
A Variant of Thomason's First-order Logic CFBased on SituationsXuegang Wang� and Peter Mott18 August 1998AbstractIn this paper, we de�ne a �rst-order logic CF 0 with strong negationand bounded static quanti�ers, which is a variant of Thomason's logicCF . For the logic CF 0, the usual Kripke formal semantics is de�nedbased on situations, and a sound and complete axiomatic system isestablished based on the axiomatic systems of constructive logics withstrong negation and Thomason's completeness proof techniques. Withthe use of bounded quanti�ers, CF 0 allows the domain of quanti�cationto be empty and allows for non-denoting constants. CF 0 is intended asa fragment of a logic for situation theory. Thus the connection betweenCF 0 and infon logic is discussed.1 IntroductionThomason [26] constructed a �rst-order logic CF . In his logic, a construc-tive negation is used instead of a classical or intuitionistic one. Construc-tive negation, also called strong negation, was introduced by Nelson [22]following Kleene's notion of recursive realizability, emphasising that falsenumber-theoretic statements as well as true ones are obtained simultane-ously by constructive means. Independently, Markov [20] also introducedstrong negation from the point of view of the constructive logic. Such nega-tion was later incorporated into various logical systems, such as Nelson'spropositional systems N and N1, that is, the propositional parts of Nelson'ssystem N1 of constructible falsity (see [22], and Routley [25]),1 and their�Funded by an Overseas Research Students (ORS) Award (#ORS-95023007), a Tetley& Lupton Scholarship, a Leeds University Foundation Scholarship, and a departmentalscholarship. We should like to thank anonymous referees for their comments, criticisms,and suggestions which helped to improve greatly the paper.1



�rst-order extensions (see Almukdad and Nelson [4]),2 intuitionistic logicwith strong negation H by Gurevich [18], constructive predicate logic withstrong negation S by Akama [2], and �rst-order logic CF in [26]. See alsoconstructive propositional calculus with strong negation by Vorob'ev [30]and the semantics of the calculus in terms of N -lattices in Rasiowa [23].Furthermore, Wansing [32] has systematically investigated the whole familyof substructural subsystems of Nelson's systems from the point of view ofthe �ne-structure of information processing.3The resulting logics, to which we shall refer loosely as constructive logicswith strong negation, demonstrate some satisfying features compared withintuitionistic logics. First of all, since negative information is treated asof equal importance with positive information, such logics are more sym-metrical than intuitionistic logics and satisfy very natural duality laws. Inparticular, strong negation avoids non-constructive features possessed by in-tuitionistic negation (see [18], and [32]). Secondly, constructive logics withstrong negation can be provided with a more satisfying interpretation thanthe well-known Brouwer-Heyting-Kolmogorov(BHK) interpretation for in-tuitionistic logics (see [32], and Lopez-Escobar [19]). Moreover, they admita sentence to be undetermined and thus can accommodate the partiality ofinformation (see [26], and [32]).Another desirable characteristic of constructive logics with strong nega-tion is the heredity or persistence of information,4 to the e�ect that whatis true at a state of information is still true all later states. This is usuallybought at the cost of a very strong \dynamic" satisfaction condition on uni-versal quanti�ers. A sentence 8x'(x) is true at a state of information s onlywhen '(a)5 is true at all states of information t � s for all individuals a inthe domain of t (where � orders states by increasing information).Classically we should evaluate the quanti�er in a \static" fashion whereonly the state s and the individuals in the domain of s are relevant. Whichform is more natural from the situation-theoretic viewpoint? Consider thesituation s of a room full of people. The sentence \All men here are hungry"will be true at s provided that all the men in the room are hungry. Here thequanti�er is taken as restricted to the men in that room. We do not look atwider situations and (possibly) wider extensions of \men". So if we take apoint s in a Kripke model as a situation rather than a state of information,then it seems we should evaluate the quanti�er statically.Thomason's �rst-order logic CF does interpret universal quanti�ers stat-ically rather than dynamically. His semantical model is a hybrid of a Kripkemodel for propositional intuitionistic logic (as the conditional is intuitionis-tic) and a classical model for predicate logic (as the universal quanti�er is2



static).6 Nevertheless, his semantical framework requires di�erent stages tohave the same domain. From the standpoint which treats stages as situa-tions, it is obvious that this restriction is inappropriate. From an intuition-istic viewpoint, it is not suitable either. As is well-known, Kripke modelsfor intuitionistic logic also require expanding domains. But the connectionof intuitionistic logic with expanding domains is both more complicated andmore tenuous than is the case with Situation Theory. In order to see this,let us consider the following schema which we call the Distribution Schema:(DS) 8x(' _  (x)) � (' _ 8x (x)), where x is not free in '.If we add to intuitionistic logic all instances of (DS), we obtain a logicwhose models are exactly the Kripke models with constant domain. Thus tomotivate expanding domains from an intuitionistic viewpoint is to motivatethe rejection of this schema.The BHK interpretation is little help. According to that we need to showhow a proof of 8x(' _  (x)) could be extended to a proof of ' _ 8x (x).Well, to have a proof of 8x(' _  (x)) is to have a construction C whichtransforms a proof of a 2 D (D the intended range of the variable x) intoa proof of ' _  (a). If the construction C transforms a proof of a 2 D intoa proof of ', then since x is not free in ', we would have a proof of '.Otherwise, it transforms a proof of a 2 D into a proof of  (a) and thus fromthe construction C we derive a proof of 8x (x). Either way we have a proofof ' _ 8x (x) (for the BHK interpretation, see p. 9 of Troelstra and vanDalen [28]). The informal semantics of intuitionistic logic does not, at leastnot obviously, show what is wrong with (DS). Why, then, is (DS) rejected atall? Very briey, it happens that certain Brouwerian principles of continuitywhich are more or less self-evident from an intuitionistic standpoint areformally inconsistent in classical logic. These principles say roughly that anassertion about an in�nite sequence � must be decided by a �nite initialsegment of �, and hence will be decided the same way for all sequences �that agree on that initial segment. Adding (DS) to intuitionistic logic willrestore inconsistency with these same principles. Dummett [12] contains atreatment of the semantics of intuitionistic logic which discusses these issuesin detail.There is a further point. Kripke models are not the only semantic struc-tures for intuitionistic logic. Beth trees may be used instead. In the Bethsemantics we have a more complicated rule (see p. 106 of Troelstra [27]) forevaluating disjunctions:s j= ' _  i� 8t � s9u � t(u j= ' or u j=  )This evaluates a disjunction true provided however knowledge is extended3



