. Many selection components with different
selection strategies have been proposed for solving MOPs.
Here, in DEHC, we use a new selection component called
hybrid selection strategy (HSS) from the view of multipopu-
lation. The HSS consist of three selection strategies and each
strategy has its own subpopulation. These three strategies are
called decomposition-based strategy [18], nondominated
sorting strategy [22], and nondominated neighbor-based
strategy [33]. These three strategies fall into the above
three groups in Sections 1.1, 1.2, and 1.3, respectively.
The reasons for hybridizing these three selection strategies
are as follows:

(1) Decomposition-based strategy has high execution
speed; however, it needs providing a set of uniformly
distributed weight. Although determining a set of
weight is an easy job for problems with 2 objectives
and 3 objectives, it becomes a tough thing as the
number of objectives increases. Furthermore, it needs
a decomposition approach. Most important of all,
these weight values and decomposition approach
highly affect the final results.

(2) Nondominated sorting strategy canmaintain the diver-
sity of the main population. But it has a O mN2

computational complexity (where N is the popula-
tion size). So, less population size means lower
computational time.

(3) Nondominated neighbor-based strategy has a very
fast convergence speed because it puts more efforts
on the best solutions. This high selection pressure
may mislead the search into local optima.

The proposed HSS works as follows: generating the off-
spring for each subpopulation and then assigning the fitness
value of each solution in the combination of its subpopula-
tion and offspring subpopulation according to the corre-
sponding selection strategy and finally selecting a proper

number of best solutions to form its subpopulation of next
generation. This process is described in Figure 3.

The main characteristic of HSS is that it utilizes the
advantage of every selection strategy such as the high execu-
tion speed of the decomposition based-strategy, high popula-
tion diversity of the nondominated sorting strategy, and fast
convergence speed of the nondominated neighbor-based
strategy. So, different selection strategies have different
trade-offs between the conflicting objectives and the hybrid
strategy can take advantage of all these trade-off. Although
each strategy has its own subpopulation, these subpopula-
tions are not independent. In the mutation step, all 3 subpop-
ulations are combined together to generate new offspring
individuals. Furthermore, all the best solutions found are
stored in an external population and this population provides
guiding information in performing the best solution-based
mutation strategy in Section 3.1.

3.3. Maintenance of External Population Based on Cyclic
Crowding Estimation. Maintaining an external population is
beneficial [29, 30], but two issues arise in the maintenance.
One is how to add the currently found best solutions into
the population and the other is how to remove the inferior
ones. Denote the external population as E and the currently
found best solutions in the offspring as Z. Then we can add
Z into E by Algorithm 1.

After adding Z into E, we need to check whether its size
exceeds the size limit since the number of nondominated
solutions can be huge and the computational complexity of
maintaining all of them is high. Hence, we truncate the pop-
ulation to a predefined number. To do this, the crowding dis-
tance is the most commonly applied mechanism as for its
simplification and free of parameters [22, 29, 33]. This
method removes all redundant solutions at once. However,
the removing of a solution will lead to the change of its neigh-
borhood’s crowding distance value. From this perspective, the
one-time operator does not provide good result in all cases.

To overcome this drawback, CCE is presented. The
main characteristic of CCE is to remove the most crowded

① The 1st selection strategy; ② The 2nd selection
strategy; ③ The 3rd selection strategy.

1 2 3

Xg
1

Xg
2

Xg
3

Ug
1

Ug
2

Ug
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Xg + 1
1

Xg + 1
2

Xg + 1
3

Figure 3: The main selection process using HSS.

5Complexity



solution one by one or cyclically instead of retaining the
least crowed solutions at a time. This process can be described
by Algorithm 2.

3.4. Computational Complexity of DEHC. As pointed
above, the DEHC differs from other MOEAs in three main
features, that is, multiple-mutation operators, hybrid selec-
tion strategy, and cyclic crowding estimation. To use
multiple-mutation strategies, we need to find the current best
vector in each generation loop. This procedure depends
solely on M-independent sortings at N solutions, which has
a O MN log N computational complexity.

For the hybrid selection strategy, each selection strategy has
a subpopulation with size Ns = 1/3 N. The decomposition-
based strategy has a time complexity of O MNsT , where

T is the neighborhood size. For the nondominated sorting
strategy, the computational complexity is O M Ns

2 . As
for the nondominated neighbor-based strategy, the worst
computational complexity is O Ns lg Ns . So, the worst
total computational complexity of HSS is

O MNsT +O M Ns
2 +O Ns log Ns 11

As for the CCE, in the worst case, the time complexity
for calculating the distances is N Q2 ; the time complexity
for adding the K + 1 values is O KQ ; the time complexity
for removing K solutions from E is O KQ 2 .

Based on the above analysis, the procedure of HSS does
not increase any burden on the runtime complexity than

1: for each zi ∈ Z do
2: if zi is dominated by any member of E then
3: discard zi
4: end if
5: if zi dominates a set of members D zi from E then
6: E = E \D zi ;
7: E = E ∪ zi
8: end if
9: if AHC and zi are non-dominated with each other then
10: E = E ∪ zi
11: end if
12: end for

Algorithm 1: Pseudocode of CCE.

