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This paper studies a simple dynamical system of stock price fluctuation time series based on the rule of stock market. When the
stock price fluctuation system is disturbed by external excitations, the system exhibits obviously chaotic phenomena, and its basic
dynamic properties are analyzed. At the same time, a new fixed-time convergence theorem is proposed for achieving fixed-time
control of stock price fluctuation system. Finally, the effectiveness of the method is verified by numerical simulation.

1. Introduction

Since Lorenz found the first chaotic attractor [1], a variety of
chaotic systems have been found, and in particular chaotic
phenomenon also appeared in the economic system; for
example, Chen discovered the existence of chaotic attractor
in stock market [2]. Xie et al. studied chaos synchronization
of financial chaotic system with external perturbation [3].
Ma et al. studied chaotic financial Cournot model with
dual-channel recycling and uncertain consumer perception
[4]. Despite the existence of chaotic phenomena in the
economic system, but the development of dynamic model
in the economy is relatively slow; the main reason is that
there are some difficulties to establish complex dynamic
system by abstracting the economic phenomenon. Recently,
some researchers discussed stock price problem by dynamic
method; for example, Li et al. considered the problem of the
dynamic pricing and the periodic ordering for deteriorating
items with a stochastic inventory level depending on the
stock-dependent demand and the selling price [5]. Grassetti
andHunanyan discussed the economic growth theory with
Kadiyala production function [6]. Arévalo et al. discussed
the dynamic trading rule based on filtered flag pattern
recognition for stock market price forecasting [7]. Zhang
et al. studied dynamic static pricing in a supply chain with

advertising [8]. Primbs and Barmish presented robustness of
simultaneous long-short stock trading control with time-
varying price dynamics [9]. In [5–9], although the authors
studied the price index problem with dynamics, it did not
discuss the price fluctuation problem from the nonlinear
point of view; in particular the external excitations problem
of the price fluctuation system was not discussed. However,
the nonlinear phenomenon of price fluctuation and the exter-
nal excitations of the dynamic system [10] are common in
practice. Therefore, it is meaningful to discuss the nonlinear
characteristics of price fluctuation system under external
excitations.

In addition, the chaos is sometimes harmful to the
dynamical system in some cases, so it is essential for the
effective control of the dynamical system. The various meth-
ods of chaos control have been put forward by researchers
[11–16]; these control methods were mostly based on infinite
time control. In fact, complex systems are usually required
to be controlled in a certain amount of time, the finite time
control became an important index to measure the quality of
the control criteria, and it not only has important theoretical
significance and also has important practical value [17].
However, the stable time of finite time control depends largely
on the initial state of the system, so there are some limitations
in the practical application. In order to compensate for the
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finite time control, Polyakov proposed the fixed-time stability
of the system [18], and the stability is as follows: (1) fixed time
guaranteed that the system is the finite time stability without
regard to initial conditions. Hence, the study of fixed-time
control has a wide range of research interests, and more and
more fixed-time control methods were also proposed [19–
22]. In particular, in [23], Zuo proposed a class of fixed-time
stability theory for the differential equation: ̇𝑦 = −𝛼𝑦2−𝑝/𝑞 −𝛽𝑦𝑝/𝑞, which was fixed-time stable at 𝑇 ≤ 𝑞𝜋/2√𝛼𝛽(𝑞 − 𝑝).
Subsequently, the theorem proposed by Zuo was used to
discuss the fixed-time control of dynamical systems; please
see [21, 24–27]. This paper attempts to propose a new finite
time convergence theory to discuss the control problem of
stock price fluctuation system, the new fixed-time stability
method proposed in this paper converged faster than the
proposed method by Zuo, and the new fixed-time stable
theorem contains the theorem proposed by Zuo, so the new
fixed-time stable theorem can be applied more widely.

Motivated by the existing works, the aim of this paper
is to discuss dynamic evolution of stock price fluctuation
and its control. The main contributions of this paper are
as follows: (1) a stock price fluctuation dynamical system is
established under the influence of external excitations, and
its basic dynamic behavior is analyzed. (2) A new fixed-
time convergence theorem is proposed. (3) According to the
new fixed-time convergence theorem, the fixed-time control
criterion of the stock price fluctuation dynamical system is
given.