eventually one at least of the disjuncts will be true. With this it is easy to�nd a counter-example to (DS) that makes no appeal to expanding domains.The upshot is that expanding domains seem more an artifact of theKripke semantics than an essential part of the interpretation of intuition-istic logic. However, they are quite central to Situation Theory, which tosome extent supports our choice not to use intuitionistic logic as a basis forSituation Theory (for more, see the �nal part below)If we are to allow expanding domains, there is a technical problem toovercome. Speci�cally, the semantical completeness proof of CF dependson an auxiliary lemma, that is, lemma 2 on page 250 in [26], and the proofof the lemma in turn makes use of the conditional introduction rule �I.However, it is easy to check that if di�erent stages in the semantical modelsare allowed to have di�erent domains, then the rule is generally not soundsince universally quanti�ed sentences, when interpreted statically instead ofdynamically, generally are not persistent (see below 2.2 and 2.5). So, thecondition of a constant domain has to be imposed on his models for thesake of CF 's semantic completeness, that is to say, in order to have staticuniversal quanti�ers, we are forced to adopt a model with constant domain.Conversely, from the model theoretic standpoint, the models forCF are aspecial case of the intuitionistic models. Accordingly, the dynamic conditionfor quanti�ers collapses into the static one. Since the dynamic condition isnot suitable and expanding domains are desired as we said above from thesituation theoretic viewpoint, it is natural to ask if we can have a logic forsituation theory with both static quanti�ers and expanding domains.Motivated by the above, we propose a �rst-order logical system CF 0with strong constructive negation like Thomason's but that allows for ex-panding domains. Our semantical analysis is still based on Kripke frames< S;�; D > but we have it in mind to interpret S as a collection of situa-tions rather than conventional possible worlds. Accordingly, � is a pre-orderon situations, and D is a function assigning a set of individuals to each situ-ation. Situations are limited parts of the world. Thus, generally, situationsprovide us with only incomplete information. The partiality of situations tosome extent also justi�es the use of situations in our semantical frameworksince, as we pointed out before, constructive logics with strong negation arepartial. In addition, we note that another source of the partiality of thelogic is from the use of inexact predicates (see [4], Wagner [31], and relatedcitations there). We treat universally quanti�ed sentences statically insteadof dynamically. And since static unbounded universally quanti�ed sentencesgenerally are not persistent, we instead consider bounded ones, say 8�x'(x)where � is a bounder. This is reminiscent of Devlin's infon logic. Devlin [11]4



considers 8x2u� where u is a set and � is an infon. Such compound infonsare persistent because the set u bounds the quanti�er. In our framework thebounder � may itself be non-persistent in the sense that the extension of �is liable to change from situations to situations, and consequently 8�x'(x)is in general not persistent either. Thus, we further distinguish persistentbounders from non-persistent ones (see the next section).We summarise the various approaches to the universal quanti�er in thefollowing table, where INT is intuitionistic predicate logic, H is Gurevich'sintuitionistic logic with strong negation [18], and CF is Thomason's �rst-order logic [26]. For a unifying exposition of both Kripke and Beth models,see van Dalen [10].Logics Quanti�ers 8x Models DomainsINT , H dynamic Kripke models expandingINT static Beth models constantCF static Kripke models constantCF 0 static Kripke models expandingIn the following, we shall �rst introduce the logical system CF 0, and thenprove its soundness and completeness. Finally, we discuss its connection withsituation theory, its possible extensions as well as its potential applications.2 Logical System CF 0 With Strong ConstructiveNegation2.1 Language L of CF 0.The language7 of our logical system CF 0 consists of an in�nite set VL ofindividual variables (as metavariables for variables we use x; x0; x1; :::), aset CL of individual constants (metavariables: c; c0; c1; :::), and for eachn; n � 0, a set PnL of n-ary predicate symbols (metavariables: R1; R2; R3; :::).In addition, L has a set BL of bounders with a subset BPL of persistentbounders (metavariables: �; �0; �1; ::: with or without superscript P ), and arelation symbol 2.The set TL of terms of L is VL [CL. We use t; t0; t1; ::: as metavariablesfor terms.Atomic formulas of L are R(t1; t2; :::; tn) and c2�, where t1; t2; :::; tn 2TL; c 2 CL; R 2 PnL and � 2 BL. The well-formed formulas of L are de�ned5



recursively from atomic formulas using the connectives _;�, and �, and foreach bounder � , a bounded universal quanti�er 8� as follows:(i) atomic formulas are formulas;(ii) if ' is a formula, then so is � ';(iii) if ';  are formulas, then so are ' _  ; ' �  ;(iv) if ' is a formula, x is a variable, and � is a bounder , then 8�x'(x) isalso a formula. For simplicity, we write 8x2�'(x) for 8�x'(x).A formula of form 8x2�'(x) is called a bounded universally quanti�ed for-mula. Such formulas can be used to express local generality since the boundvariables thereof are to range over a subset of the individuals in the uni-verse. In contrast, the generality expressed by unbounded universally quan-ti�ed formulas is a kind of overall generality (see Frege [15]). In order toexpress overall generality by a variable, we only need a device for the scopeof the variable whereas, in order to express local generality, we need in ad-dition the range of the variable. So, generally speaking, in order to expressgenerality via a variable, we need both a mechanism for the scope of thevariable and a parameter for its range. In other words, a logical quanti-�er consists of the scope of a variable and the range of the variable. Fromthe pragmatic point of view, it is clear that bounded formulas are morefrequently used than unbounded ones. In translating natural language, re-stricted quanti�ers are usually represented as unrestricted quanti�ers overa material conditional or something equivalent. Thus, \All birds y" isformalised as 8x(� Bird(x)_Flies(x)) or 8x(Bird(x)! Flies(x)) if the ma-terial conditional ! is de�ned. In CF 0 it is represented as 8x2�Flies(x),where � is a bounder for birds. We prefer our approach to the usual one.In our opinion, it is tidy, and emphasises the two aspects of local generality.More importantly, as we mentioned in the introduction, bounded universallyquanti�ed formulas, can be used to express the persistence of information(see below). That is the primary motive for our use of bounded formulasinstead of unbounded ones.Syntactically bounders are ags on quanti�ers. Semantically they are tobe interpreted as sets, that is in the same way as predicates are in classical�rst-order logic. Then, it may be asked, why do we have a special syntax forbounders instead of treating them simply as unary predicates? The answeris that a predicate such as \Flies(x)" gives three possibilities: an object mayy, it may not y, or it may be undecided whether it ies or not. But a6



