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This paper focuses on performance assessment of a freight network with stochastic capacities by using reliability analysis, in which a
node denotes a supplier, a transfer center, a distribution center, or a market, while an arc denotes a logistics service provider offering
the freight traffic service for a pair of nodes. Due to some uncertainties in real environment (for example, a proportion of vehicles
owned by the provider may be reserved by other customers), the available capacity of the provider along each arc is stochastic. Thus,
network reliability that at least d units of commodity demand can be successfully delivered from the source to the destination
denotes the operational performance of such a freight network. A d-minimal path–based method is developed to evaluate the
freight network reliability. To advance the efficiency of solving d-minimal paths, an improved model is established by redefining
capacity bounds of arcs and minimal paths. Furthermore, a new concept of expected capacity grounded on network reliability is
presented to measure the service performance of the freight network. A practical case related to the coal delivery network is
studied to demonstrate the implications of both network reliability and expected capacity.

1. Introduction

From the perspective of logistics operation and management,
it is vitally important to design a robust freight network that
runs as well as possible under normal conditions, while also
running relatively well under unexpected situations. Perfor-
mance assessment is an effective manner to capture the oper-
ational state of freight networks in a complex environment
and thus plays a critical role in logistics management. Tradi-
tionally, most studies [1–5] have studied the performance of
freight/logistics networks from several aspects, such as meet-
ing customer needs, maximizing customer service levels,
minimizing total costs, or ensuring timely delivery, in which
market demand, service level, lead time, or distribution cost
are the concerned factors directly effecting the performance
of freight networks. However, the studied networks in the
aforementioned literature are essentially deterministic. In
reality, a freight network is always affected by various unex-
pected events, such that its capacity is subject to degradation.
Therefore, whether the freight network is able to ensure the

delivery of required quantity of goods from the supply point
to the demand point is of utmost importance to both sup-
pliers and customers. To guarantee an effective logistics per-
formance, the key is to know the level of operation of the
freight network both in stable and uncertain states [6].

A freight network is composed of several nodes and arcs,
where each node stands for a supplier, a transfer center, a dis-
tribution center, or a market, and each arc (route) linking a
pair of nodes stands for a logistics service provider offering
the freight traffic service. Since the capacity (the number of
cars or trucks) of a provider may be reserved by other cus-
tomers, its available capacity in the freight network is sto-
chastic in nature. For example, it is assumed that the
maximal capacity of a logistics service provider is three
trucks. If all trucks are reserved by other customers, the avail-
able capacity is 0; if one truck is reserved, the available capac-
ity is 2; if two trucks are reserved, the available capacity is 1.
In this sense, the actual capacity of each provider in the
freight network is looked upon as a random variable, follow-
ing a specified probability distribution. Therefore, a freight
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network can be modeled as a typical stochastic-flow network,
in which each arc has stochastic capacities, and the delivered
commodities are considered as a flow [7–13].

Reliability evaluation is a powerful tool for the demon-
stration of network performance. For a stochastic-flow net-
work, the reliability index Rd is defined as the probability
that at least d units of flow (i.e., commodity demand) can
be successfully transmitted from the source to the destination
through stochastic arc capacities [14–22]. To date, many
studies [14–18, 21, 22] have evaluated the reliability Rd in
terms of d-minimal paths. A d-minimal path x is a minimal
capacity vector meeting the demand level d, which means
that for any y < x, y does not meet the demand level d [14].
When all d-minimal paths are at hand, the inclusion-
exclusion rule is available to calculate Rd [14, 15].