2. Model and Preliminaries

In this paper,𝐴𝑏(𝑡) denotes stock purchases at time 𝑡, namely,
the purchase amount, 𝐴 𝑠(𝑡) denotes stock selling amount,𝑃(𝑡) denotes the stock price at time 𝑡, let 𝑃(𝑡) = 𝑝0 + 𝑝(𝑡), 𝑝0
denotes the original stock price, 𝑝(𝑡) denotes the stock price
fluctuation value, 𝑝(𝑡) > 0means prices rose, 𝑝(𝑡) < 0means
prices down, and 𝑝(0) = 0. 𝑏𝑖 (𝑖 = 1, 2, 3, 4) and 𝑠𝑖 (𝑖 = 1, 2)
denote the undetermined coefficient.

According to the literature [28], the difference between
supply and demand of the stock at time 𝑡 is described in
mathematical model as follows:𝐴 (𝑡) = 𝐴𝑏 (𝑡) − 𝐴 𝑠 (𝑡) . (1)

Assume that all variables are continuous functions about
time 𝑡, according to (1):𝐴 (𝑡) 󴀕󴀬 𝑃 (𝑡 + 1) − 𝑃 (𝑡) = 𝑃̇ (𝑡) . (2)

As long as the introduction coefficientmeets dimensional
requirements, formula (2) can be written into an equation;
that is, 𝑃̇ (𝑡) = 𝑘𝐴 (𝑡) . (3)

Assuming a risk neutral, “buy low sell high” strategy is
to be executed in the stock market. According to the law of
the stock market, 𝐴𝑏(𝑡) is inversely proportional to 𝑃(𝑡), and𝐴𝑏(𝑡) is proportional to the negative value of 𝑃̇(𝑡). Thus the
equation is obtained:𝐴̇𝑏 (𝑡) = 𝑏1 (𝑃 (𝑡))−1 − 𝑏2𝑃̇ (𝑡) . (4)

In (4), if 𝑃̇(𝑡) ≈ 𝑃(𝑡 + 1) − 𝑃(𝑡) > 0, that is, 𝑃(𝑡 + 1) >𝑃(𝑡), then the amount of stock purchase should be reduced;
on the other hand, the amount of stock purchased should be
increased for 𝑃̇(𝑡) ≈ 𝑃(𝑡 + 1) − 𝑃(𝑡) < 0. However, the rate of
change in stock buying not only is related to the price of stock
and the rate of stock price change at themoment 𝑡 but also has
a direct relationship with the buying and selling volume of
stock at the moment 𝑡. Let the rate of change in stock buying
be proportional to the buying amount at the moment 𝑡 and
be proportional to the negative value of the stock sold. Thus
the equation is obtained:

𝐴̇𝑏 (𝑡) = 𝑏1 (𝑃 (𝑡))−1 − 𝑏2𝑃̇ (𝑡) + 𝑏3𝐴𝑏 (𝑡) − 𝑏4𝐴 𝑠 (𝑡)+ 𝛿1, (5)

where 𝛿1 denotes the outside market interference, such as the
impact of external policy.

Similar to (5), the rate of change for selling volume 𝐴 𝑠(𝑡)
is directly proportional to the stock price and is proportional
to the rate of change for the stock price; meanwhile, 𝐴 𝑠(𝑡)
is proportional to the selling amount at time 𝑡, and it is
proportional to the negative value of the stock buying. Thus
the equation is obtained:𝐴̇ 𝑠 (𝑡) = 𝑠1𝑃 (𝑡) + 𝑠2𝑃̇ (𝑡) + 𝑏3𝐴 𝑠 (𝑡) − 𝑏4𝐴𝑏 (𝑡) + 𝛿2, (6)

similar to 𝛿1, 𝛿2 denotes the outside market interference.
Let 𝑃̇(𝑡) = 𝑘(𝐴𝑏(𝑡) − 𝐴 𝑠(𝑡)) and 𝑃̈(𝑡) = 𝑘(𝐴̇𝑏(𝑡) − 𝐴̇ 𝑠(𝑡)).
From (1)–(6), we have𝑃̈ (𝑡) = 𝑘 (𝑏1 (𝑃 (𝑡))−1 − 𝑏2𝑃̇ (𝑡) + 𝑏3𝐴𝑏 (𝑡) − 𝑏4𝐴 𝑠 (𝑡)
+ 𝛿1 − 𝑠1𝑃 (𝑡) − 𝑠2𝑃̇ (𝑡) − 𝑏3𝐴 𝑠 (𝑡) + 𝑏4𝐴𝑏 (𝑡) − 𝛿2)
= 𝑘𝑏1 (𝑃 (𝑡))−1 − 𝑘 (𝑏2 + 𝑠2) 𝑃̇ (𝑡) + (𝑘𝑏3 + 𝑘𝑏4)⋅ (𝐴𝑏 (𝑡) − 𝐴 𝑠 (𝑡)) − 𝑘𝑠1𝑃 (𝑡) + 𝑘 (𝛿1 − 𝛿2)= −𝑘𝑠1𝑃 (𝑡) + 𝑘𝑏1 (𝑃 (𝑡))−1 + [(𝑏3 + 𝑏4)− 𝑘 (𝑏2 + 𝑠2)] 𝑃̇ (𝑡) + 𝑘 (𝛿1 − 𝛿2) .