bounder supplies only two possibilities: an object is included in the bounderor it is not. The consequence is that 8x(�  (x)_ '(x)) in fact says a littlemore than 8x2�'(x) (see Formal Semantics below for exact comparison).It is the latter that captures the informal reading of \All birds y" ratherthan the former.Conjunction and bounded existential quanti�cation are de�ned as fol-lows: '^  =df � (� ' _ �  )9x2�'(x) =df � 8x2� � '(x):The concept of free and bound variables is de�ned as usual. Bound variablesare used as position markers only and thus 8x2�'(x) and 8y2�'(y) would becounted as the same formula. We use as above ';  ; �; ::: as metavariablesfor formulas, and �;� (with or without subscripts) for arbitrary sets offormulas.2.2 Persistent FormulasThe concept of persistence comes from situation theory. Informally, it saysthat what is true in one situation is still true in a larger situation. Formally,there is a so-called persistence principle, stated asIf s � s0 and s j= �, then s0 j= �,where s; s0 are situations, � is an infon, and j= is a support relation betweensituations and infons. If an infon � satis�es the persistence principle, wesay that � is persistent (see Barwise [5]). Generally speaking, universallyquanti�ed sentences in natural language are not persistent. \Everyone hereis hungry" may be veri�ed when evaluated from the situation in one poorhousehold, but falsi�ed when evaluated from a larger situation includingcomfortable ones. There is a tension between quanti�cation and persistence.If we take it that the persistence principle is true of every infon, then it seemsuniversally quanti�ed sentences have to be excluded from the category of in-fons. And conversely, if universally quanti�ed sentences are taken as infonsthen the persistence principle would only hold partially (see pp. 234{236 of[5]). However, quanti�ed sentences are such important forms for expressinginformation that they can hardly be excluded from the category of infons.We also want to retain the persistence principle because, as situation theo-rists have argued, it captures our intuition \that what goes on in part of theworld still goes on when one has a broader perspective"(see p. 236 of [5]).7



For the sake of both persistence and a rich algebraic structure of infons, weonly consider bounded quanti�ed formulas for which these problems do notarise. However, as we pointed out in the introduction, in our present frame-work, a bounder � in 8x2�'(x) may be non-persistent. So we introduce anauxiliary notion of persistent bounders. Syntactically, persistent boundersare treated as a primitive notion. Semantic meaning of persistent bound-ers will be given below (see condition (iii) on an interpretation in FormalSemantics). Pragmatically, persistent bounders can be obtained by incorpo-rating context into bounders in universally quanti�ed sentences. Then wecan de�ne persistent formulas of L recursively as follows :(i) R(t1; t2; :::; tn) and � R(t1; t2; :::; tn) are persistent for any n-ary pred-icate R, terms t1; t2; :::; tn, and c2� and � c2�P are persistent for anybounders � and �P ;(ii) if ';  are persistent, then so are ' _  and ' ^  ;(iii) ' �  is persistent for any formulas ';  ;(iv) if ' is persistent, then 8x2�P'(x) is persistent;(v) if ' is persistent, then 9x2�'(x) is persistent for any � 2 BL.Given a set � of formulas, let �P be f' 2 � : ' is persistentg. So, all thepersistent formulas of L would be FPL , where FL is the set of all L-formulas.Note that, in the de�nition of persistent formulas, negation is restricted toonly atomic formulas. Nevertheless, this will not lose any generality sincethe negation of a compound formula, according to related rules (see DerivedRules for CF 0 below), is equivalent to another compound formula in whichnegation is applied to only atomic formulas.By the de�nition, non-persistence of formulas is only due to the non-persistence of bounders in universally quanti�ed formulas. So, pragmati-cally, the persistence of such formulas can be recovered by incorporatingcontext into related bounders. Nevertheless, there exists indeed a kind ofunrecoverable non-persistence. In fact, such non-persistence is the conse-quence of the partiality of situations. If a situation is silent on � then itcertainly does not preclude a larger more extensive situation settling �. Inorder to express the unrecoverable non-persistence, we need to add a kind ofmodal operators such as \de�nitely" into our language. Such an extension,however, is outside the scope of this paper (for more, see Mott [21]).The syntactic de�nition of persistence will be used in Derived Rules forCF 0 below. 8



2.3 Formal SemanticsOur semantical analysis is essentially similar to Thomason's, but it is basedon general Kripke frames instead of particular ones, that is, we allow di�erentpoints in a Kripke frame to have di�erent domains. A Kripke frame F is atriple < S;�; D > such that(i) S is a non-empty set;(ii) � is a pre-order on S, that is, � is a reexive and transitive binaryrelation on S;(iii) D is a monotone function assigning sets of individuals to the elementsof S, that is, for any s; s0 2 S; if s � s0 then D(s) � D(s0).S is to be thought of as a set of situations, � is the containment relationamong situations, and for each s 2 S;D(s) is the set of individuals existingat situation s.An interpretation I of language L on a Kripke frame F = < S;�; D >is a function such that: for any s; s0 2 S; c 2 CL; R 2 P iL; �; �P 2 BL,(i) Is is a partial function from CL into D(s), and (a) if s � s0 and Is(c)is de�ned, then Is0(c) is de�ned too and Is(c) = Is0(c); and(b) for eachd in D(s), Is(d) is de�ned and Is(d) = d.8(ii) Is(R) is a partial function from the Cartesian product D(s)i intofT, Fg, and if s � s0, then Is0(R) is an extension of Is(R).(iii) Is is a total function from BL into P(D(s)) such that if s � s0, thenIs(�) � Is0(�) and Is(�P ) = Is0(�P ).Clause (iii) in the de�nition of interpretation gives us the semantic meaningof persistent sets. In other words, it is the semantic requirement for aset of individuals to be persistent. It is worth pointing out the restrictionincorporated in (iii) is compatible with the situation theoretic viewpointthough it may look ad hoc. Anyway, situations are treated as �rst-classcitizens in situation theory. So, one possible way to ensure the persistence ofuniversal quanti�ed formulas would be to incorporate reference to situationsinto them (see p. 236 of [5]). In this paper, however, we instead adopt thedevice of persistent bounders.A Kripke model M is a pair < F ; I > consisting of a Kripke frame Fand an interpretation I on F . 9