There are two types of models reported to solve d-mini-
mal paths. One is first proposed by Lin et al. [14], and the
other is originally proposed by Yeh [17]. Note that the model
of Yeh [17] is built on the well-known max-flow mathemati-
cal programming model and is more applicable to directed
networks (if it is used to solve undirected networks, an addi-
tional step of transforming undirected networks into directed
networks is required [21]). Provided that all minimal paths
are known, themodel of Lin et al. [14] is based on the network
structure and the flow-conservation law. A path is a sequence
of arcs that connects the source node to the destination node,
and a minimal path is such a path that removing any arc will
make it no longer a path. The model by Lin et al. applicable to
solving both directed networks and undirected networks is
widely used by the existing algorithms [14–16, 22] to search
for d-minimal paths. For example, Lin [15] proposed a
method to solve d-minimal paths of a network with unreliable
nodes; Yeh [16] proposed a cycle-checking method to verify
whether a feasible solution to the model by Lin et al. is
a d-MP; Chen and Lin [22] considered to utilize the fast
enumeration method to solve d-minimal paths. To be worthy
of attention, some constraints in the model of Lin et al. [14]
are so relaxed that a large number of feasible solutions need
to be checked in order to find all d-minimal paths, which to
a large extent effects the computational efficiency.

This paper concentrates on performance assessment of
a freight network with stochastic capacity by using reliabil-
ity analysis. Specifically, the major contributions of this
paper are twofold. First, by redefining capacity bounds of
arcs and minimal paths, we construct an improved model
based on which an efficient algorithm is suggested to solve
d-minimal paths. Both complexity analysis and illustrative
examples are provided to show the benefit of the proposed
algorithm. As demonstrated through examples, the proposed
algorithm compares favorably with the existing methods.
Second, we propose a new concept of expected capacity
grounded on network reliability to assess the service perfor-
mance of a freight network. Thus, the performance level of
a freight network with stochastic capacities can be evaluated
in terms of either network reliability or expected capacity. A
practical case study related to a coal delivery network is pro-
vided to illustrate the utility of the proposed algorithm and
demonstrate the implications of both network reliability
and expected capacity.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the stochastic-flow network model and
some basics for reliability evaluation. In Section 3, the funda-
mental model is first discussed, and then an improved model
is constructed by redefining capacity bounds of arcs and min-
imal paths. An algorithm for solving d-minimal paths is pre-
sented in Section 4, along with discussions on its time
complexity. A simple illustrative example and a numerical
example are also provided in Section 4. A concept of expected
capacity is put forward in Section 5. In Section 6, a practical
case study is provided to explain the implications of both net-
work reliability and expected capacity. Section 7 presents
some concluding remarks.

2. Preliminaries

2.1. Stochastic-Flow Network. Theoretically, a freight net-
work with stochastic capacities can be regarded as a typi-
cal stochastic-flow network. Let G V , E,W represent a
stochastic-flow network, where V = s, 1, 2,… , n, t is the
set of nodes with s (source node) denoting the supply
point, t (destination node) denoting the demand point,
and n denoting the number of nodes except s and t, E =
e1, e2,… , em is the set of arcs (routes) with m denoting

the number of arcs, where ei 1 ≤ i ≤m is the ith arc con-
necting a pair of nodes, and W = W1,W2,… ,Wm is the
largest capacity vector with Wi 1 ≤ i ≤m being the largest
capacity of arc ei. Along each arc, a contracted logistics
service provider is responsible for freight traffic. The avail-
able capacity of each logistics service provider is a random
variable notated by xi, and xi takes integer values from 0
to Wi according to a given probability distribution. Note
that the data with respect to capacity and its probability
distribution can be obtained from the database of logistics
service providers.

A capacity vector x = x1, x2,… , xm indicates the cur-
rent capacity of each arc, and M x denotes the max-flow
of the network under x, i.e., the capacity of the freight net-
work under x. As with the existing literature [7–13], the fol-
lowing assumptions are considered:

(1) All flows in the network satisfy the flow-conservation
law, i.e., total flows into and from a node (other than
the source and destination nodes) are all equal

(2) The capacities of different arcs (logistics service pro-
viders) are statistically independent

(3) Flow in the network is an integer value

(4) Each node is perfectly reliable, which means no con-
straint is imposed on the capacities of nodes (transfer
center or distribution center is responsible for the
transshipment service only)

For example, Figure 1 that is cited from [21] presents a
simple freight network with V = s, 1, 2, t , n = 2, E = e1, e2,
e3, e4, e5 , and m = 5. The capacity and capacity probability
distribution of each arc are given in Table 1 indicating
W = 3, 2, 1, 2, 2 . Given a capacity vector x = 2, 1, 0, 1, 2
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which indicates the current capacities of e1, e2, e3, e4, and
e5 are 2, 1, 0, 1, and 2, respectively, the max-flow of the
network under x is M x = 2.