Input: The external population E with Q solutions
Output: The truncated external population E with N solutions
1: Let K =Q −N ;
2: for each xi ∈ E do
3: Calculate the Euclidean distance d i, j between xi and xj, where j = i,… ,Q;
4: Sort d i, j , j = i,… ,Q, in ascending order;
5: Add the first K + 1 values and the corresponding solutions as K + 1

records into D;
6: end for
7: while K > 0 do
8: Find the record with minimal distance in D and denote this value as

Vab and the corresponding two solutions as Pa and Pb, respectively;
9: Remove this record from D;
10: Find the record with minimal distance values associated with Pa and

Pb in D, respectively; denote the values as Va and Vb, respectively;
11: if Va ≤Vb then
12: Remove Pa from E
13: Remove all records associated with Pa in D
14: else
15: Remove Pb from E
16: Remove all records associated with Pb in D
17: end if
18: K = K − 1
19: end while

Algorithm 2: The main truncating process by the CCE process.
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using the single-selection strategy. As for the multiple-
mutation strategies, it needs higher computational complex-
ity, but it does not dramatically impose any serious burden
on the runtime complexity than the single-mutation
strategy-based operator. As for the CCE procedure, it needs
much higher computational complexity than the complexity
of crowding distance, which is only O MQ log Q .

4. Experimental Study on Test Functions

This section presents the numerical results that we have con-
ducted. First, we describe a set of MOPs and state the quality
indicators for evaluating DEHC’s performance. Then we
evaluate DEHC by comparison with some other algorithms.

4.1. Test Problems and Performance Indicators. Twelve fre-
quently used test MOPs from the literature are used here to
evaluate the performance of DEHC. The first 5 are ZDT
problems with two objectives and the next 7 are DTLZ prob-
lems with three objectives [22, 40]. Among all the test prob-
lems, ZDT1, ZDT2, ZDT3, and ZDT6 have 30 decision
variables and the others have 10.

In order to make a quantitative assessment on the perfor-
mance of DEHC, two performance indicators are employed
to evaluate the obtained approximation sets. The first is an
inverted generational distance indicator (IGD) [41]. Given
an approximation set A and a reference set R, IGD is defined
as follows:

IGD A, R = ∑v∈Rd v, A
R

, 12

where d v, A is the minimum Euclidean distance between v
and the points in R. If R is large enough to represent the PF
very well, IGD A, R could measure both the diversity and
convergence of in a sense. To have a low value of IGD A, R ,
A must be very close to the PF and cannot miss any part of
the whole PF.

The second is a spread indicator (IS), which measures the
distribution of an approximation set [22]. However, this

indicator works well only for bi-objective problems and can
not be applied directly to problems with more than two
objectives. Inspired by the work in [34, 35, 42], an extended
IS is used here

IS =
∑M

i=1 dei +∑N
i=1∑

M−1
j=1 dij − d

∑M
i=1 dei + M − 1 Nd

, 13

whereM is the objective number and dei is the Euclidean dis-
tance between the ith extreme solutions in A and R and di,j is
the Euclidean distance between the ith solution and its jth
nearest solution in A. This one is a harmonic distance-
based indicator because it takes all M − 1 nearest neighbors
around one solution into consideration. So, this works espe-
cially effectively for problems whose Pareto fronts consist of
curved surfaces. A smaller value of this indicator means a
better distribution. Particularly, a value of zero indicates that
all the Pareto optima are equidistantly spaced.

4.2. Comparative Study. In order to assess DEHC, the final
results are compared with those obtained by MOEA/D [18],
NSGA-II [22], and NNIA [33] since they can be treated as
algorithms with a single-selection strategy. Moreover, a
recently proposed multiobjective DE (MODE) for dynamic
optimization in chemical engineering is also selected as
competing algorithm [43]. For all the 5 algorithms, the
population sizes are set to 100 for the 2-objective and 300
for 3-objective problems, respectively. The maximal FFEs
(fitness function evaluations) are set to 250.00 and 750.00
for the 2-objective and 3-objective problems, respectively.
In DEHC, F = 0 5 and CR = 0 1. As for the other algorithms,
their other parameters are kept the same as those in the cor-
responding references.

For each test problem, 25 independent runs are con-
ducted and the statistical values are analyzed in detail.
Table 1 shows the mean and standard deviation (Std) of IG
D by 5 algorithms. It can be observed in Table 1 that DEHC
is able to achieve the lowest values on most problems,

Table 1: The IGD comparison results of DEHC with 4 MOEAs on 12 problems.