Before we continue the formulation of formal semantics, some remarksseem in order about the de�nition of Kripke models. First, note that, in aKripke model M = < S;�; D; I >, D(s) can be empty for any (and all)s 2 S. The use of bounders means that the usual restriction to non-emptydomains is unnecessary. Thus CF 0 is inclusive in the sense that it allows thedomain of quanti�cation to be empty (see pp. 379-382 of Bencivenga [9]).Second, note that the function Is�CL is partial. So CF 0 allows for non-denoting constants as a free logic does (see [9]). In a free logic, an extra unarypredicate E or something equivalent is introduced to deal with referencefailure. Nevertheless, in CF 0, we do not need such a special predicate.Bounders of quanti�ers can play the role of the predicate E of free logic.It may be that bounders are preferable to an existence predicate, at leastif one wishes to con�ne existence to a purely semantic role (as we would).Anyway, it will be no surprise that some axioms and inference rules of CF 0will correspond to axioms and inference rules of a free logic.Next, note that the function Is�PnL (n � 0) is also partial. That is to say,it may be the case that a basic sentence R(c1; c2; :::; cn) is neither true norfalse, so CF 0 allows truth value gaps. Such gaps may arise from the use ofinexact predicates, but we emphasise that there is another source of truthvalue gaps { the partiality of situations.When a predicate has truth value gaps, we call it a partial predicate,otherwise a total predicate. A total predicate can be interpreted as a set,that is in the same way as predicates are in classical �rst-order logic. Withpartial predicates, however, we have to associate two sets: one is for thepositive assertions, the other for the strong negative assertions. So we mightas well divide a partial predicate into two parts, a positive part correspondingto the positive assertions, and a negative part corresponding to the strongnegative assertions. We recall that, syntactically, bounders are ags onquanti�ers. Semantically, as can be seen from the clause (iii) in the de�nitionof interpretation, bounders are interpreted as sets. What sets, then, shouldwe associate with a bounder �? There are two natural candidates. Wecould say that � was assigned all the objects in the current situation. Then8x2�'(x) would be supported by s provided that s made true '(a) foreach object a in D(s). In this case, bounder � is nothing more than adenotational variant of the existential predicate E of free logic (see pp. 251-252, Garson [16]). An alternative would see bounders in a more restrictedway as corresponding to the positive parts of particular predicates, so that8x2�'(x) would be interpreted as asserting of all the objects that were � inthe current situation that they were also '. In fact, we choose here not torestrict bounders beyond requiring that the objects a bounder � is associated10



with in a situation s are all objects that belong to the situation s.Given a Kripke model M = < S;�; D; I >, we de�ne a satisfactionrelation j=+M (or simply j=+) and a refutation relation j=�M (or simply j=�)between situations s 2 S and L-sentences ' relative to M as follows, byinduction on the complexity of ':(i) s j=+ R(c1; c2; :::; cn) i� Is(c1); Is(c2); :::; Is(cn) are all de�ned andIs(R)(Is(c1); Is(c2); :::; Is(cn)) = Ts j=� R(c1; c2; :::; cn) i� Is(c1); Is(c2); :::; Is(cn) are all de�ned andIs(R)(Is(c1); Is(c2); :::; Is(cn)) = Fs j=+ c2� i� Is(c) is de�ned and Is(c) 2 Is(�)s j=� c2� i� either Is(c) is not de�ned orIs(c) is de�ned and Is(c) 2 D(s)� Is(�)(ii) s j=+ ' _  i� s j=+ ' or s j=+  s j=� ' _  i� s j=� ' and s j=�  (iii) s j=+� ' i� s j=� 's j=�� ' i� s j=+ '(iv) s j=+ ' �  i� for all s0 such that s � s0 if s0 j=+ ' then s0 j=+  s j=� ' �  i� s j=+ ' and s j=�  (v) s j=+ 8x2�'(x) i� for all d 2 D(s), if s j=+ d2� then s j=+ '(d)s j=� 8x2�'(x) i� for some d 2 D(s), s j=+ d2� and s j=� '(d).Basic semantic notions such as consequence, satis�ability and validity canbe de�ned in the usual way in terms of the satisfaction relation j=+. Forany sentence ' and set � of sentences, we write j= ' to indicate that ' isvalid, � � ' to indicate that ' is a semantic consequence of �, and � � � toindicate that there is a subset f'1; '2; :::; 'ng of � such that '1_'2_ :::_'nis a semantic consequence of �.Lemma 2.1 (Persistence Lemma) LetM = < S;�; D; I > be a Kripkemodel, ' a persistent formula of L.(i) if s � s0 and s j=+ ' then s0 j=+ ';(ii) if s � s0 and s j=+ � then s0 j=+ �P .Proof. For (i), routine induction on the complexity of '. (ii) is a straight-forward corollary of (i).The persistence lemma (i) gives us the semantic meaning of persistence.It can be viewed as a variant of the persistence principle.11



