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The induced current produced by electromagnetic induction can adjust the membrane potential of neuron through the feedback of
a magnetic flux-controlled memristor. We adopt the numerical simulation method with the aim of investigating the synchronous
behavior in the neuronal system that is coupled by chemical and electrical synapses under electromagnetic induction. Within the
improved model, the effects of electromagnetic induction on neurons are described with additive memristive current on the
membrane variable, and the memristive current is dependent on the variation of magnetic flow. The simulation results show
that the two coupling modes play an important role in the synchronization of the system. By increasing the chemical synaptic
feedback gain, we observe a transition from mixed oscillatory to periodic state at a critical value. In addition, two Hopf
bifurcation points are found with the change of the external stimuli, and the state of neuron discharge is influenced by initial
values. Furthermore, there is a domain of coupling strength and feedback gain values, in which the two coupled neuron system
is synchronized and longer time lag is not conducive to the system synchronization.

1. Introduction

A neural system, which is made up of a large number of neu-
rons, is a complex information network. Different types of dis-
charge patterns can be switched under the control of external
stimulation or bifurcation parameter. In order to understand
the regulating function of the nervous system, many models
of neuronal electrical activity have been proposed. Commonly
used models include the FitzHugh-Naguma model [1],
Morris-Lecar neuron model [2], Hindmarsh-Rose model [3,
4], Nagumo-Sato neuron model [5], and Wilson-Cowan neu-
ron model [6]. These models that describe neuron dynamics
with a set of differential equations are almost derived from
the Hodgkin-Huxley [7] model or the simplified version.
Some results from biological experiments [8–10] can be
explained by theoretical neuron models, such as the Morris-
Lecar neuron model. In this model, the membrane potential
exhibits quiescent, spiking, or bursting state by changing the

external forced current [11]. Neurons do not work in isolation,
but they interact to affect the processing of information. There
are two forms of synaptic coupling found in the real nervous
system, namely, electrical synapse and chemical synapse. The
synchronization phenomena are a typical manifestation of
the rhythms of groupmovement; that is, all neurons in the sys-
tem have a certain connection at the same time or rhythm
[12–14]. Bazhenov et al. [15] designed a coupled linear chain
of Hindmarsh-Rose model neurons with reciprocal inhibition
between neighboring neurons that exhibited synchronous
oscillations. Zhang et al. [16] proposed a class of synchroni-
zation problems of nonlinear time-delay dynamic networks
with a nonuniform impulse effect. Burić et al. [17] studied
the synchronization of Hindmarsh-Rose neurons with a
time-delayed fast threshold modulation synapse. Xu et al.
[18] analyzed the synchronization behavior and mode selec-
tion in neural networks under the coupling of chemical or
electrical synapses. Yao et al. [19] investigated the influence of
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coupling strength, time delay, and network topology on syn-
chronization behavior in delay-coupled networks of chaotic
pendulums. Gokul and Kapitaniak [20] studied the synchrony
of coupling multistable systems which have hidden attractors
with eachother. In coupled oscillators or coupledneurons, syn-
chronization may occur because of the appropriate coupling
effect [21–24]. Interestingly, the stochastic and coherence reso-
nance [25–27] of the nervous system is induced by appropriate
noise intensity and external periodic stimulus. The synchroni-
zation of the coupling system is an interesting research filed. It
is challenging to analyze thedynamicmechanism causedby the
variation of the coupling parameters and modes of the system.
The synchronization phenomena in Hindmarsh-Rose (HR)
neurons that are connected by electrical coupling and chemical
coupling, moreover, complete synchronization, phase syn-
chrony, and antisynchrony of neurons are realized [28, 29].
The neural electrical activity has also been widely studied and
verified in the circuit [30–35]. For example, Vaidyanathan
et al. [36–38] designed electronic circuits to study the feasibility
of the 3D novel jerk chaotic system with hyperbolic sinu-
soidal nonlinearity. Conti and Turchetti [39] performed a
circuit to realize approximate identity neural network for the
analog synthesis nonlinear dynamical system. Pham et al.
[40] proved the existence of chaotic behavior in a three-
dimensional autonomous chaotic system with a circular equi-
librium by using OrCAD PSpice software and experimental.