(7)

Therefore, the dynamic equation of stock price fluctua-
tion 𝑝(𝑡) is
𝑝̈ (𝑡) = −𝑘𝑠1 (𝑝0 + 𝑝 (𝑡)) + 𝑘𝑏1 (𝑝0 + 𝑝 (𝑡))−1+ [(𝑏3 + 𝑏4) − 𝑘 (𝑏2 + 𝑠2)] 𝑝̇ (𝑡) + 𝑘 (𝛿1 − 𝛿2)

= −𝑘𝑠1𝑝 (𝑡) + 𝑘𝑏1 (𝑝0 + 𝑝 (𝑡))−1+ [(𝑏3 + 𝑏4) − 𝑘 (𝑏2 + 𝑠2)] 𝑝̇ (𝑡) + 𝑘 (𝛿1 − 𝛿2)− 𝑘𝑠1𝑝0.
(8)

Let 𝑎1 = 𝑘𝑠1, 𝑎2 = 𝑘𝑏1, 𝑎3 = (𝑏3 + 𝑏4) − 𝑘(𝑏2 + 𝑠2), and𝑘(𝛿1 − 𝛿2 − 𝑠1𝑝0) = 𝑞 cos𝑤𝑡, and then the dynamic equation
of stock price fluctuation 𝑝(𝑡) can be reduced to

𝑝̈ (𝑡) = −𝑎1𝑝 (𝑡) + 𝑎2 (𝑝0 + 𝑝 (𝑡))−1 + 𝑎3𝑝̇ (𝑡)+ 𝑞 cos𝑤𝑡, (9)
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where 𝑝(𝑡) represents the state of stock price fluctuation,𝑝̈(𝑡) represents the acceleration of stock price fluctuation,𝑞 represents the control parameter of the policy, and 𝑤
represents the frequency of external excitations.

To facilitate the analysis of model (9), it can be described
in the following:

𝑥̇ (𝑡) = 𝑦 (𝑡)
̇𝑦 (𝑡) = −𝑎1𝑥 (𝑡) + 𝑎2 (𝑝0 + 𝑥 (𝑡))−1 + 𝑎3𝑦 (𝑡)+ 𝑞 cos𝑤𝑡,

(10)

where 𝑝(𝑡) = 𝑥(𝑡).
In the practical application, 𝑝0 + 𝑥(𝑡) > 0, the stock price

fluctuation cannot make 𝑝0 + 𝑥(𝑡) ≤ 0; otherwise, it will go
bankrupt or withdrawn from the market, but it is possible for
the 𝑝0 + 𝑥(𝑡) < 0 in mathematical expression (10); when 𝑝0 +𝑥(𝑡) = 0, (𝑝0+𝑥(𝑡))−1 can bemeaningless. In order to facilitate
the study of theory and simulation, let 𝑝0 = 𝑥(𝑡) sign𝑥(𝑡) +𝑎0 − 𝑥(𝑡), 𝑎0 > 0, and (10) become the following equations:

𝑥̇ (𝑡) = 𝑦 (𝑡)
̇𝑦 (𝑡) = −𝑎1𝑥 (𝑡) + 𝑎2 (𝑎0 + 𝑥 (𝑡) sign𝑥 (𝑡))−1 + 𝑎3𝑦 (𝑡)+ 𝑞 cos𝑤𝑡.

(11)

Remark 1. Although this assumption about (11) is flawed, (11)
have the same properties as (10) for 𝑥(𝑡) > 0. Therefore,
we can deduce the part evolutionary behavior of the stock

price fluctuation 𝑝(𝑡) in practice by analyzing (11).Thus it can
provide some theoretical reference for managers.