MOEA/D NSGA-II NNIA MODE DEHC
Mean± Std Mean± Std Mean± Std Mean± Std Mean± Std

ZDT1 6.15E − 3± 4.40E − 3 5.19E − 3± 2.10E − 4 4.57E − 3± 2.68E − 4 3.56E − 2± 3.48 E − 3 3.87E − 3± 5.75E − 5
ZDT2 4.37E − 3± 1.39E − 3 5.16E − 3± 2.25E − 4 4.66E − 3± 2.42E − 4 6.78E − 2± 7.49E − 3 3.92E − 3± 4.55E − 5
ZDT3 1.71E − 2± 1.14E − 2 1.30E − 2± 1.29E − 2 5.19E − 3± 2.05E − 4 5.02E − 2± 5.22E − 3 4.61E − 3± 9.56E − 5
ZDT4 9.74E − 3± 3.71E − 3 6.36E − 3± 1.15E − 3 5.61E − 3± 1.44E − 3 3.88E − 1± 3.12E − 1 3.83E − 3± 5.70E − 5
ZDT6 5.52E − 3± 8.22E − 4 7.94E − 2± 6.84E − 3 3.64E − 3± 8.87E − 5 2.30E − 1± 2.02E − 2 3.054E − 3± 2.17 E − 5
DTLZ1 1.53E − 2± 1.58E − 4 1.79E − 2± 1.70E − 3 2.10E − 2± 2.22E − 2 6.99E − 1± 5.62E − 1 1.13E − 2± 7.71E − 5
DTLZ2 3.84E − 2± 8.70E − 5 4.00E − 2± 9.06E − 4 4.03E − 2± 8.82E − 4 6.34E − 2± 2.08E − 3 3.04E − 2± 1.39E − 4
DTLZ3 3.85E − 2± 2.88E − 4 4.31E − 2± 4.10E − 3 1.04E + 0± 4.99E + 0 3.45E + 0± 1.43E + 0 3.51E − 2± 1.51E − 3
DTLZ4 2.51E − 1± 3.05E − 1 3.89E − 2± 6.71E − 4 3.94E − 2± 8.05E − 4 6.48E − 2± 1.87E − 3 3.03E − 2± 1.06E − 4
DTLZ5 4.61E − 3± 1.21E − 5 1.78E − 3± 4.75E − 5 1.86E − 3± 8.18E − 5 5.48E − 3± 2.94E − 4 1.48E − 3± 2.12E − 5
DTLZ6 5.51E − 3± 3.68E − 4 4.50E − 2± 2.23E − 2 6.07E − 2± 2.37E − 2 3.44E + 0± 1.90E − 1 1.36E − 3± 6.58E − 6
DTLZ7 1.65E − 1± 1.49E − 1 5.36E − 2± 5.94E − 2 4.24E − 2± 1.56E − 3 7.72E − 2± 3.32E − 3 3.14E − 2± 2.96E − 4
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which means that DEHC converges better than any other
algorithms.

Table 2 shows the mean and Std of IS by 5 algorithms. It
can be observed in Table 2 that DEHC is able to obtain a bet-
ter distributed Pareto optima set than any other algorithms
on most problems. Although MOEA/D achieves better Std
values on DTLZ1, DTLZ3 and NNIA achieve better Std
values on DTLZ3 and DEHC achieves better mean values
than MOEA/D and NNIA.

In order to determine whether DEHC is significantly bet-
ter than other algorithms, statistical significance tests of IGD
and IS are conducted between DEHC and MOEA/D, NSGA-
II, NNIA, and MODE via Mann–Whitney rank sum test,
respectively. Table 3 gives the comparison results. h = 1 indi-
cates a significant difference between the compared algo-
rithms with a level of significance β = 0 05, whereas h = 0
indicates that the performance is not significantly different.
It can be observed from the table that DEHC performs signif-
icantly better on almost all of the problems except for ZDT1
in terms of IGD with a level of significance β. As for ZDT1,
the results do not show a significant difference between
DEHC and NSGA-II in terms of IGD indicator. As for IS,
the results show that DEHC performs better than other algo-
rithms with a level of significance β.

To provide more information about the convergence per-
formance of the 5 MOEAs, we calculate IGD and IS values of
found optimal solutions every 25 generations. Because in our
study, all the 5 algorithms employ the same initialized popu-
lation to avoid difference at the initialization stage, we do not
calculate the indicators for the initial population but simply
assume that they are at 1. Figures 4–7 illustrate the 2 indica-
tors of the above 5 algorithms versus the evolution time over
25 runs in all the 12 instances.

For illustration, we also show some typical fronts obtained
by the 5 algorithms. Figure 8 presents the fronts on DTLZ1.
Please note that these fronts correspond to the run with a
median value with respect to IS. This figure clearly demon-
strates that for DTLZ1, the 5 algorithms can visually converge
to Pareto optimal fronts. However, the distributions have an

obvious difference. DEHC provides the most uniformly dis-
tributed fronts among the four.

Figure 9 presents the fronts on DTLZ6 and these fronts
correspond to the run with a median value with respect to I
GD. DTLZ6’s Pareto front is a line in three-dimensional
space. Figure 9 demonstrates that NSGA-II and NNIA have
some difficulties in converging to the optimal front and
MOEA/D gets a point far from the real Pareto optimal front.
Among all the 5 algorithms, DEHC seems to perform best on
DTLZ6 because it converges to a curve exactly.