It is necessary to study the effects of electromagnetic
induction on neuronal cells [41–44]. The changes of mem-
brane potential can induce electromagnetic induction
between neurons. As reviewed in [45, 46], the effects of elec-
tromagnetic radiation in Homo sapiens include electrical
activity of neurons, energy metabolism, genomic responses,
neurotransmitter balance, blood-brain barrier permeability,
cognitive function, sleep, brain tumors, and other encepha-
lopathy. Lu et al. [47–49] investigated the effects of high-
and low-frequency signal stimulus on neural activity under
electromagnetic radiation. According to Faraday’s law of
induction, the magnetic field is a result of fluctuations in
the action potential. That is, the distribution of electromag-
netic field both inside and outside neurons can be changed
by the fluctuation of the membrane potential. Therefore, a
new three-variable ML neuron model is established by intro-
ducing an additional variable as magnetic flux which adjusts
the membrane potential via a memristor [50, 51].

The following study is based on the proposed Morris-
Lecar neuron model with consideration of magnetic flux, in
which the dynamic characteristics of the neurons are studied
by using bifurcation diagrams and time series of the discharge.
A preliminary synchronization analysis was conducted in the
excitatory and inhibitory neural system. The study revealed
that excitatory and inhibitory neurons can be synchronized
under the appropriate coupling strength. The synchronization
behavior of the system is also affected by the time lag when the
coupling strength and the feedback gain are maintained.

2. Model and Scheme

The Morris-Lecar (ML) equations were originally developed
as a mathematical model of muscle fiber. For the neuron,

the effect of electromagnetic induction should be considered
during the discharge process of the membrane potential. The
electric activity will change because of the fluctuation of elec-
tromagnetic induction and ion concentration in the process
of ion exchange. We modify the basic ML model, including
the impact of the electromagnetic radiation. The improved
ML neuronal model [44] contains three variables, and the
dynamic properties are described as follows:

c
dV
dt

= gCam∞ V VCa −V + gKω VK − V + gL VL −V

− kρ φ V + Iext,
dω
dt

= λω V ω∞ V − ω ,

dφ
dt

= k1V − k2φ,

1

with

m∞ V = 0 5 + 0 5 tanh V − V1
V2

,

ω∞ V = 0 5 + 0 5 tanh V − V3
V4

,

λ∞ V = ϕ cosh V −V3
2V4

,

2

where V and ω denote the variables for the membrane poten-
tial (mV) and gate channel, respectively. Parameter c is the
capacitance of the membrane (μF/cm2). The gCa, gK, and
gL denote the maximum conductance (mS) of calcium ion,
potassium ion, and leak ion, respectively. VCa, VK, and VL
are the reversal potential (mV) corresponding to these chan-
nels. m∞ V and ω∞ V define the value of the opening
probability for the calcium ion channel and the potassium
ion channel in the steady state, where V1, V2, V3, and V4
are the parameters of the steady system, and λω V defines
the rate constant for the opening of potassium ion channel.
The parameter ϕ is marked as the variation between the fast
and the slow scales of neurons.

As described in [52, 53], the variations of the intercellular
and extracellular ion concentration can induce electromag-
netic induction, which can be expressed by magnetic flux
according to Faraday’s law of electromagnetic induction.
The induced current produced by electromagnetic induction
can adjust the membrane potential by the feedback of the
memristor. The memristor in model (1) can be divided into
two ways: the charge controlled and the magnetic controlled.
For the potassium ion-channel memristor, the second term
in the right of (1) can be rewritten as iK =GK ω vK with vK
⇔V −VK and GK⇔gKω, and GK is the potassium memduc-
tance function. The fourth term in the right of (1) can be
rewritten as iφ =Gφ φ vφ with vφ⇔V and Gφ⇔kρ φ , which
defines another first-order memristor, and the conductance
value of the memristor depends on the input current. The
expression of ρ φ = α + 3βφ2 denotes the memory conduc-
tance of a magnetic flux-controlled memristor [54], it is
used to calculate the effect of feedback regulation on the
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membrane potential when the magnetic flux is changed,
and α and β are fixed parameters. Therefore, as in [54],
the induced current and electromagnetic induction can be
described by