Remark 2. The dynamic method are often utilized to depict
the complicated systems in the real world [29], and the
nonlinear phenomenon of price fluctuation and the external
excitations of the system [10] are common in practice.
Therefore, it is meaningful to discuss the nonlinear charac-
teristics of price fluctuation dynamical system under external
excitations by dynamic method.

3. Some Basic Properties of
the Dynamics Model

In this section, we will investigate some basic properties of
(11).

3.1. Equilibria. Obviously, system (11) is a nonlinear
autonomous system:

𝑦 (𝑡) = 0
− 𝑎1𝑥 (𝑡) + 𝑎2 (𝑎0 + 𝑥 (𝑡) sign𝑥 (𝑡))−1 + 𝑎3𝑦 (𝑡)+ 𝑞 cos𝑤𝑡 = 0.

(12)

(1) When 𝑥(𝑡) = 0 and 𝑎2(𝑎0)−1 + 𝑞 cos𝑤𝑡 = 0, the
equilibrium point is (𝑥, 𝑦) = (0, 0).(2) When 𝑥(𝑡) ̸= 0 and 𝑞 cos𝑤𝑡 ̸= 0, the equilibrium
points are

(𝑥, 𝑦) = (− (𝑎0𝑎1 − 𝑞 sign𝑥 cos𝑤𝑡) ± √(𝑎0𝑎1 − 𝑞 sign𝑥 cos𝑤𝑡)2 + 4𝑎1 sign𝑥 (𝑎2 + 𝑎0𝑞 cos𝑤𝑡)2𝑎1 sign𝑥 , 0) . (13)

(3) When 𝑥(𝑡) ̸= 0 and 𝑞 cos𝑤𝑡 = 0, the equilibrium
points are

(𝑥, 𝑦) = (−𝑎0𝑎1 ± √(𝑎0𝑎1)2 + 4𝑎1𝑎2 sign𝑥2𝑎1 sign𝑥 , 0) . (14)

Equations (11) are linearized, and the Jacobian matrix is
defined as

𝐽 = ( 0 1
−𝑎1 − 𝑎2 sign𝑥(𝑎0 + 𝑥 sign𝑥)2 𝑎3). (15)

To gain its eigenvalues, we let |𝜆𝐸 − 𝐽| = 0, so the
corresponding eigenvalues are𝜆1,2

= 𝑎3 ± √𝑎23 − 4 (𝑎1 + 𝑎2 sign𝑥/ (𝑎0 + 𝑥 sign𝑥)2)2 . (16)

According to (16), the eigenvalues are only related to the
abscissa of the equilibrium points, so there are the following
conclusions:

(i) When 𝑎3 > 0, all the equilibrium points are unstable.
(ii) As (𝑎0 + 𝑥 sign𝑥)2 > 0, as long as you get suitable𝑎1, 𝑎2 make 𝑎1 + 𝑎2 sign𝑥/(𝑎0 + 𝑥 sign𝑥)2 < 0, and all the

equilibrium points are unstable.
(iii) All the equilibrium points are stable except for two

cases (i)-(ii).

3.2. Dissipativity and the Existence of Attractor. For system
(11), we can obtain

∇𝑉 = 𝜕𝑥̇𝜕𝑥 + 𝜕 ̇𝑦𝜕𝑦 = 𝑎3, (17)

when 𝑎3 is a negative value, system (11) is a dissipative system,
and an exponential contraction of system (11) is

𝑑𝑉𝑑𝑡 = 𝑒𝑎3 . (18)
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In system (11), a volume element 𝑉0 is apparently contracted
by the flow into a volume element 𝑉0𝑒𝑎3𝑡 at time 𝑡. It means
that each volume containing the trajectory of the systems
shrinks to zero as 𝑡 → ∞ at an exponential rate 𝑎3. So, all
the systems orbits are eventually confined to a specific subset
that have zero volume; the asymptotic motion settles onto an
attractor of system (11) [30].