From the above comparisons and analyses, we can draw
the conclusion that in terms of IGD and IS, DEHC generates
approximation sets with competitive diversity, uniformity,
and proximity to the Pareto front. Our proposed DEHC
can deal with MOPs with different types of Pareto front, that
is, continuous, and disjoint, having 2 and 3 objectives.

4.3. Some Studies on Scalability of DEHC. To study how the
performance of DEHC varies as the number of decision

Table 2: The IS comparison results of DEHC with 4 MOEAs on 12 problems.

MOEA/D NSGA-II NNIA MODE DEHC
Mean± Std Mean± Std Mean± Std Mean± Std Mean± Std

ZDT1 3.78E − 1± 1.23E − 1 4.90E − 1± 3.20E − 2 3.52E − 1± 2.89E − 2 4.23E − 1± 1.34E − 1 1.43E − 1± 1.39E − 2
ZDT2 2.43E − 1± 1.68E − 1 4.62E − 1± 3.33E − 2 3.42E − 1± 3.21E − 2 5.81E − 1± 3.71E − 2 1.49E − 1± 1.13E − 2
ZDT3 8.86E − 1± 1.48E − 2 6.08E − 1± 3.97E − 2 5.30E − 1± 1.94E − 2 7.47E − 1± 6.26E − 2 4.50E − 1± 1.34E − 2
ZDT4 6.28E − 1± 3.27E − 1 3.60E − 1± 2.70E − 2 3.28E − 1± 2.56E − 2 1.33E + 0± 3.33E − 1 1.23E − 1± 1.18E − 2
ZDT6 1.98E − 1± 3.10E − 2 5.87E − 1± 2.92E − 2 3.23E − 1± 2.51E − 2 7.17E − 1± 2.65E − 1 1.37E − 1± 1.27E − 2
DTLZ1 6.14E − 1± 6.95E − 3 4.63E − 1± 3.54E − 2 4.92E − 1± 8.08E − 2 9.80E − 1± 4.17E − 1 8.65E − 2± 5.43E − 3
DTLZ2 6.47E − 1± 4.90E − 3 4.42E − 1± 2.54E − 2 4.55E − 1± 2.15E − 2 5.85E − 1± 2.41E − 2 9.50E − 2± 3.22E − 3
DTLZ3 6.57E − 1± 1.01E − 2 4.53E − 1± 3.24E − 2 4.81E − 1± 2.95E − 2 1.23E + 0± 3.24E − 1 1.94E − 1± 2.94E − 2
DTLZ4 7.82E − 1± 1.60E − 1 4.16E − 1± 2.03E − 2 4.34E − 1± 1.82E − 2 5.93E − 1± 2.53E − 2 9.54E − 2± 3.85E − 3
DTLZ5 1.15E + 0± 3.99E − 3 3.54E − 1± 1.24E − 2 3.68E − 1± 1.82E − 2 8.59E − 1± 1.01E − 2 1.66E − 1± 7.53E − 3
DTLZ6 8.43E − 1± 1.00E − 1 4.86E − 1± 3.79E − 2 5.35E − 1± 4.98E − 2 3.73E − 1± 2.63E − 2 1.59E − 1± 7.99E − 3
DTLZ7 1.04E+ 0± 4.34E − 2 5.15E − 1± 3.58E − 2 4.87E − 1± 2.47E − 2 4.65E − 1± 4.13E − 2 2.39E − 1± 8.57E-3

Table 3: The distribution of IGD and IS using Mann–Whitney rank
sum test.

(DEHC,
MOEA/D)

(DEHC,
NSGA-II)

(DEHC,
NNIA)

(DEHC,
MODE)

IGD IS IGD IS IGD IS IGD IS
ZDT1 1 1 0 1 1 1 1 1

ZDT2 1 1 1 1 1 1 1 1

ZDT3 1 1 1 1 1 1 1 1

ZDT4 1 1 1 1 1 1 1 1

ZDT6 1 1 1 1 1 1 1 1

DTLZ1 1 1 1 1 1 1 1 1

DTLZ2 1 1 1 1 1 1 1 1

DTLZ3 1 1 1 1 1 1 1 1

DTLZ4 1 1 1 1 1 1 1 1

DTLZ5 1 1 1 1 1 1 1 1

DTLZ6 1 1 1 1 1 1 1 1

DTLZ7 1 1 1 1 1 1 1 1
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variable increases, we have tried on ZDT1 with different
numbers of decision variables, that is, 30, 40, 50, 60, 70, 80,
90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500,