i = dq φ

dt
= dq φ

dφ
dφ
dt

= ρ φ
dφ
dt

= dφ
dt

α + 3βφ2 ,  dφ
dt

= kV

3

The variable i′ represents induction current. The term −
kρ φ V represents the inhibitory modulation of membrane
potential, and it describes the induced current induced by
electromagnetic induction. The parameter k is the induction
coefficient, and its value depends mainly on the medium
itself. Iext is the external forcing current. The terms k1x and
k2φ in the (1) mean the influence of membrane potential
on magnetic flux and leakage of magnetic flux, respectively.

For the analysis of the possibility and stability of the syn-
chronized dynamics between two neurons under bidirec-
tional coupling, the dynamic equations are given by

c
dVα,β
dt

= gCam∞ Vα,β VCa −Vα,β + gKωα,β VK −Vα,β

+ gL VL −Vα,β − kρ φα,β Vα,β + Iext + Isyn

+ C Vα,β − Vβ,α ,
dωα,β
dt

= λω Vα,β ω∞ Vα,β − ωα,β ,

dφα,β
dt

= k1Vα,β − k2φα,β,

4

where the subscripts α and β are a pair of coupled ML neu-
rons under electromagnetic radiation. C denotes coupling
intensity between adjacent neurons.

In order to simulate the chemical synapse feedback of
neurons, we shall use the so-called fast threshold modulation
scheme proposed by Somers and Kopell [55] and often used
by others, for example, [56, 57]. This chemically feedback
form, which clearly combines the time lag of the synapse, is
provided by the following functions:

Isyn = −
Hsyn Vαβ −V syn

1 + exp ‐σ Vαβ t − τ − θ
5

The variable parameterHsyn is the feedback gain at time t
with itself connected at time t − τ. The symbol τ indicates the
time lag (ms) of the signal propagation.C is coupling strength
between two neurons. V syn represents the synaptic reversal
potential (mV), which depends on the presynaptic neurons
and receiver. The chemical coupling is characterized by the
difference between the synaptic reversal potential and the
synaptic potential. A positive or negative sign of the difference
corresponds to an excitatory or inhibitory effect of the syn-
apse. If the synapsis is excitatory, V syn = 15 mV, and if the
synapsis is inhibitory, V syn = −10 mV. The parameter θ is a
synaptic threshold. Considering that the neuron membrane

potential value of the improved ML model is between
−17mV and 15mV, θ = 4 mV is selected to ensure that
the spike of the V is over the threshold, and the quiescent
state of the V is less than the threshold. That is, the mem-
brane potential of the presynaptic neuron is more than θ,
and it can play a role in the postsynaptic neuron [58, 59].
σ is the ratio constant to the start of excitement or inhibi-
tion. In this paper, we focus on the collective behavior of
the two coupled neuron system driven by the excitatory
and inhibitory autapse, and the schematic diagram is shown
in Figure 1. Parameters of the improved ML neuronal
model are given as c=20μF, VCa =120mV, VK =−84mV,
VL =−60mV, gCa =4 mS, gK =8mS, gL =2mS, V1 =
−1.2mV, V2 =18mV, V3 =12mV, V4 =17.4mV, ϕ=0. 067,
k1 =0.1, k2 =0.01, and σ=−1.

To characterize the synchronization in the system of
coupled spiking neurons, a method of calculating the error
function is introduced in the following [24]:

e = Vα −Vβ
2 + ωα − ωβ

2 + φα − φβ

2
6

Equation (6) indicates that the lower the value of e corre-
sponds with the better synchronization in the system.