2.4 Axiomatic System for CF 0Our axiomatic system CF 0 is based on the axiomatic systems for construc-tive logics with strong negation (see [25], [18], and [2]). It takes as axiomsthe following list of schemas:(A1) 'P � :  � 'P(A2) ' � ( � �) � : ' �  � : ' � �(A3) ' ^  � '(A4) ' ^  �  (A5) 'P � :  � 'P ^  (A6) ' � ' _  (A7)  � ' _  (A8) ' � � � :  � � � : ' _  � �(A9) ' � : � ' �  (A10) c2� ^ '(c) � 9x2�'(x)(A11) 8x2�'(x) � � c2� _ '(c)(A12) 8x2�('_  (x)) � ('_ 8x2� (x))(A13) � ('^  ) � � ' _ �  (A14) � ('_  ) � � ' ^ �  (A15) �� ' � '(A16) � (' �  ) � ' ^ �  (A17) � 8x2�'(x) � 9x2� � '(x)(A18) � 9x2�'(x) � 8x2� � '(x)(A19) c2� _ � c2� 12



In axioms A1 and A5, 'P means that ' has to be persistent, which is thelittle price we have to pay for the relaxation of the dynamic condition onuniversal quanti�ers to the static one. In axiom A12, x is required not to befree in '. In addition, note that axiom A12 is not assumed in constructivelogics (see [18], and [2]). We emphasise our situation theoretical standpointrather than intuitionistic or constructive viewpoint. So there seems nothingpreventing us from assuming the axiom.With axiom A19, we are assuming that, at any situation, we can alwaysdecide if a constant c is in � or not. The assumption is consistent with thesemantic interpretation of � given above. In addition, note that axioms A13and A18 can in fact be derived from the other axioms and related de�nitions,and thus can be omitted.CF 0 has the following inference rules:(R1) '; ' �   (R2) c2� ^ '(c) �  9x2�'(x) �  (R3)  � (� c2� _ '(c)) � 8x2�'(x)In rules R2 and R3, the constant c is required not to occur in  .The axiomatic system CF 0 is a �rst-order modi�cation of Almukdad andNelson's N as well as Thomason's CF .9 If we delete axiom A9 from CF 0,denoted CF 0�, then we have a system which is a modi�cation of Almukdadand Nelson's N�. Since axiom A9 is not available in CF 0�, we need anotheraxiom to the e�ect that c2� and � c2� do not hold at the same time, sayc2� ^ � c2� � ?. So, with logic CF 0�, inconsistent situations are allowed,but the inconsistency of situations does not arise from the contradictorystatements of form c2� ^ � c2�.Basic notions (relative to CF 0) such as thesishood, consequence, andconsistency can be de�ned in the usual way. For any sentence ', and set� of sentences, we write ` ' to indicate that ' is a thesis of CF 0, � ` 'to indicate that ' is a consequence in CF 0 of �, and � ` � to indicatethat there is a subset f'1; '2; :::; 'ng of � such that '1 _ '2 _ ::: _ 'n is aconsequence of �.From the de�nition of thesishood and consequence, it is easy to provethe following lemma. 13



Lemma 2.2 Let �;� be sets of L-sentences. If � ` �, then �0 ` �0 forsome �nite subsets �0 and �0 of � and �, respectively.2.5 Derived Rules for CF 0.In this section, we list some rules for the deducibility-relation ` of CF 0between sets of L-sentences that are needed in the proof of semantical com-pleteness. It is not di�cult to derive them from the axioms and rules of CF 0given before. We divide these rules into three groups. Group I consists oftwo structural rules, and group II some operational rules. For CF 0�, rule� E is to be replaced by a rule equivalent to c2� ^ � c2� � ?. Group III isabout connection between strong negation and other connectives. Lackingthe �-introduction rule, we have to use numerous negation rules to connectnegation and other connectives by driving strong negation back and forthacross them. Note that, because there is no rule of �-introduction, we areable to use multiple-conclusion rules without in general being able to derivethe Law of Excluded Middle (see the related remarks on p. 82 by Gentzen[17], and the example about the derivation of the law on p. 85 of [17])Group I.R: If � and � are not disjoint, then � ` �.T: � ` ��;� ` �;�Group II._I: � ` ';  ;�� ` ' _  ;� _E: �; ' ` �; �;  ` �; � ` ' _  ;�� ` �� I: �P ; ' `  �P ` ' �  � E: � ` ' �  ;�; � ` ';�� `  ;�� E: � ` ';�; � ` � ';�� ` �8I: � ` � c2� _ '(c);�� ` 8x2�'(x);� 8E: � ` 8x2�'(x);�� ` � c2� _ '(c);�In 8I, c has no occurrence in '(x), or in any member of � or of �;Group III. 14



� _I: � ` � ';�; � ` �  ;�� ` � (' _  );�� _E: � ` � (' _  );�� ` � ';� � ` � (' _  );�� ` �  ;��� I: � ` ';�� ` �� ';��� E: � ` �� ';�� ` ';��� I: � ` ';�; � ` �  ;�� ` � (' �  );��� E: � ` � (' �  );�� ` ';� � ` � (' �  );�� ` �  ;�� 8I: � ` c2� ^ � '(c);�� ` � 8x2�'(x);�� 8E: � ` � 8x2�'(x);�; �; c2� ^ � '(c) ` �� ` �In � 8E, c does not occur in '(x), or in any member of � or of �.Theorem 2.1 (Soundness of CF 0) Let � be a set of L-sentences, and 'a L-sentence. and M = < S;�; D; I > a model of L, s a situation in M.If � ` ', and s j=+ �, then s j=+ '.Proof. Proof is routine and thus omitted.Note that the soundness of CF 0 would fail if we included a rule of �-introduction (�-I) to the e�ect that from �; ' ` � we can infer � `� ';�.To see this, observe that, by derived rule R of CF 0, ' ` '. By �-I it thenfollows that `� '; '. And so `� '_' by rule _-I. But it is not di�cult tosee that � '_' is not valid in the current semantic framework. This showsthat �-I is not sound in CF 0.3 Completeness Proof of CF 0.3.1 De�nitionA set � of L-sentences is L-!-complete if for all L-formulas '(x), we have� ` 8x2�'(x) if � ` � c2� _ '(c) for all c 2 CL. And � is L-saturated if itmeets the following �ve conditions: for any L-sentences ',  ,15