2.2. Reliability Evaluation in terms of d-Minimal Paths. As
stated previously, the reliability Rd that serves as a perfor-
mance index of a freight network is defined as the probability
that at least d units of commodity demand can be successfully
delivered from the source to the destination, then Rd = Pr
x ∣M x ≥ d . Obviously, it is extremely time-consuming
to calculate Rd by directly checking M x ≥ d for every
capacity vector x due to the large number of capacity vectors.
Alternatively, most studies have focused on the d-minimal
path–based method. A capacity vector x = x1, x2,… , xm
is a d-minimal path if and only if (1) M x = d and (2)
M x – 0 ei < d for each xi > 0, where 0 ei = 0,… , 0, 1,
0,… , 0 , i.e., the capacity level is 1 for ei and 0 for other arcs
[14]. The definition implicitly demonstrates that a d-mini-
mal path is theminimal capacity vector satisfying the demand
level d. If all d-minimal paths are found, Rd can be calcu-
lated by the well-known inclusion-exclusion method.

Assuming y1, y2,… , yσ are all d-minimal paths and
let B1 = x ∣ x ≥ y1 , B2 = x ∣ x ≥ y2 ,… , Bσ = x ∣ x ≥ yσ ,
where x = x1, x2,… , xm , yi = yi1, yi2,… , yim , and x ≥ yi

means that xj ≥ yij for j = 1, 2,… ,m, then Rd can be eval-
uated via the inclusion-exclusion method as follows:

Rd = Pr x ∣M x ≥ d

= Pr B1 ⋃ B2 ⋃⋯⋃ Bσ

= 〠
σ

i=1
Pr Bi – 〠

σ

j=2
〠
j−1

i=1
Pr Bi ⋂ Bj +⋯

+ –1 σ–1 Pr B1 ⋂ B2 ⋂⋯⋂ Bσ ,

1

where Pr Bi = Pr x ∣ x ≥ yi = m
k=1Pr xk ≥ yik , Pr Bi ∩

Bj = Pr x ∣ x ≥max yi, yj = m
k=1Pr xk ≥max yik, y

j
k ,

… , Pr B1 ∩ B2 ∩⋯∩ Bσ = Pr x ∣ x ≥max y1, y2,… , yσ
= m

k=1Pr xk ≥max y1k, y2k,… , yσk .
Therefore, the d-minimal path problem plays the key

role in the network reliability evaluation and will be the
focus in the subsequent discussions.

3. An Improved Model with respect to d
-Minimal Paths

3.1. The Basic Model. As mentioned before, the model pro-
posed by Lin et al. [14] is one of the two fundamental models
adopted to solve d-minimal paths. In this section, we will
make some efforts to improve the model by Lin et al. It is
assumed that there are p minimal paths, say, P1, P2,… , Pp,
from the source node to the destination node in the network.
The flow through Pj 1 ≤ j ≤ p is denoted by Fj 1 ≤ j ≤ p .
F = F1, F2,… , Fp that consists offlows through allminimal
paths is called a flow vector. The model of Lin et al. is built on
the following lemma [14–16, 22].