3. Results and Discussion

In this section, first of all, the bifurcation is theoretically ana-
lyzed to reveal the dynamic mechanism of the discharge
mode in the improved model (1). Then the fourth-order
Runge-Kutta method is used to calculate the improved ML
neuronal model, the step of time h is selected as 0.01, and
the transient period for calculating is 5000 time units.

Let

dV
dt

= f V , ω, φ ,

dω
dt

= g V , ω, φ ,

dφ
dt

= h V , ω, φ ,

7

and (Vs, ωs, φs) is the equilibrium point; that is,

f Vs, ωs, φs = g Vs, ωs, φs = h Vs, ωs, φs = 0 8

If the parameter k=0.1, the system (8) can be written in
the form

4m∞ Vs 120 − Vs + 8ωs −84 − Vs + 2 −60 − Vs − 0 1 0 1
+ 0 03φs

2 Vs + Iext = 0,

ωs = ω∞ = 0 5 + 0 5 tanh V s + 12
17 4 ,

φs = 10Vs,
9
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and thus,

2 1 + tanh Vs + 1 2
18 − 4 1 + tanh Vs − 12

17 4 − 2 60 +Vs

− 0 1Vs 0 1 + 3V2
s + Iext = 0

10

Obviously, the expression of the equilibrium point
(Vs, ωs, φs) can be obtained by (10). Then we analyze the
stability of the equilibrium point with Iext as the bifurca-
tion parameter. It is noted that the stability of the equilib-
rium point is determined by the eigenvalue of its Jacob
matrix; that is, when all the eigenvalues are a negative real
part, then the equilibrium point is stable; otherwise, it may
be marginally stable or unstable [60]. The appearance of a
pair of pure imaginary eigenvalues signifies Hopf bifurca-
tion [61].

At the equilibrium point (V s, ωs, φs), the linearization
Jacobi matrix of the improved model is that

Therefore, the characteristic determinant of this system
at the equilibrium point is

where

∂m∞
∂V

= 19
36 −

1
2 tanh2 Vs + 1 2

18 ,

∂ω∞
∂V

= 46
87 −

1
2 tanh2 Vs − 12

17 4 ,

∂ω∞
∂V

= 46
87 −

1
2 tanh2 Vs − 12

17 4

13

If the Jacobi matrix has one eigenvalue of the negative
real part and two zero real parts at a critical value of the
bifurcation parameter, then we usually say that a Hopf
bifurcation occurs [61]. According to the relationship
between λ and Iext, we calculate the branch of the equilibrium
point which undergoes two Hopf bifurcations at parameter
Iext1 = −27 99 and Iext2 = 23 79. Obviously, they correspond
to the bifurcation points HB in Figure 2(b). Similarly, the

corresponding bifurcation points can be obtained by chang-
ing the parameter k.

The results of the bifurcation analysis for the system with
the electromagnetic effect described by (1) are numerically
simulated. In the bifurcation analysis, the influence of the
external forcing current Iext on the discharge behavior of
the neuron under different electromagnetic effects known
as induction coefficient k is investigated. The system will have
the process of “resting-exciting-silent” by increasing the
external forcing current. In Figure 2, several typical bifurca-
tion diagrams for the different external forcing currents,
without (k = 0) and with (k ≠ 0) the electromagnetic effects,
are plotted, respectively.

Figure 2 shows the bifurcation with Iext as the bifurcation
parameter for six different values of the induction coefficient.
The equilibrium point of the system has undergone five
changes without electromagnetic radiation, as shown in
Figure 2(a). In the beginning, the system has only a stable
equilibrium point, and the action potential of the neuron will

J Vs, ωs, φs =

1
c

−4m∞Vs + 480 − 4Vs
∂m∞
∂V

− 8ωs − 2 01 − 0 003φ2
s

8
c
84 + Vs −0 006Vsφs

c

ω∞ − ωs
∂λ∞
∂V

+ λ∞
∂m∞
∂V

−λ∞ 0

0 1 0 0 01

11

J Vs, ωs, φs − λI =

1
c

−4m∞Vs + 480 − 4Vs
∂m∞
∂V

− 8ωs − 2 01 − 0 003φ2
s − λ −

8
c
84 +Vs −0 006Vsφs

c

ω∞ − ωs
∂λ∞
∂V

+ λ∞
∂m∞
∂V

−λ∞ − λ 0

0 1 0 0 01 − λ

= 0,

12

Vsyn = 15

Neuron (𝛼)
c

Neuron (𝛽)