(i) � is consistent;(ii) � is deductively closed, that is, if � ` ', then ' 2 �;(iii) if � ` ' _  , then � ` ' or � `  ;(iv) if � 8x2�'(x) 2 �, then for some constant c 2 CL, c2� ^ � '(c) 2 �;(v) � is L-!-complete.Lemma 3.1 (Saturation Lemma I) Let � be a set of L-sentences, and' a L-sentence. Suppose � 6` '. Let C = fc0; c1; c2; :::g be a countable set ofconstants foreign to L, B a set of bounders of L [ C, and L0 = L [ C [ B.Then there is a L0-saturated set �! such that � � �! and �! 6` '.Proof. In order to obtain required �!, we de�ne two sequences < �i >i and< �i >i by induction as follows. Let < 'i >i enumerate all L0-sentences,and < 'i;1_'i;2 >i, < 8x2�i'i(x) >i and <�8x2�i'i(x) >i enumerate within�nite repetition all disjunctive, bounded universal and bounded existentialsentences of L0 respectively.Let �0 = � and �0 = f'g. Suppose that �k and �k have been de�ned.To de�ne �k+1 and �k+1, we distinguish the following �ve cases.Case 1. k = 4n, �k ` 'n;1 _ 'n;2, and 'n;1 62 �k and 'n;2 62 �k. Put�k+1 = �k [ f'n;ig;�k+1 = �k;where i is the least of f1; 2g such that �k [ f'n;ig 6` �k.Case 2. k = 4n+ 1. �k ` � 8x2�n'n(x);�k and for all constants c 2 CL0 ,(c2�n ^ � 'n(c)) 62 �k . Put�k+1 = �k [ fck2�n ^ � 'n(ck)g;�k+1 = �k ;where ck is the �rst member of CL0 not to occur in 'n(x) or in any memberof �k or of �k.Case 3. k = 4n+ 2, there are two subcases.Case 3.1. �k ; 'n ` �k. Put�k+1 = �k ;�k+1 = �k [ f'ng;16



Case3.2. 'n 62 �k and �k ; 'n 6` �k. Put�k+1 = �k [ f'ng;�k+1 = �k:Case 4. k = 4n + 3. �k; 8x2�n'n(x) ` �k, and for all constants c 2 CL0 ,(� c2�n _ 'n(c)) 62 �k . Put�k+1 = �k ;�k+1 = �k [ f� ck2�n _ 'n(ck)g;where ck is the �rst member of CL0 not to occur in 'n(x) or in any memberof �k or of �k.Case 5. None of the cases above applies, put�k+1 = �k ;�k+1 = �k:It is then not di�cult to check by induction that for any k 2 !, �k 6` �k usingthe derived rules for CF 0. To illustrate, let us consider case 3.1. We need toshow that if �k ; 'n ` �k , then �k 6` �k [ f'ng. Suppose �k ` �k [ f'ng.We assume that 'n;�k and �k [ f'ng are the same set of formulas. Byrule T and rule _I, we have �k 6` 'n _ 'n;�k. Since we are assuming that�k ; 'n ` �k , it follows that �k ` �k by rule _E. But this contradicts theinduction hypothesis. So we have �k 6` �k [ f'ng.Now let �! = [f�k : k 2 !g and �! = [f�k : k 2 !g. We can showthat �! 6` �!, �! = FL0 ��! and �! is L0-saturated as desired. The detailsof veri�cation are omitted.Lemma 3.2 (Saturation Lemma II) Let � be a set of L-sentences, and' and  L-sentences, and BPL all the persistent bounders in L. Suppose' �  62 �. Let C = fc0; c1; c2; :::g be a countable set of constants foreign toL, B a set of bounders of L [ C, and L0 = L [ C [ B. Then there is a L0-saturated set �! such that �P � �!, ' 2 �! but  62 �! and (� cj2�Pi ) 2 �!for any cj 2 C; �Pi 2 BPL .Proof. The proof is similar to that of Saturation Lemma I except that thistime we let �0 = �P [f'g[ f� cj 2 �Pi : cj2C & �Pi 2 BPL g and �0 = f g.17



3.2 De�nition (Canonical Model Construction)Let C1; C2; C3; ::: be a countable sequence of disjoint countable sets of con-stants foreign to L. Let C�n be C1 [ C2 [ ::: [ Cn, and Bn a set of bound-ers of L [ C�n such that Bl � Bm for any l � m � n. Then for languageL! = L[([Cn)[([Bn) , we can de�ne a Kripke modelM = < S;�; D; I >as follows:(i) S consists of all � such that for some n, L� = L [ C�n [ Bn, and � isL�-saturated.(ii) for any L�-saturated set � and L�-saturated set � with L� = L [C�m[Bm and L� = L[C�n[Bn (m < n), � � � if and only if �P � �and for any c 2 C�n � C�m and �P 2 BL� , (� c2�P ) 2 �.(iii) if � is L�-saturated and L� = L [ C�n [ Bn then D(�) = CL [ C�n.(iv) I�(c) = � c if c 2 CL [ C�n;unde�ned otherwise.(v) I�(�) = fc 2 CL [ C�n : (c2�) 2 �g:(vi) I�(R)(c1; c2; :::; cn) = 8<: T if R(c1; c2; :::; cn) 2 �;F if � R(c1; c2; :::; cn) 2 �;unde�ned otherwise.Lemma 3.3 (Truth Lemma) SupposeM = < S;�; D; I > is a canonicalKripke model associated with L. Then for all � 2 S, and all L�-sentences�, we have � j=+ � if and only if � 2 �.Proof. By induction on the complexity of �.Case 1. � is an atomic sentence R(c1; c2; :::; cn) or c2�, the lemma holdsby the de�nition of a canonical Kripke model.Case 2. � is an atomic sentence � R(c1; c2; :::; cn), the lemma holds againby the de�nition of a canonical Kripke model. If � is � c2�, suppose that� j=+� c2�, that is � j=� c2�. By de�nition, either I�(c) is not de�ned orI�(c) is de�ned and I�(c) 62 I�(�). In either case, (c2�) 62 �. By axiom A19and saturatedness of �, we get (� c2�) 2 �. For converse, let (� c2�) 2 �.By axiom A9 and the consistency of �, we get (c2�) 62 �. From this itfollows that � j=+� c2�.Case 3. � is ' _  . Straightforward and thus omitted.18