Lemma 1. Given the demand level d, a capacity vector x =
x1, x2,… , xm is called a d-minimal path candidate if it
satisfies the following conditions:

F1 + F2 +⋯ + Fp = d, 2

0 ≤ Fj ≤ CPj for 1 ≤ j ≤ p, 3

0 ≤ 〠
ei∈Pj

F j ≤Wi for 1 ≤ i ≤m, 4

xi = 〠
ei∈Pj

F j for 1 ≤ i ≤m, 5

where CPj =min Wi ∣ ei ∈ Pj is the capacity of minimal
path Pj. Equation (2) shows that the summation of flows
through all minimal paths must be equal to demand level
d, condition (3) points out that the flow through Pj should
not exceed the capacity of Pj, and condition (4) indicates
that the flow through ei should not be above the largest
capacity of ei. Equation (5) specifies the relationship between
the current capacity of ei and the flow through ei. It should
be noted that the feasible solution derived from Lemma 1 is
a d-minimal path candidate [14]. Each d-minimal path is a
d-minimal path candidate, but a d-minimal path candidate
is not necessarily a d-minimal path. Therefore, a d-minimal
path candidate needs to be checked to further determine
whether it is a d-minimal path or not. The popular methods
for checking d-minimal path candidates include the compari-
son method [14, 15] and the cycle-checking method [16]. The
comparison method is easy to understand and is based on
the following lemma [14, 15].

Lemma 2. For a d-minimal path candidate x, if there exists
no d-minimal path candidate y such that x > y, where x > y

s

e1 e2

e4

t

1

2

e3

e5

Figure 1: A simple freight network.

Table 1: The data of arcs in Figure 1.

Arc Capacities Capacity probabilities

e1 0 1 2 3 0.05 0.10 0.25 0.60

e2 0 1 2 — 0.10 0.30 0.60 —

e3 0 1 — — 0.10 0.90 — —

e4 0 1 2 — 0.05 0.25 0.70 —

e5 0 1 2 — 0.10 0.20 0.70 —
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means xi ≥ yi for i = 1, 2,… ,m and xj > yj for at least one
j 1 ≤ j ≤m , then x is a d-minimal path.

3.2. The Improved Model. A flow vector F = F1, F2,… , Fp
satisfying conditions (2)–(4) is said to be a feasible flow
vector. Lemma 1 shows that it first needs to find all of
the feasible flow vectors, and then each feasible flow vector
is transformed into its corresponding d-minimal path can-
didate by (5). Note that when the cost of solving feasible
flow vectors is decreased, the efficiency of solving d-min-
imal paths would be improved. As can be seen below,
the lower bounds in condition (4) have the potential to
be raised, and the upper bounds in conditions (3) and
(4) have the potential to be dropped.

Let W 0i denote a special capacity vector in which the
capacity level is 0 for ei, and the capacity level is the largest
capacity for other arcs, i.e., W 0i = W1,W2,… ,Wi−1, 0,
Wi+1,… ,Wm and Li =max 0, d –M W 0i , then the
following theorem clearly presents the necessary condition
for a capacity vector to be a d-minimal path.

Theorem 1. Given the demand level d, if a capacity vector
x = x1, x2,… , xm is a d-minimal path, then xi ≥ Li for
1 ≤ i ≤m.

Proof 1.Clearly, Li ≥ 0 holds. If Li = 0, it is easy to have xi ≥ Li.
If Li > 0, it means Li = d –M W 0i > 0. First, it is

noted that M W ≥ d. Thus, when d –M W 0i > 0, i.e.,
M W 0i < d, it means that at least d –M W 0i units
of flow must travel through arc ei in order for d units of
flow to be transmitted from the source node to the desti-
nation node. If x is a d-minimal path, M x = d holds, i.e.,
d units of flow can be transmitted from the source node to
the destination node under x. As a result, it is deduced
that xi ≥ d –M W 0i = Li.

In Theorem 1, Li can be looked upon as a new lower
capacity bound of ei, and thus it is used in condition (4) to
reduce the cost of solving feasible flow vectors. Because com-
putingM W 0i requiresO n3 time [23, 24], the time com-
plexity of determining Li is also O n3 . Therefore, the total
time complexity of finding all lower bounds in condition
(4) is O mn3 .

Corollary 1. The time complexity of finding all lower bounds
in condition (4) is O mn3 .