Vsyn = −10

Figure 1: A schematic diagram of the coupled neuron system.
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eventually converge to a fixed value. When Iext >−9.93μA,
there exist three equilibrium points, of which two are unsta-
ble, and the action potential of the neuron will still converge
to a fixed value. As the external current increases, the excit-
ability of neurons in the saddle node bifurcation threshold
is obtained, the threshold is Iext =40μA, and at this time,
the membrane potential of the neuron is periodic discharge.
On further increased Iext, bistable state can be generated at
Iext =70.4μA, which corresponds to a subcritical Hopf bifur-
cation point. The limit cycle vanishes Iext =82.5μA, and the
system has only a stable state. The properties and positions
of the bifurcation points have changed thoroughly, consider-
ing the neuron system after the electromagnetic effect, and
the results are found in Figures 2(b)–2(f). There are two
Hopf bifurcation points of the ML neuron system with the
electromagnetic effect. The results in Figure 3(b) confirm the
Hopf bifurcation points at Iext =−28.48μA and 23.55μA. As
the induction coefficient k increases, a similar phenomenon
is observed and the corresponding bifurcations are summa-
rized in Table 1.

It can be noted from Table 1 that parameters describe the
interaction between membrane potential and magnetic flux
which is further increased to k=0.6, the threshold of excit-
ability is increased to a higher value corresponding to Iext =
−11.39μA (see Figure 1 and Table 1). However, the position
of the second bifurcation point was reduced from 23.55mV

to 9.0mV. That is to say, with the increase of the induction
coefficient k, the region of the limit cycle in the system is
gradually compressed. It should be pointed out that the sys-
tem has a Hopf bifurcation point HOPF1 with a negative
value of parameter Iext (see Table 1), which will not be con-
sidered in the following text since it loses the biophysical
meaning. At the same time, in the numerical simulation, we
find that when Iext >HOPF2, the selection of the initial value
of the system is as important as the external current. Based
on the analysis of the bifurcation diagram of Vmax and Vmin
for the improved ML neuronal model, the external forcing
currents Iext =40μA, Iext =50μA, Iext =60μA, Iext =70μA,
and Iext =80μA are chosen to impose on the neuron. The
type of membrane potential discharge at different initial
values is calculated in Figure 3.

The results in Figure 3 show that the initial values of V0
and ω0 have a great influence on the discharge of neurons
in the improvedMLmodel. The oscillating areas of the mem-
brane potential are reduced by the increase of the external
stimulation current; that is, the red area in the picture
becomes smaller. The oscillating region of the membrane
potential is found to be banded, which indicates the changes
in the initial value of φ0 with little effects on the discharge of
neurons as shown in Figure 3, a2–e2 and a3–e3.

The results in Figure 4 show that the initial value region
that produces the oscillations of the membrane potential is
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reduced by the increase of the external stimulation current.
Most interesting, the study found that the selection of the ini-
tial value will also be influenced by the induction coefficient k
under the same external stimulus current. This discovery is in
accordance with the bifurcation diagram of Figure 2. There-
fore, it is very important to choose the appropriate initial
value with the different induction coefficients k. According
to the initial value area shown in Figures 3 and 4, sampled
time series for membrane potential and phase portraits are
plotted in Figure 5.

The improved ML neural model can exhibit several kinds
of oscillations. When the initial value is determined, the elec-
tric activity depends on the external forcing current. The
change of electrical activity between the quiescent state and
the spiking state can be observed by selecting different exter-
nal forcing currents. The phase portraits of the external forc-
ing currents (μA) are chosen as 0, 10, 20, 30, 40, and 80 in
Figure 5(a). And Figures 5(b) and 5(c) show the time series
of the membrane potential for Iext =0, 40, and 80.