3.3. Lyapunov Exponent. Any system containing at least one
positive Lyapunov exponent is defined to be chaotic [30].The
Lyapunov exponent spectrum of system (11) is found to be𝐿1 = 3.1452 and 𝐿2 = 3.4912 for initial value (0.01, 0.1) and𝑎0 = 0.15, 𝑎1 = 0.6, 𝑎2 = 0.5, 𝑎3 = −0.2, 𝑞 = 0.8, and 𝑤 = 0.6.
In addition, the Lyapunov dimension of the system is

𝐷𝐿 = 𝑗 + 1󵄨󵄨󵄨󵄨󵄨𝐿𝑗+1󵄨󵄨󵄨󵄨󵄨
𝑗∑
𝑖=1

𝐿 𝑖 = 1 + 𝐿1󵄨󵄨󵄨󵄨𝐿2󵄨󵄨󵄨󵄨 = 1 + 3.1452|3.4912|
= 1.9009 (19)

whichmeans that system (11) is really a dissipative system and
the Lyapunov dimension of the system is fractional.

3.4. Poincare Map, Spectrum Map, and Bifurcation Diagram.
By simulation, system (11) exhibits some complex dynamical
properties; for example, let 𝑎0 = 0.15, 𝑎1 = 0.6, 𝑎2 =0.5, 𝑎3 = −0.2, 𝑞 = 0.8, and 𝑤 = 0, the stock market
is subject to constant external excitations interference, and
the market is in stable state (see Figure 1). If the external
frequency parameter𝑤 ̸= 0, that is, themarket is disturbed by
the changing external excitations, then system (11) gradually
loses stability, produces bifurcations, and eventually produces
chaos (see Figure 2; 𝑤 = 0.6).

When the parameters change, the bifurcation diagram
would be far better to summarize all of the possible behaviors.
For 𝑞 ∈ [0, 1], the bifurcation diagram of system (11) shows
the complicated bifurcation phenomena in Figure 3. The
maximum Lyapunov exponent diagram is shown in Figure 4.
Figure 4 shows that the system has some periodic windows,
which play a very important role in the dynamics evolution
of the system. In addition, Figure 5 shows the continuous
broadband features of the system. Figure 6 shows the Poincare
diagram of the system; it is clear that some sheets are folded,
which also leads to complex dynamical behavior of the
system.

Remark 3. In [5–9], although the authors analyzed some
dynamical properties of price indices based on dynamics,
some nonlinear properties of the price fluctuation system
were not considered, such as the equilibrium point and sta-
bility, Lyapunov exponent, fractal dimension, and bifurcation
diagram.

4. Fixed-Time Control of the Dynamics Model

In this section, we focus on studying fixed-time control of the
stock price fluctuation model. To obtain the main results, we
need the following preliminaries.
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Lemma 4 (see [31]). For 𝑥𝑖 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, 0 < 𝑝 ≤ 1,
and then

( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨)𝑝 ≤ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨𝑝 ≤ 𝑛1−𝑝( 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨)𝑝 . (20)

Lemma 5 (see [23]). Consider the following differential equa-
tion:

̇𝑦 = −𝛼𝑦2−𝑝/𝑞 − 𝛽𝑦𝑝/𝑞, (21)

where 𝛼 > 0, 𝛽 > 0, and 𝑝, 𝑞 are positive odd integers, 𝑝 < 𝑞.
Then, system (21) is fixed-time stable, and

𝑇1 ≤ 𝑞𝜋2√𝛼𝛽 (𝑞 − 𝑝) . (22)

Based on Lemma 5, we obtain Lemma 6.

Lemma 6. Consider the following differential equation:

̇𝑦 = −𝛼𝑦𝛿−𝑝/𝑞 − 𝛽𝑦𝑝/𝑞, (23)

where 𝛼 > 𝛽 > 0, 𝛿 > (𝑝 + 𝑞)/𝑞, 𝑝 < 𝑞, and 𝑝, 𝑞 are coprime
positive integers. Then, system (23) is fixed-time stable, and

𝑇 < 1𝛼 1𝛿 − (𝑝 + 𝑞) /𝑞 + 1𝛽 𝑞𝑞 − 𝑝 . (24)

Proof. Let 𝑧 = 𝑦1−𝑝/𝑞, then (𝑞/(𝑞 − 𝑝))𝑧̇𝑦𝑝/𝑞 = ̇𝑦, and system
(23) can be rewritten as

𝑧̇ + 𝑞 − 𝑝𝑞 𝛼𝑧𝑞/(𝑞−𝑝)∙(𝛿−2𝑝/𝑞) + 𝑞 − 𝑝𝑞 𝛽 = 0. (25)