Case 4. � is � (' _  ). Straightforward and thus omitted.Case 5. � is ' �  . Suppose ' �  2 �. We show � j= ' �  . Forany � such that � � �, we have �P � �. Since ' �  2 � and ' �  ispersistent, we get ' �  2 �P � �. It follows that if ' 2 �, then  2 �by rule � E. By the hypothesis of induction, then, for all such �, if � j= ',then � j=  ; and therefore � j= ' �  .Conversely, suppose ' �  62 �, then ' �  62 �P , so �P [ f'g 6`  byrule � I. Using the Saturation Lemma II, we can get a saturated set � 2 Ssuch that � � �; ' 2 �, but  62 �. By the hypothesis of induction, we get� j= ' but � 6j=  . Thus � 6j= ' �  .Case 6. � is � (' �  ). � j=+� (' �  ) if and only if � j=� ' �  ifand only if � j=+ ' and � j=�  if and only if � j=+ ' and � j=+�  , andthis if and only if ' 2 � and �  2 � by the hypothesis of induction. But' 2 � and �  2 � if and only if � (' �  ) 2 � by rules �� I and �� E.Case 7. � is �� '. Straightforward and thus omitted.Case 8. � is 8x2�'(x). Suppose � j=+ 8x2�'(x), then for all c 2 D(�),if � j=+ c2�, then � j=+ '(c). But � j=+ c2� _ � c2�. It follows that forall c 2 D(�), � j=+� c2� _'(c), so (� c2� _'(c)) 2 � by the hypothesis ofinduction. Thus 8x2�'(x) 2 � by the L�-!-completeness of �. Conversely,suppose 8x2�'(x) 2 �, then for any c 2 D(�), (� c2� _ '(c)) 2 � byrule 8E, so � c2� 2 � or '(c) 2 � by the saturatedness of �. Since �is consistent, if c2� 2 �, then � c2� 62 �, so '(c) 2 �. That is, for anyc 2 D(�), if � j=+ c2� then � j=+ '(c) by the hypothesis of induction, so� j=+ 8x2�'(x).Case 9. � is � 8x2�'(x). The proof is similar to that for case 8 exceptthat we use condition (iv) of L�-saturatedness of � and rule � 8I, completingthe proof.Theorem 3.1 (Strong Completeness for CF 0) Let ' be a L-sentenceand � a set of L-sentences. If � � ' then � ` '.Proof. Suppose � 6` '. By canonical model construction, we can associateL� with a canonical Kripke modelM= < S;�; D; I >. Saturation Lemma Ithen guarantees us that there is a � 2 S such that � � � and ' 62 �. ByTruth Lemma, � j= � but � 6j= '. Therefore, � 6� '.4 Conclusion and DiscussionThe main contribution of this paper is the proposal of a �rst-order logic,which is based on constructive logic with strong negation. However, di�erent19



from constructive logic, quanti�ers in our system as in Thomason's are staticrather than dynamic. Our intention is to develop CF further so that it canserve as a logic for situation theory.Originally, situation theorists were not much concerned with developingtheir own logical systems. Their semantic theory of consequence emphasisedthe external signi�cance of language and the role of non-linguistic contexts.Consequence is for them no longer a relation between syntactic elements.There is no exact correspondence between the information conveyed by anutterance and the sentence used to convey. In fact \... there can be nosyntactic counterpart, of the kind traditionally sought in proof theory andtheories of logical form, to the [situation] semantic theory of consequence."(see pp. 44-45 of Barwise and Perry [8]). However the desire to use situationtheory and situation semantics to give an account of inference eventuallyled Barwise and Etchemendy to construct a situation theoretical model ofinference, emphasising information content. They called this infon logic;that is a logic whose elementary formulas represent items of informationand whose compounds correspond to ways of compounding those items (seeBarwise and Etchemendy [7], [11]).An infon algebra I = < Sit; I;); j=> consists of a non-empty collectionSit of situations, a distributive lattice < I;)> on infons, together with themakes-factual or support relation j= between situations and infons satisfyingcertain additional conditions.In an infon algebra I, infons represent pieces of information, and situa-tions are intended to be limited portions of the world. The support relationj= is essentially partial: a situation may support some infons and refuteothers but remains silent on many. It follows that any algebraic theory ofinfons is de�nitely not Boolean. Furthermore, they argue that a situationtheoretical model of infons is at least a complete distributive lattice, that is aHeyting algebra. Thus the logic for situation theory is at least intuitionisticbut not classical.This argument immediately poses at least two questions. One of themis about negation, the other about the interpretation of quanti�ers. Let us�rst consider the question about negation.We recall that in situation theory there are two kinds of basic infons:one is � R; a1; a2; :::; an; 1�, the other � R; a1; a2; :::; an; 0�, where R isan n-place relation, a1; a2; :::; an are objects with the restriction of appropri-ateness. Note that a1; a2; :::; an need not necessarily be individuals. 0 and1 are the polarity of infons. For basic infons, negation is de�ned through a20



dual operation as follows:� R; a1; a2; :::; an; 1� = � R; a1; a2; :::; an; 0� (1)� R; a1; a2; :::; an; 0� = � R; a1; a2; :::; an; 1� (2)So, we have� R; a1; a2; :::; an; 1� = � R; a1; a2; :::; an; 1� (3)� R; a1; a2; :::; an; 1� = � R; a1; a2; :::; an; 1� (4)However, it is well-known that intuitionistic negation does not satisfy (3)though it satis�es (4).Furthermore, the negation of compound infons in situation theory isde�ned by the following version of DeMorgan's laws (see p. 235 of [5], andp. 108 of Fernando [13]). Even in [7] (page 55), Barwise and Etchemendydo mention that (5) is sometimes assumed in situation theory. However, (5)does not hold though (6) does for intuitionistic negation.� ^ � = � _ � (5)� _ � = � ^ � (6)Therefore, we conclude that situation theoretic negation is not intuition-istic. Moreover, the above way of treating negation by situation theoriststo some extent suggests that the negation used in situation theory is in factstrong negation. More importantly, we can put aside the question whethersituation theoretic negation is intuitionistic or strong since it turns out thatintuitionistic negation can in fact be simulated by strong negation (see [20]and [2]).Now we consider the question of quanti�ers. Quanti�cation of infons isnot treated in Barwise and Etchemendy's infon algebra. Presumably, theywould not interpret quanti�ers dynamically for the reasons we discussedpreviously. Moreover, quanti�ers in related situation theoretical literatureare interpreted in one way or another statically rather than dynamically (seep. 271 of [5], pp. 134-136 of [11], and p. 109 of [13]).Therefore, we are inclined to use constructive negation, more generally,to use constructive logic with strong negation as the underlying logic forsituation theory but to interpret quanti�ers statically instead of dynamically.That is the way we arrive at the logic CF' from situation theorists' work oninfon logic. However, we do not claim that our logic is fully-edged. Forone thing, the components in a basic formula R(a1; a2; :::; an), or using the21