The numerical results in Figure 5(a) show that the
regions of limit cycles become larger with increasing the
external forcing current. There exist some thresholds in the
system, which determines the conversion of the discharge

mode of the neuron membrane potential. In the absence of
external excitation, the neuron can still be discharged under
the electromagnetic effect, as shown by the blue curve in
Figure 5(b). With increasing the external forcing current,
the amplitude of the neuron membrane potential will
increase gradually; in other words, the amplitude of the peri-
odic oscillation is related to the area size of the limit cycle.
When the external forcing current is increased to a certain
threshold, the system will change from the oscillating state
to the resting state, as depicted in Figure 5(c).

Meanwhile, we studied the collective behavior of the two
neurons driven by the excitatory autapse and inhibitory
autapse in the case of electric coupling. The initial values
are V0 =100mV, ω0 =−1.5μA, and φ0 =0.1, and the external
forcing current Iext =40μA is chosen for its simplicity; the
induction coefficient is k = 0 1. At first, the inter-spike inter-
val of the β-neuron membrane potential (as in ISI represen-
tation) at different feedback gain Hsyn is calculated, and the
results are plotted in Figures 6 and 7.

Presented results show clearly that feedback gain Hsyn as
well as coupling strengths plays an important role in the
modes of electrical activities. When the value of Hsyn is
smaller, the rich discharge modes are observed in Figure 6.
The value of the bifurcation point is also affected by the cou-
pling intensity. It is found that the mode of β-neuron dis-
charge does not exhibit periodicity, unless larger feedback
gain could be applied. In essence, there may be two types of
autapse in the system, and the increase ofHsyn makes the dif-
ference in the discharge of the two neurons increasing; that is,
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Table 1: Summary of the type and position of bifurcation point.

k 0.1 0.2 0.4 0.5 0.6

Iext (μA)
HOPF1 −28.48 −20.75 −13.74 −12.27 −11.39
HOPF2 23.55 17.40 10.97 10.17 9.0
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the inhibitory neurons tend to be quiescent and hence cannot
affect the excitatory neurons. However, it can be observed
that the modes of electrical activities depend significantly
on the values of the synaptic feedback gain.

Within a certain coupling strength, if the error e tends to
zero with the time increased, the coupled neurons are fully
synchronized. According to the analysis of the results of
Figure 6, the sampled time series for membrane potential
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and phase portraits of the coupling strength C =0.5 are calcu-
lated with different feedback gains Hsyn; the results are plot-
ted in Figure 8.

The phase portraits and time series of the membrane
potential of two coupled neurons are illustrated in Figure 8.
The limit cycle is shown in Figure 8(a1), indicating that the
β-neuron is periodic discharge. The region of the two limit
cycles is different in Figure 8, (a2), and the value of the V is
within the range of −20mV to 20mV. The phase portrait of
(Vβ, Vα) is located near the corner line of the first quadrant,
which means the occurrence of approximate synchroniza-
tion. The error e (blue line) is found to exhibit periodic

oscillations in Figure 8, (a3). Interestingly, when the coupling
strength C is further increased, the phase portrait of (Vβ, Vα)
tends to have a straight line, and the results are shown in
Figure 9.

The results in Figure 9 confirmed that the phase portrait
of (Vβ, Vα) coincides with a straight line, which is located on
the angle bisector of the first quadrant. With appropriate
time lag and feedback gain, the two coupled neuron system
will synchronize with the increase of the coupling strength
between neurons. For the improved model in this paper,
the numerical results show that phase synchrony can be
achieved by selecting the appropriate coupling intensity of
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Figure 6: Bifurcation diagram associated with feedback gainHsyn for different coupling strengths. The time lag τ = 50, (a) C = 0 1; (b) C = 0 5;
and (c) C = 1.
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the two neurons with electromagnetic radiation. The effect of
time lag in autapse should also be considered; for example,
the time lag is increased to 100ms, and some results are
found in Figures 7 and 10.