It should be pointed out that the time complexityO mn3

of finding all lower bounds, i.e., Corollary 1, is far lower than
the one for solving d-minimal path candidates, so it has
no influence on the whole algorithm. Additionally, notice
that F1 + F2 +⋯ + Fp = d in condition (2) means Fj ≤ d
for 1 ≤ j ≤ p, and it is easy to know ∑ei∈Pj

F j ≤ F1 + F2 +⋯ +
Fp = d; hence, the upper bounds in conditions (3) and (4)
can be replaced by min CPj, d and min Wi, d , respec-
tively. Grounding on Theorem 1 and the above analyses,
the following improved model can be constructed to solve
all d-minimal path candidates.

Theorem 2. Given the demand level d, a capacity vector x =
x1, x2,… , xm is called a d-minimal path candidate if it
satisfies the following conditions:

F1 + F2 +⋯ + Fp = d, 6

0 ≤ Fj ≤min CPj, d  for 1 ≤ j ≤ p, 7

Li ≤ 〠
ei∈Pj

F j ≤min Wi, d  for 1 ≤ i ≤m, 8

xi = 〠
ei∈Pj

F j for 1 ≤ i ≤m 9

Proof 2. Directly from Theorem 1 and Lemma 1.
Obviously, Theorem 2 is an improvement to Lemma 1

in view of the tighter capacity constraints imposed on ei
(corresponding to conditions (7) and (8)), and it is the
foundation of the designed algorithm for solving d-mini-
mal paths in this paper.

4. An Algorithm for Solving d-Minimal Paths

4.1. The Developed Algorithm. Like the algorithms in [14–16,
22], it is assumed that all minimal paths are known in
advance. Actually, there have already been many efficient
methods to find minimal paths, such as Chen and Lin [25],
Bai et al. [26], and Yeh [27]. The proposed algorithm for solv-
ing d-minimal paths consists of three steps as in Algorithm 1.

Step 0 is a preprocessing step for computing lower and
upper bounds in conditions (7) and (8). Step 1 is the most
important step for solving d-minimal path candidates. As
the fast enumeration method proposed by Chen [28] has
proven to be more efficient than the traditional enumera-
tion method, it is suggested to solve all of the feasible flow
vectors in Step 1. The detailed procedure of the fast enu-
meration method can be found in [22]. Step 2 is to check
whether the derived d-minimal path candidates are indeed
d-minimal paths. The time complexity of every step is dis-
cussed as follows. In Step 0, it takes O mp time and O m
time to compute all min CPj, d 1 ≤ j ≤ p and all min
Wi, d 1 ≤ i ≤m , respectively. Computing all Li =max
0, d –M W 0i 1 ≤ i ≤m requires O mn3 time. For

a general connected network, O p =O 2n [29] means
O mn3 <O mp ; thus, Step 0 totally requires O mp
time. According to Chen and Lin [22], it takes O π

i=1qk
time to generate all feasible flow vectors where π is the
number of groups of alternative orders arranged by the
fast enumeration method and qk is the total number of
enumerations in the ith group. It takes O mλp to trans-
form all feasible flow vectors into d-minimal path candi-
dates where λ is the number of d-minimal paths. As a
result, the time complexity of Step 1 for solving d-mini-
mal path candidates is O π

i=1qk +O mλp . Step 2
requires O mλ2 time to check d-minimal path candidates
in the worst case.

To demonstrate the advantage of the proposed algorithm,
there is a need to compare with the existing methods. Given
that the method recently reported by Chen and Lin [22] is
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considered to be efficient in solving d-minimal paths, we
compare the proposed algorithm with it. Of particular note
is that the step of solving d-minimal path candidates is the
primary difference between the proposed algorithm and the
method by Chen and Lin, i.e., the proposed algorithm and
the method by Chen and Lin utilize Theorem 2 and Lemma
1, respectively, to solve d-minimal path candidates. Also,
the burden of solving d-minimal path candidates is the bot-
tleneck of the d-minimal path algorithm [22]. Therefore,
we compare both algorithms in terms of the time complexity
of solving d-minimal path candidates. According to the solu-
tion procedure of the fast enumeration method [22, 28], the
number of enumerations qk implemented by the proposed
algorithm is dependent on the capacity ranges in conditions
(7) and (8), whereas the number of enumerations q∗k imple-
mented by Chen and Lin’s method is dependent on the
capacity ranges in conditions (3) and (4). Because the
capacity ranges in conditions (7) and (8) are smaller or
equal to the ones in conditions (3) and (4), we have qk ≤ q∗k ,
which means O π