That is, 1𝛽 + 𝛼𝑧𝑞/(𝑞−𝑝)∙(𝛿−2𝑝/𝑞) 𝑑𝑧 = −𝑞 − 𝑝𝑞 𝑑𝑡. (26)

Solving (26) for convergence time, the upper bound of
convergence time can be estimated as

lim
𝑧0→∞

𝑇 (𝑧0)
= lim
𝑧0→∞

𝑞𝑞 − 𝑝 (∫𝑧01 1𝛼𝑧𝑞/(𝑞−𝑝)∙(𝛿−2𝑝/𝑞) + 𝛽𝑑𝑧
+ ∫1
0

1𝛼𝑧𝑞/(𝑞−𝑝)∙(𝛿−2𝑝/𝑞) + 𝛽𝑑𝑧) .
(27)

As 𝑧 ∈ [0, 1], then 𝛽 < 𝛼𝑧𝑞/(𝑞−𝑝)∙(𝛿−2𝑝/𝑞) + 𝛽.
So,

lim
𝑧0→∞

𝑇 (𝑧0)
≤ lim
𝑧0→∞

𝑞𝑞 − 𝑝 (∫𝑧01 1𝛼𝑧𝑞/(𝑞−𝑝)∙(𝛿−2𝑝/𝑞) + 𝛽𝑑𝑧
+ ∫1
0

1𝛽𝑑𝑧) < lim
𝑧0→∞

𝑞𝑞 − 𝑝 ∫𝑧01 1𝛼𝑧𝑞/(𝑞−𝑝)∙(𝛿−2𝑝/𝑞) 𝑑𝑧
+ 𝑞(𝑞 − 𝑝) 1𝛽 .

(28)

When 𝑧 > 1 and 𝛿 > (𝑝 + 𝑞)/𝑞,
lim𝑧0→∞ ∫𝑧01 (1/𝑧𝑞/(𝑞−𝑝)∙(𝛿−2𝑝/𝑞))𝑑𝑧 < 1/(𝑞/(𝑞 − 𝑝) ∙ (𝛿 −2𝑝/𝑞) − 1), and we have

lim
𝑧0→∞

𝑇 (𝑧0) < 𝑞𝑞 − 𝑝 1𝛼 (𝑞/ (𝑞 − 𝑝) ∙ (𝛿 − 2𝑝/𝑞) − 1)
+ 𝑞𝑞 − 𝑝 1𝛽

= 1𝛼 1𝛿 − (𝑝 + 𝑞) /𝑞 + 1𝛽 𝑞𝑞 − 𝑝 .
(29)

The proof is completed.

Remark 7. When 𝛿 = 2, Lemma 6 is reduced to Lemma 5.

Remark 8. If 𝛿 > (𝑝 + 𝑞)/𝑞, 𝛽 < 𝛼 < (𝜋2/4)𝛽, and then

𝑇 = 1𝛼 1𝛿 − (𝑝 + 𝑞) /𝑞 + 𝑞𝑞 − 𝑝 1𝛽
< 1𝛼 𝑞𝑝 − 𝑞 + 𝑞(𝑞 − 𝑝) 1𝛽 = 𝑞𝑞 − 𝑝 ( 1𝛽 − 1𝛼)
< 𝑞𝑞 − 𝑝 ∙ 1𝛽 < 𝑞𝜋2√𝛼𝛽 (𝑞 − 𝑝) ;

(30)

that is, the fixed-time stable of the system presented in this
paper achieves more faster convergence than Lemma 5.

Remark 9. Some researchers have discussed the fixed-time
control problem of dynamical systems by using the theorem
proposed by Zuo [21, 24–27]. From Remark 8, the fixed-
time stable theorem of the dynamical system proposed in
this paper achievesmore faster convergence than the theorem
proposed by Zuo and in [21, 24–27].
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Remark 10. In Lemma 6, as 𝛿 can take any value greater than2𝑝/𝑞, and 2𝑝/𝑞 < 2, Lemma 6 contains Lemma 5 proposed
by Zuo, and Lemma 5 can be applied more widely.

Based on Lemma 6, we analyze the fixed-time control
problem of system (11).

If system (11) is the driving system, the response system is

𝑥̇1 (𝑡) = 𝑦1 (𝑡) + 𝑢1,
̇𝑦1 (𝑡) = −𝑎1𝑥1 (𝑡) + 𝑎2 (𝑎0 + 𝑥1 (𝑡) sign𝑥1 (𝑡))−1+ 𝑎3𝑦1 (𝑡) + 𝑞 cos𝑤𝑡 + 𝑢2.