2000, 2500, and 3000. In these experiments, MOEA/D,
NSGA-II, NNIA, and MODE are also conducted with the
above numbers of decision variable. All the parameters are
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Figure 4: Median IGD values versus the evolution time. (a) ZDT1, (b) ZDT2, (c) ZDT3, (d) ZDT4, (e) ZDT6, and (f) DTLZ1.
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kept the same as in Section 4.2. Figure 10 gives the mean IGD
values versus the numbers of decision variables. We found
that among the 25 independent runs for each number of

decision variables, DEHC achieves lower IGD values on
ZDT1 with different numbers of decision variable, especially
from 60 to 1000. Furthermore, the mean IGD values almost
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Figure 5: Median IGD values versus the evolution time. (a) DTLZ2, (b) DTLZ3, (c) DTLZ4, (d) DTLZ5, (e) DTLZ6, and (f) DTLZ7.
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linearly scale up as the number of decision variables
increases. This experiment indicates that DEHC is able to
handle large-scale MOPs efficiently and this ability may

profit from HSS because a different selection strategy is
effective for different problems during different stages of
the search.
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Figure 6: Median IS values versus the evolution time. (a) DTLZ2, (b) DTLZ3, (c) DTLZ4, (d) DTLZ5, (e) DTLZ6, and (f) DTLZ7.
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4.4. Discussion about CCE. In order to demonstrate an
improved performance of CCE, we replace CCE in DEHC
with other four truncating methods and then compare them

with DEHC. These four methods are crowding distance [22],
an improved version of crowding distance [44], crowding
entropy [35], and harmonic distance [31]. We denote the
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Figure 7: Median IS values versus the evolution time. (a) DTLZ2, (b) DTLZ3, (c) DTLZ4, (d) DTLZ5, (e) DTLZ6, and (f) DTLZ7.

12 Complexity



algorithms with the four methods as DEHCD, DEHCD2,
DEHCE, and DEHHD, respectively. For all the five algo-
rithms, 25 independent runs are conducted to see the consis-
tency of the algorithms.

It can be observed from Table 4 that for the five 2-
objective problems, MOECD2 performs very well because
MOECD2 achieves the best values for all problems except
ZDT4. As for DEHC, it follows DEHCD2 because it has the
best IS on ZDT4 and ranks 2nd for the other four 2-
objective problems. As for the seven 3-objective problems,
DEHC generates the most uniformly distributed Pareto front
among all the five algorithms. From this experiment, we can
deduce that CCE is able to maintain a uniformly distributed
result especially for many-objective problems.

To confirm that CCE is really suited for MOPs with many
objectives, here, we expand DTLZ2 to 5, 7, and 9 objectives
and then study IS. Figure 11 gives the mean IS on DTLZ2
with 3, 5, 7, and 9 objectives. It can be observed that for many
objectives, CCE still works very well and it provides the most
competitive results.

5. Applications to Solve MOOCPs

In this section, DEHC is applied to solve three MOOCPs in
chemical processes taken from the literature. To apply DEHC
for MOOCPs, the MOOCP is first transformed into common
MOPs by the commonly used CVP approach. For the CVP
method, the time range t0, t f is divided into T equal
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Figure 8: The typical Pareto front obtained by 5 algorithms on DTLZ1. (a) MOEA/D, (b) NSGA-II, (c) NNIA, (d) MODE, and (e) DEHC.
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segments, that is, t0, t f = t0, t1 × t1, t2 ×⋯× tT−1, tT ,
tT = t f , and the control variables can be approximated by
basic functions, such as piece-wise constant function and
piece-wise linear functions [43, 45]. Here, we assume u t
as piecewise constant function. As a result, T × K parameters
determine u t over t0, t f . In terms of the jth segments; the
control variables over the entire time span are as follows:

ctk =
uk, t ∈ t j−1, t j ,
0, otherwise,
 j = 1, 2,… , T

14

So, the total control variables over the entire time span
can be described as the summation below:

u t = 〠
T

j=1
cj t , t ∈ t j−1, t j 15

Ones the control variables are discretized, DEHC can be
applied to find the best control profile of the discrete time
system as an approximation of the continuous problem. So,
the major steps to optimize the MOOCP are outlined as the
following steps:
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Figure 9: The typical Pareto front obtained by 5 algorithms on DTLZ6. (a) MOEA/D, (b) NSGA-II, (c) NNIA, (d) MODE, and (e) DEHC.
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Step 1. Divide the time range t0, t f into T equal segments
and denote the jth segment as t j−1, t j , where j = 1, 2,… , K
and tT = t f .

Step 2. Assume that the value of the ith input variable within
the jth segment is uj

i , where i = 1, 2,… ,m and j = 1, 2,… , T .

Step 3. Once the value of u t is determined within the time
range t0, t f , a numerical integral method, such as the stan-
dard Runge-Kutta method, can be employed to obtain the
objective value, that is, J u v .

Step 4. Apply DEHC to obtain the optimal uj
i and J u t as

an approximation of the continuous problem, where i = 1,
2,… , K and j = 1, 2,… , T .