i=1qk ≤O π
i=1q

∗
k holds. Consequently,

the time complexity of the proposed algorithm is upper
bounded by that of Chen and Lin’s method [22] in solving
d-minimal path candidates.

4.2. An Illustrative Example. The network in Figure 1 is
adopted to demonstrate how the proposed algorithm
works to compute the network reliability. Figure 1 has
four minimal paths from s to t: P1 = e1, e2 , P2 = e1, e3,
e5 , P3 = e4, e5 , P4 = e4, e3, e2 . Given the demand level
d = 3, the reliability R3, i.e., the probability of 3 units of
commodity demand being successfully delivered from s
to t, can be calculated using all 3-minimal paths that are
obtained as follows.

Step 0. min CP1, d =min 2, 3 = 2, similarly, min CP2,
d = 1, min CP3, d = 2, min CP4, d = 1; min W1, d =
min 3, 3 = 3, similarly, min W2, d = 2,min W3, d = 1,
min W4, d = 2, min W5, d = 2; L1 = max 0, d –M W
0i =max 0, 1 = 1, similarly, L2 = 1, L3 = 0, L4 = 0, L5 = 1.

Step 1. Use the fast enumeration method to solve all of the
feasible flow vectors satisfying the following conditions:

F1 + F2 + F3 + F4 = 3, 10

0 ≤ F1 ≤ 2, 11

0 ≤ F2 ≤ 1, 12

0 ≤ F3 ≤ 2, 13

0 ≤ F4 ≤ 1, 14

1 ≤ F1 + F2 ≤ 3, 15

1 ≤ F1 + F4 ≤ 2, 16

0 ≤ F2 + F4 ≤ 1, 17

0 ≤ F3 + F4 ≤ 2, 18

1 ≤ F2 + F3 ≤ 2 19

And the solution results are F1 = 1, 0, 1, 1 , F2 = 1, 0,
2, 0 , F3 = 1, 1, 1, 0 , F4 = 2, 0, 1, 0 , and F5 = 2, 1, 0, 0 .
Therefore, by (9), the corresponding d-minimal path can-
didates are x1 = 1, 2, 1, 2, 1 , x2 = 1, 1, 0, 2, 2 , x3 = 2, 1, 1,
1, 2 , x4 = 2, 2, 0, 1, 1 , and x5 = 3, 2, 1, 0, 1 .

Step 2. Use the comparison method to check whether xi

1 ≤ i ≤ 4 is a d-minimal path or not.
(2.1) I =Φ.
(2.2) i = 1 and i ∉ I.
(2.3) j = 2 and j ∉ I.
(2.4) x2 = 1,1,0,2,2 < x1 = 1,2,1,2,1 is false, x2 ≥ x1 is false.
(2.5) j = 3 and j ∉ I.

Finally, there are five 3-minimal paths obtained as fol-
lows: x1 = 1, 2, 1, 2, 1 , x2 = 1, 1, 0, 2, 2 , x3 = 2, 1, 1, 1, 2 ,
x4 = 2, 2, 0, 1, 1 , and x5 = 3, 2, 1, 0, 1 . Let B1 = x ∣ x ≥
x1 , B2 = x ∣ x ≥ x2 , B3 = x ∣ x ≥ x3 , B4 = x ∣ x ≥ x4 ,
and B5 = x ∣ x ≥ x5 , then it is trivial to derive R3 =
0 6674025 by Equation (1).