Results presented in Figure 7 reveal that the oscillatory
pattern is largely influenced by the synaptic delay. For suit-
ably long values of τ, a complex oscillatory pattern can be
observed. Interestingly, however, if the Hsyn is sufficiently
high, we can observe the emergence of a periodic firing,
which implies that there is a transition from chaos to periodic
discharge in the system. Theoretically, under sufficiently long
synaptic delay condition, neurons have enough time to fire
more than once during a whole periodic cycle, before the

synaptic currents caused by the first synchronous spiking
within the same periodic cycle start to affect their firing [62].

It is found in Figure 10 that spiking and bursting dis-
charge behaviors of β-neuron reappear depending on the
gain and delay of the autapse. The error e is observed to
increase obviously through the time lag from 50ms to
100ms. But what is more interesting is that the increment
of τ makes the amplitude of the membrane potential of α-
neuron (excitatory) decrease in Figure 10, (a3). This trend
may be that the role of the autapse is suppressed in the appro-
priate feedback gain and time lag. Therefore, the time lag
plays a crucial role in the dynamics of the coupled system.
Numerical studies on the synchronization of the two coupled
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neuron system are affected with time lag, and the results are
shown in Figure 11.

The trajectories when Hsyn =0.03 indicate that the sys-
tem of the two coupled neuron system is in the oscillation
in Figure 11. When the time lag is 0.1, the membrane
potential error e of the neurons is smaller. Although the
electrical coupling plays a dominant role in the synchroni-
zation of the system, the feedback gain from the synapse
and time lag are equally important. The increment of time
lag is not conducive to the synchronization of the coupling
neuron system. This conclusion is consistent with the result
of Figure 10.

4. Conclusions

In this paper, the dynamics of the improved Morris-Lecar
neuron model under electromagnetic induction were investi-
gated using bifurcation diagrams and time series of dis-
charge; phase portraits of the neuron under different
conditions are investigated in a numerical manner as well.
By analyzing the simple numerical simulation of the
improved model, the basic dynamic behaviors are obtained
by introducing an external forcing current. In the case of
the electromagnetic induction, the mechanism of neuron fir-
ing has been changed. That is, two Hopf bifurcation points
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are found with changing the external forcing current.
Comparing these results with a previous work [33, 58], the
bifurcation diagram has an obvious difference due to the con-
sideration of electromagnetic induction based on the ML
neural model. In fact, the fluctuation in membrane potential
and signal propagation in the neuronal system can generate
an induced electrical field and additive current in the media
due to electromagnetic induction. As a result, the membrane
potential of a neuron can be adjusted slightly by induction
field and induced current associated with the variation of
magnetic flux. By analyzing the interspike interval series of
neural firing, we find that the improved model can generate
electrical activity with multiple modes. These results are con-
sistent with the observation observed in the experiment [8].
Meanwhile, the preliminary synchronization analysis of a
system of excitatory and inhibitory neurons was conducted.
In this aspect, it was unveiled that the neurons in the system
can be synchronized by selecting an appropriate coupling
strength. A longer time lag is not conducive to the system
synchronization, and the higher the feedback gain Hsyn and
the longer the time lag τ are, the more obvious the electrical
mode changes in the two coupled neuron system; this con-
clusion is in accordance with previous experiments [63]. Syn-
chronization phenomena are associated with either brain
functions [64] or pathological brain states in the neural sys-
tem. For example, Stam and Bruin used synchronization like-
lihood to characterize statistical interdependencies between
EEG and MEG (magneto encephalography) signals in early
and mild Alzheimer’s disease [65, 66]. Rubchinsky et al.
[67] presented extensive experimental documentation of
the relevance of synchronized oscillations to motor behavior
in Parkinson’s disease, and they confirmed that the real path-
ological state is not completely synchronous but showed a
complex weak synchronization and highly intermittent
dynamics. These results could provide potential theoretical
supports for the treatment of neurological diseases.
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