5.1. Case I: Catalyst Mixing Problem in a Tubular Reactor.
This problem considers a steady-state plug flow reactor of
fixed length t f . The reactor is packed with two catalysts
which are required to stimulate a series of reactions (one
reversible and one irreversible S1↔ S2→ S3). These
assumptions give rise to the following model [46]:

dx1
dt

= u 10x2 − x1 ,

dx2
dt

= u x1 − 10x2 − 1 − u x2,

x t0 = 1, 0 T , 0 ≤ u ≤ 1, t f = 12,

16

where x1 and x2 are the concentrations of S1 and S2, u is
the fraction of catalyst A, and t is the spatial coordinate.
The objective is to determine the optimal mixing policy of
the two catalysts in order to maximize the production S3

at the reactor outlet and minimize the amount of the most
expensive catalyst A.

max J1 = 1 − x1 t f − x2 t f ,

min J2 =
t f

0
udt

17

For this problem, we set T = 10, the population size is
N = 50, and the maximum generation is 100. The obtained
Pareto optimal fronts by DEHC and MODE are illustrated
in Figure 12. Figure 12 shows that both the two algorithms
achieve a wide variety of solutions which also uniformly
spread along the Pareto optimal front, but DEHC provides a
more uniformly and widely distributed result along the front.

When considering maximizing the production of S3 only,
Vassiliadis et al. obtained a best value of 0.0480238 by a
single-objective optimization method [46] and Chen et al.
obtained a best value of 0.04798 by a multiobjective DE with
a ranking-based mutation operator [9]. The result of our
obtained Pareto front is 0.04800, which is very close to
0.04798. To assist decision making, five Pareto optimal reac-
tion temperatures, that is, u1, u2, u3, u4, and u5 in Figure 12,
with equal distribution along the front are shown in Table 5
and the corresponding Pareto optimal trajectories of these
are illustrated in Figure 13. It can be observed that the trajec-
tories of mixing policy of the catalysts in the entire interval
gradually decrease from 1 to 0, that is, from u1 to u5, leading
to the reduction of the use of catalyst A.

5.2. Case II: Optimal Operation of a Fed Batch Reactor. The
third case is a batch reactor based on the two reaction sys-
tems [47]:

A + B →k1 C,

B + B →k2 D
18

This process can be described by the following mechanis-
tic model:

d A
dt

= −k1 A B −
A
V

u,

d B
dt

= −k1 A B − 2k2 B 2 + bfeed − B
V

u,

d C
dt

= k1 A B −
C
V

u,

d D
dt

= 2k2 B −
D
V

u,

d V
dt

= u,

 0 ≤ u ≤ 0 01, t f = 120 min,
19

where A , B , C , and D are the concentrations of A, B, C,
and D, respectively; V is the current reaction volume, u is the
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reactant feed rate, and k1 = 0 5 and k2 = 0 5 are the reaction
rate constants. At the start of reaction, the reactor contains
A 0 = 0 2 mole/L of A; no B B 0 = 0 and is fed to 50%
(V 0 = 0 5m3). The objective is to maximize the amount
of product C and minimize the amount of by-product D.

For this problem, we set T = 10, the population size is
N = 50, and the maximum generation is 100. The obtained
Pareto fronts by DEHC and MODE are showed in
Figure 14. It can be observed form Figure 14 that both DEHC
and MODE achieve very high-quality results in approximat-
ing the true Pareto front. However, DEHC achieves a higher
distribution behavior.

The obtained Pareto optimal front is illustrated in
Figure 14. When the complete focus is put on maximizing
the amount of product C, Chen et al. obtained a best value

Table 4: Comparison results of CCE and other truncating methods on IS.

DEHCD DEHCD2 DEHCE DEHHD DEHC
Mean± Std Mean± Std Mean± Std Mean± Std Mean± Std

ZDT1 2.774E − 1± 2.383E − 2 1.406E − 1 ± 1.199E − 2 3.623E − 1± 3.416E − 2 4.254E − 1± 3.093E − 2 1.425E − 1± 1.390E − 2
ZDT2 2.885E − 1± 2.474E − 2 1.420E − 1 ± 1.063E − 2 3.702E − 1± 3.298E − 2 4.273E − 1± 3.389E − 2 1.492E − 1± 1.134E − 2
ZDT3 5.021E − 1± 1.324E − 2 4.427E − 1 ± 1.064E − 2 5.565E − 1± 2.896E − 2 5.803E − 1± 3.071E − 2 4.497E − 1± 1.341E − 2
ZDT4 2.769E − 1± 2.869E − 2 1.241E − 1± 1.099E − 2 3.898E − 1± 3.178E − 2 4.487E − 1± 3.238E − 2 1.229E − 1 ± 1.175E − 2
ZDT6 3.049E − 1± 2.767E − 2 1.231E − 1 ± 1.030E − 2 3.841E − 1± 3.080E − 2 6.152E − 1± 2.915E − 1 1.373E − 1± 1.275E − 2
DTLZ1 3.860E − 1± 2.015E − 2 3.885E − 1± 1.938E − 2 3.986E − 1± 1.911E − 2 2.381E − 1± 2.997E − 2 8.648E − 2 ± 5.427E − 3