(31)

According to system (11) and (31), the error system is

̇𝑒1 (𝑡) = 𝑒2 (𝑡) + 𝑢1,
̇𝑒2 (𝑡) = −𝑎1𝑒1 (𝑡) + 𝑎2 (𝑎0 + 𝑥1 (𝑡) sign𝑥1 (𝑡))−1

− 𝑎2 (𝑎0 + 𝑥 (𝑡) sign𝑥 (𝑡))−1 + 𝑎3𝑒2 (𝑡)+ 𝑢2,
(32)

where 𝑒1 = 𝑥1 − 𝑥 and 𝑒2 = 𝑦1 − 𝑦.
Theorem 11. Thedrive system (11) and the response system (31)
are fixed-time synchronization under the following controller:

𝑢1 = −𝑝1𝑒1 (𝑡) − 𝜇 sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝜆−𝑚/𝑛− ] sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛 ,𝑢2 = −𝑝2𝑒2 (𝑡) − 𝜇 sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝜆−𝑚/𝑛− ] sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛− 𝑎2 (𝑎0 + 𝑥1 (𝑡) sign𝑥1 (𝑡))−1
+ 𝑎2 (𝑎0 + 𝑥 (𝑡) sign𝑥 (𝑡))−1 ,

(33)

where 𝑚/𝑛 < (1 + 𝜆)/2 < (2𝑛 + 𝑚)/2𝑛, 𝑝1 > (1 − 𝑎1)/2,𝑝2 > 𝑎3 + (1 − 𝑎1)/2, 𝜇 > ] > 0,𝑚 < 𝑛, and𝑚 + 𝑛 and 2𝑛 are
coprime positive integers.

Proof. Let 𝑉(𝑡) = (1/2)𝑒21(𝑡) + (1/2)𝑒22(𝑡), and so

𝑉̇ (𝑡) = 𝑒1 (𝑡) ̇𝑒1 (𝑡) + 𝑒2 (𝑡) ̇𝑒2 (𝑡) = 𝑒1 (𝑡) (𝑒2 (𝑡)
− 𝑝1𝑒1 (𝑡) − 𝜇 sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝜆−𝑚/𝑛
− ] sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛) + 𝑒2 (𝑡) (−𝑎1𝑒1 (𝑡)
+ 𝑎3𝑒2 (𝑡) − 𝑝2𝑒2 (𝑡) − 𝜇 sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝜆−𝑚/𝑛

− ] sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛) = (1 − 𝑎1) 𝑒1 (𝑡) 𝑒2 (𝑡)
− 𝑝1𝑒21 (𝑡) − (𝑝2 − 𝑎3) 𝑒22 (𝑡)
− 𝜇 (𝑒1 (𝑡) sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝜆−𝑚/𝑛
+ 𝑒2 (𝑡) sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝜆−𝑚/𝑛)
− ] (𝑒1 (𝑡) sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛
+ 𝑒2 (𝑡) sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛) ≤ (1 − 𝑎1)2 (𝑒21 (𝑡)
+ 𝑒22 (𝑡)) − 𝑝1𝑒21 (𝑡) − (𝑝2 − 𝑎3) 𝑒22 (𝑡)
− 𝜇 (𝑒1 (𝑡) sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝛿−𝑚/𝑛
+ 𝑒2 (𝑡) sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝜆−𝑚/𝑛)
− ] (𝑒1 (𝑡) sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛
+ 𝑒2 (𝑡) sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛) = −(𝑝1 − 1 − 𝑎12 )
⋅ 𝑒21 (𝑡) − (𝑝2 − 𝑎3 − 1 − 𝑎12 ) 𝑒22 (𝑡)
− 𝜇 (𝑒1 (𝑡) sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝜆−𝑚/𝑛
+ 𝑒2 (𝑡) sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝜆−𝑚/𝑛)
− ] (𝑒1 (𝑡) sign (𝑒1 (𝑡)) 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛
+ 𝑒2 (𝑡) sign (𝑒2 (𝑡)) 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨𝑚/𝑛)
≤ −𝜇 (󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨1+𝜆−𝑚/𝑛 + 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨1+𝜆−𝑚/𝑛)
− ] (󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨1+𝑚/𝑛 + 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨1+𝑚/𝑛) ≤ −𝜇 (󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨2
+ 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨2)(1+𝜆)/2−𝑚/2𝑛 − ] (󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨2
+ 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨2)1/2+𝑚/2𝑛 = −𝜇2(1+𝜆)/2−𝑚/2𝑛 (12 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨2
+ 12 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨2)(1+𝜆)/2−𝑚/2𝑛 − ]21/2+𝑚/2𝑛 (12 󵄨󵄨󵄨󵄨𝑒1 (𝑡)󵄨󵄨󵄨󵄨2
+ 12 󵄨󵄨󵄨󵄨𝑒2 (𝑡)󵄨󵄨󵄨󵄨2)1/2+𝑚/2𝑛
= −𝜇2(1+𝜆)/2−𝑚/2𝑛 (𝑉 (𝑡))(1+𝜆)/2−𝑚/2𝑛
− ]21/2+𝑚/2𝑛 (𝑉 (𝑡))1/2+𝑚/2𝑛 .