notation of infon logic, � R; a1; a2; :::; an; i � are still individuals whereasinfon logic allows them to be any objects. Nevertheless, we do intend toclaim that our logic preserves many features of infon logic since (i) CF 0 ispartial in the sense that a formula can be neither true nor false; (ii) It hasa rich algebraic structure of persistent formulas; (iii) With strong negationavailable, CF 0 has in fact two kinds of basic formulas very similar to thetwo kinds of basic infons of situation theory; (iv) The negation of compoundformulas satis�es DeMorgan's laws which are assumed to hold in situationtheory; (iv) Quanti�ers in CF 0 are static, as is consistent with situationtheoretical interpretation of quanti�ers.CF 0 can be extended in many ways. A natural extension is to replace ba-sic formulas R(a1; a2; :::; an) of CF 0 with basic infons �R; a1; a2; :::; an; i�,emphasising that components a1; a2; :::; an in basic infons can be any objectsnot just individuals. Such structures lend themselves to the treatment ofcomplex objects.Another possible extension is to incorporate an operator into CF 0 inorder to express non-persistence.10 What is true in one situation is stilltrue in a larger one. However what is undetermined in a situation maybecome true or false when more information is available. It is then naturalto introduce an operator such as `de�nitely' (see [21]) or, more directly, an`undetermined' operator U . Using this operator U , the indeterminacy ofboth the assertion and the (strong) negation of an infon � can be expressedby means of U� and U � � respectively. If an agent, querying a situations for a decision whether �, fails to establish both � and � �, (s)he canthen thereby establish U�. In a larger situation, however, what is originallyabsent in a smaller situation may become available, thus the same agentmay verify � so that U� is rejected. So, U� is not persistent. Similarly,if a query to a situation s fails to refute �, then it rejects the claim that� is refuted by s and thereby establishes U � �. For the same reason,U � � is not persistent either. The distinction between strong negationand U is similar to Barwise and Etchemendy's distinction between negationand denial(see Barwise and Etchemendy [6]). However, our approach isradically di�erent from Barwise and Etchemendy's. Among other things,the inclusion of U in our logic will lead us into non-monotonic logic whereasBarwise and Etchemendy claim that \Closing the class of propositions underconjunction, disjunction, and denial would result in a notion of propositionwhose logic is entirely classical."(see p. 169 of [6]). Full details of such anextension remain to be done.In addition to the foundational role for situation theory, CF 0 may havepotential applications in database theory. In database theory, we are con-22



cerned with what information we can get from a query to a database. Sincedata in relational databases are all positive, we have to use the closed worldassumption(CWA) (see Reiter [24]) to obtain negative information. Forcomplete databases, CWA is e�cient. However, databases often provide uswith just an incomplete description of the world. As a result, the use ofCWA may give rise to unpleasant consequences (see p. 282 of Abiteboul,Hull and Vianu [1]). Thus, much e�ort has been devoted to ways of dealingwith various kinds of negative information. Among other things, it is arguedthat strong negation is necessary in many important applications (see [31]and Alferes and Pereira [3]11).Moreover, there is a more general problem to be considered. It is wellknown that the relational model for database theory is based on �rst-orderlogic. However, such a logical foundation is perhaps inappropriate . First ofall, the principle of excluded middle is no longer valid when databases are in-complete. Second, though it is always desirable to have the principle of non-contradiction, we certainly do not want the destructive consequences thatpropositional logic gives. Indeed, from informational point of view, it is ob-vious that the inferential rule of form p^�p! q should always be rejected.As a result, what remains is at most the constraints of form p^�p! ?. Soit is worth seeking a modi�ed foundation for database theory.
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NOTES1: Two similar systems F and G, or equivalently, HF and HG (usingRoutley's notation), have been studied by Fitch [14]. For the di�er-ence between Fitch's systems and Nelson's systems, see [25], and see alsoThomason's footnote on page 255 of [26].2: In [4], Almukdad and Nelson use N and N� for their �rst-order systems,where N� is the proper subsystem of N without the axiom schema ' �(� ' �  ).3: Wansing uses N� and N instead of N and N1 respectively. N� and Nare formulated in symmetrical sequent calculus (see pp. 24-25 of [32]).4: The terminology of the heredity of information is used in [32] whereas thepersistence of information is the situationists' parlance. Note that [32] isonly concerned with propositional logics. For the property of predicatelogic, see lemma 3.1 on page 53 of [18]. In intuitionistic logic, the propertyis called monotonicity (See the lemma on page 78 of [28]).5: Hereafter, we use a as a name for a.6: It should be pointed out that his model for propositional logic, strictlyspeaking, is not intuitionistic since the falsity of an atomic sentence at astage of construction is treated as being discovered directly rather thanbeing decided by later stages.7: Function symbols introduce nothing new. For simplicity, we avoid themhere.8: We are assuming that every object has a name. In e�ect we work withthe expansion of language L to accommodate all the objects of all thedomains.9: Note that neither N nor CF is formulated in axiomatic formalism.10: Readers are invited to refer to Veltman's paper Defaults in Update Se-mantics [29]. There he introduces operators like `presumably' to dealwith non-persistence within the framework of update semantics.11: In [3], exactly speaking, Alferes and Pereira use explicit negation insteadof strong negation. 24
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