DTLZ2 3.604E − 1± 9.635E − 3 3.557E − 1± 1.431E − 2 3.682E − 1± 1.879E − 2 2.445E − 1± 8.816E − 3 9.496E − 2 ± 3.217E − 3
DTLZ3 3.707E − 1± 2.048E − 2 3.718E − 1± 1.773E − 2 3.732E − 1± 1.904E − 2 1.065E + 0± 6.659E − 1 1.939E − 1 ± 2.940E − 2
DTLZ4 3.578E − 1± 1.537E − 2 3.568E − 1± 1.741E − 2 3.612E − 1± 1.920E − 2 2.369E − 1± 1.005E − 2 9.538E − 2 ± 3.852E − 3
DTLZ5 3.505E − 1± 1.374E − 2 1.962E − 1± 5.629E − 3 3.929E − 1± 1.847E − 2 3.996E − 1± 2.107E − 2 1.657E − 1 ± 7.528E − 3
DTLZ6 3.258E − 1± 1.225E − 2 1.904E − 1± 8.794E − 3 3.936E − 1± 1.432E − 2 4.098E − 1± 1.460E − 2 1.592E − 1 ± 7.995E − 3
DTLZ7 4.400E − 1± 1.966E − 2 4.440E − 1± 2.472E − 2 4.468E − 1± 1.997E − 2 2.575E − 1± 1.166E − 2 2.395E − 1 ± 8.573sE − 3
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Figure 12: The Pareto optimal front for case I.

Table 5: Five solutions selected from the front for case I.

Segment u1 u2 u3 u4 u5

0.0–1.2 1.0000 1.0000 0.7555 0.2663 0.0000

1.2–2.4 0.5477 0.3310 0.0000 0.0392 0.0000

2.4–3.6 0.1534 0.1307 0.0447 0.0143 0.0000

3.6–4.8 0.2784 0.0953 0.0096 0.0191 0.0000

4.8–6.0 0.2354 0.0000 0.0229 0.0214 0.0000

6.0–7.2 0.2482 0.0840 0.0000 0.0000 0.0000

7.2–8.4 0.1683 0.0000 0.0000 0.0038 0.0000

8.4–9.6 0.0657 0.0043 0.0000 0.0000 0.0000

9.6–10.8 0.0011 0.0000 0.0003 0.0000 0.0000

10.8–12.0 0.0000 0.0000 0.0000 0.0000 0.0000
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of 0.07936 and we obtained 0.08079 [9]. To assist decision
making, five Pareto optimal reaction temperatures along
the front in Figure 14 with equal distribution are shown in
Table 6 and the corresponding Pareto optimal trajectories

of these are illustrated in Figure 15. It can be observed from
the multiple trajectories that as the reduction of the amount
of by-productD, the feed rate in the entire time interval grad-
ually reduces to the low value.

max J1 = C t f V t f ,
min J2 = D t f V t f

20

5.3. Case III: Foreign Protein Production Using Recombinant
Bacteria. The fourth problem is a model of foreign protein
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Figure 13: The Pareto optimal trajectories of five selected solutions for case I. (a) u1, (b) u2, (c) u3, (d) u4, and (e) u5.
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Figure 14: The Pareto optimal front for case II.

Table 6: Five solutions selected from the front for case II.

Segment u1 u2 u3 u4 u5

0.0–12.0 0.0100 0.0100 0.0096 0.0031 0.0000

12.0–24.0 0.0100 0.0100 0.0029 0.0017 0.0000

24.0–36.0 0.0100 0.0075 0.0044 0.0001 0.0000

36.0–48.0 0.0100 0.0073 0.0029 0.0027 0.0000

48.0–60.0 0.0100 0.0099 0.0045 0.0006 0.0000

60.0–72.0 0.0100 0.0029 0.0041 0.0062 0.0000

72.0–84.0 0.0100 0.0094 0.0031 0.0000 0.0000

84.0–96.0 0.0100 0.0070 0.0036 0.0020 0.0000

96.0–108.0 0.0100 0.0071 0.0072 0.0011 0.0000

108.0–120.0 0.0100 0.0002 0.0009 0.0000 0.0000
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production using recombinant bacteria [48]. In this case,
thereare7 statevariableswhichare reactionvolume(x1, L), cell
density (x2, g/L), nutrient concentration (x3, g/L), foreign pro-
tein concentration (x4, g/L), inducer concentration (x5, g/L),

inducer shock factor on the cell growth rate (x6), and
the inducer recovery factor on the cell growth rate (x7).
The two control variables are glucose feed rate (u1, L/h)
and inducer feed rate (u2, L/h). The model was described
as follows [49]:

dx1
dt

= u1 + u2,

dx2
dt

= ux2 + λx2,

dx3
dt

= Cnf
u1
x1

+ λx3 −
μ

Y
x2,

dx4
dt

= Rf p
x2 + λx4,

dx5
dt

= Cif
u2
x1

+ λx5,

dx6
dt

= −k1x6,

dx7
dt

= k2 1 − x7 ,

x t0 = 1, 0 1, 40, 0, 0, 1, 0 T ,
  0 ≤ u1 ≤ 10−2, 0 ≤ u2 ≤ 10−2, t0 = 0, t f = 10 h,
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Figure 15: The Pareto optimal trajectories of five selected solutions for case II. (a) u1, (b) u2, (c) u3, (d) u4, and (e) u5.
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Figure 16: The Pareto optimal front for case III.
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where