(34)
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By Lemma 6 and Comparison Principle of differential equa-
tions [28], we obtain

lim
𝑡→𝑇
𝑉 (𝑡) = 0, (35)

where the settling time is given by

𝑇 < 1𝜇2(1+𝜆)/2−𝑚/2𝑛 1(1 + 𝜆) /2 − (2𝑛 + 𝑚) /2𝑛
+ 1
]21/2+𝑚/2𝑛 2𝑛(2𝑛 − 𝑚) .

(36)

In numerical simulation, let 𝑎0 = 0.15, 𝑎1 = 0.6, 𝑎2 = 0.5,𝑎3 = −0.2, 𝑤 = 0.6, 𝑞 = 0.8, 𝜆 = 2,𝑚 = 1, 𝑛 = 2, 𝑝1 = 1, 𝑝2 =1, 𝜇 = 2, and ] = 1. By calculation from (36), the control time
is obtained:𝑇 < 1.6337.The initial values of the state are 2,−2,
6, and 3; the error evolution is shown in Figure 7. Numerical
simulations illustrate the effectiveness of Theorem 11.
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Figure 7: Synchronization errors.
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5. Conclusion

Chaos and bifurcation are complex phenomena in nonlinear
economic and financial systems. In this paper, the stock price
fluctuation dynamic system has been established according
to the rule of the stock market, and basic dynamic properties
of the system has been analyzed by external excitations, such
as the equilibrium point and stability, Lyapunov exponent,
fractal dimension, and bifurcation diagram.At the same time,
the new fixed-time convergence theorem has been proposed
in this paper, and the fixed-time control criterion of the stock
price fluctuation system has also been studied. Our future
work is to study dynamic properties of stock price fluctuation
system with time-delay.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (61673221, 61673257, and 11701287),
the Youth Fund Project of the Humanities and Social
Science Research for the Ministry of Education of China
(14YJCZH173), Top-Notch Academic Programs Project of
Jiangsu Higher Education Institutions (Jiangsu Province
Office, no. [2015] 1, PPZY2015B104), the Key Laboratory
of Financial Engineering of Jiangsu Province (NSK2015-16),
Applied Economics of key Sequence Disciplines of Jiangsu
Higher Education Institutions (Jiangsu Province Office, no.[2014] 37), “Qing-Lan Engineering” Foundation of Jiangsu
Higher Education Institutions, and a project funded by the
Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD).

References

[1] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the
Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.

[2] P. Chen, “Empirical and theoretical evidence of economic
chaos,” SystemDynamics Review, vol. 4, no. 1-2, pp. 81–108, 1988.

[3] C. Xie, Y. Xu, and D. Tong, “Chaos synchronization of financial
chaotic system with external perturbation,” Discrete Dynamics
in Nature and Society, vol. 2015, Article ID 731376, 7 pages, 2015.

[4] J. Ma, H. Ren, M. Yu, and M. Zhu, “Research on the complexity
and chaos control about a closed-loop supply chain with
dual-channel recycling and uncertain consumer perception,”
Complexity, vol. 2018, Article ID 9853635, 13 pages, 2018.

[5] Y. Li, S. Zhang, and J. Han, “Dynamic pricing and periodic
ordering for a stochastic inventory system with deteriorating
items,” Automatica, vol. 76, pp. 200–213, 2017.

[6] F. Grassetti and G. Hunanyan, “On the economic growth
theory with Kadiyala production function,” Communications in
Nonlinear Science and Numerical Simulation, 2017.
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