μ = 0 407x3
0 108 + x3 + x23 / 14814 8 × x6 +

0 22x7
0 22 + x5

,

Rf p =
0 095x3

0 108 + x3 + x23 /14814 8 × 0 0005 + x5
0 022 + x5

,

λ = −
u1 + u2
x1

,

k1 = k2 =
0 09x5

0 034 + x5
,

Cnf = 100 0,
Cif = 4 0,
Y = 0 51

22

As the price of the inducer, that is, Pr , is expensive,
here, the two objectives are set as maximizing foreign pro-
tein production and minimizing the consumption of the
inducer by controlling the glucose feed rate and the
inducer feed rate, which are modeled as follows:

max J1 = x1 t f x4 t f ,

min J1 =
t f

0
u2dt

23

For this problem, we set T = 10, the population size is
N = 50, and the maximum generation is 100. The obtained
Pareto fronts by DEHC and MODE are showed in
Figure 16. It can be observed form Figure 16 that both
DEHC and MODE generate very close approximations to
the Pareto front. But the attained Pareto front with MODE
cannot spread along the front as much as DEHC.

To assist decision making, five Pareto optimal reaction
temperatures along the front in Figure 16 with equal

distribution are shown in Table 7 and the corresponding
Pareto optimal trajectories of these are illustrated in Figure 17.

max J = x1 t f x4 t f − Pr

t f

t0

u2 t dt 24

Roubos et al. setPr = 5 and solve (24) usingGAwith a pop-
ulation size of 40 and generation of 25000 and obtained an
optimum of 0.8149 [50].We calculate the combined objective
values with Pr = 5 and obtain an optimal value of 0.81345.
Figure 18 also shows the combined objective values along the
Pareto front by setting Pr = 5.

6. Conclusions

In this paper, we put forward an extended multiobjective
differential evolution algorithm called DEHC by integrat-
ing multistrategies from three aspects, that is, hybrid selec-
tion strategy, external archivewith cyclic crowding estimation,
and a two-strategy based on mutation component. We
have systematically studied the performance of DEHC by
testing it on a set of MOPs. The numerical results show
that DEHC is suitable for solving MOPs with different
types of Pareto front and that it is superior to or compet-
itive with MOEA/D, NSGA-II, and NNIA. Our proposed
DEHC is able to generate very competitive results in terms
of IGD and IS indicators. Finally, three well-known multi-
objective optimal control problems in chemical process
have been solved to further demonstrate the effectiveness
and applicability of DEHC for real-world complex MOOCPs.

The numerical results validate that DEHC is an advanta-
geous approach to solving complex MOPs. This advantage
comes from three aspects: (1) the hybrid selection strategy
can deal with the conflicting objectives from different aspects
which is advantageous to different problems during different
search processes, (2) the cyclic crowding estimation is helpful
to maintain a uniformly distributed nondominated solutions,
and (3) the candidate pool of mutation strategies for DE
mutation component is beneficial for improving DEHC’s
exploration and exploitation.

Table 7: Five solutions selected from the front for case III.

u1 u2 u3 u4 u5
u1(1) u1(2) u2(1) u2(2) u3(1) u3(2) u4(1) u4(2) u5(1) u5(2)

0.0-1.0 0.0000 0.0000 0.0000 0.0000 0.0072 0.0000 0.0079 0.0002 0.0040 0.0000

1.0–2.0 0.0001 0.0000 0.0053 0.0000 0.0003 0.0000 0.0002 0.0017 0.0057 0.0000

2.0–3.0 0.0039 0.0006 0.0050 0.0045 0.0002 0.0006 0.0100 0.0000 0.0098 0.0000

3.0–4.0 0.0000 0.0100 0.0011 0.0095 0.0000 0.0100 0.0000 0.0008 0.0000 0.0000

4.0–5.0 0.0012 0.0100 0.0001 0.0100 0.0063 0.0000 0.0025 0.0000 0.0094 0.0000

5.0–6.0 0.0000 0.0100 0.0020 0.0100 0.0021 0.0000 0.0042 0.0000 0.0044 0.0000

6.0–7.0 0.0004 0.0100 0.0000 0.0000 0.0045 0.0002 0.0068 0.0000 0.0055 0.0000

7.0–8.0 0.0002 0.0100 0.0061 0.0001 0.0002 0.0000 0.0060 0.0001 0.0095 0.0000

8.0–9.0 0.0003 0.0100 0.0058 0.0000 0.0002 0.0000 0.0056 0.0000 0.0094 0.0000

9.0–10.0 0.0013 0.0096 0.0055 0.0000 0.0055 0.0000 0.0096 0.0000 0.0064 0.0000
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What remain interesting for future work would be
constrained MOOCPs and MOOCPs with uncertainties.
Another aspect is developing effective CVP methods to
convert the original MOOCPs.
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