Input: A stochastic-flow network G V , E,W with demand level d.
Output: All d-minimal paths.
Step 0. Compute min CPj, d for 1 ≤ j ≤ p, min Wi, d and Li =max 0, d –M W 0i for 1 ≤ i ≤m.
Step 1.Use the enumeration algorithm to solve all of the feasible flow vectors satisfying conditions (6)-(8), and transform each feasible
flow vector into its corresponding d-minimal path candidate by Equation (9). Suppose x1, x2,… , xλ are all the obtained d-minimal
path candidates.
Step 2. Use the comparison method to check whether xi 1 ≤ i ≤ λ is a d-minimal path or not.

(2.1) I = Φ (stores the index of each non d-minimal path after checking).
(2.2) For i = 1 to λ and i ∉ I.
(2.3) For j = 2 to λ and j ∉ I.
(2.4) If xj < xi, xi is not a d-minimal path, I = I⋃ i and go to (2.7); if xj ≥ xi, xj is not a d-minimal path, I = I⋃ j and go to (2.7).
(2.5) j = j + 1.

(2.6) xi is a d-minimal path.
(2.7) i = i + 1.

Algorithm 1
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Furthermore, it is calculated that the proposed algorithm
needs to perform 21 enumerations during the solution of 3-
minimal path candidates, i.e., solving conditions (10)–(19).
By contrast, if the method by Chen and Lin [22] is used to
solve 3-minimal path candidates of the network, it needs to
perform a total of 28 enumerations. Hence, the suggested
algorithm implements a smaller number of enumerations in
comparison with Chen and Lin’s method, as already illus-
trated by theoretical analyses in Section 3.1.

4.3. A Numerical Example. In this section, the efficiency of
the proposed algorithm is further explored through a
numerical example. As stated previously, the major differ-
ence between the proposed algorithm and the method by
Chen and Lin [22] is the step for solving d-minimal path
candidates; therefore, it is only necessary to compare both
algorithms in terms of the efficiency of solving d-minimal
path candidates. Both algorithms coded in a MATLAB
program run on a PC with Intel (R) Core (TM) i5-
3210M 2.50GHz CPU.

A medium-sized network shown in Figure 2 is adopted
to conduct numerical experiments. The capacities of all
arcs in Figure 2 are set to 8, then the largest network
capacity is D = 16. All of the d-minimal path candidates
corresponding to eight demand levels ranging from d = 9
to d = 16 are solved. We focus on the required computa-
tional time for solving d-minimal path candidates for each
demand level. The overall results are summarized in
Table 2. From Table 2, it can be observed that the sug-
gested algorithm displays an advantage over the method
by Chen and Lin [22]. Meanwhile, note that the efficiency
difference of both algorithms is negligible when demand
level d ranges from d = 9 to d = 12, but it becomes prom-
inent when the demand level d is above 12.

5. Expected Capacity

It is evident that network reliability is a probabilistic perfor-
mance index for characterizing the capability of a freight net-
work to ensure the accurate delivery of required quantity of
commodity from the source to the destination. In this sec-
tion, a new performance indicator will be presented to evalu-
ate a freight network. Because the network capacity of a
freight network is a random variable whose value ranges
from the smallest capacity 0 to the largest capacity M W ,

i.e., 0, 1,… ,M W , we define a concept of expected capacity
from the perspective of mathematical expectation to measure
the service performance of the freight network. Expected
capacity notated as EC represents the average network capac-
ity level and is defined as follows:

EC = 〠
D

d=1
Pr x ∣M x = d × d, 20

where D =M W is the largest network capacity and Pr
x ∣M x = d is the probability that network capacity is

equal to d. Note that d = 0 does not contribute to expected
capacity, so the value of d ranges from 1 to D.

Obviously, computing Pr x ∣M x = d is the key to
obtaining EC. Given the demand level d, reliability index Rd
is the probability that network capacity is greater than or
equal to d, i.e., Rd = Pr x ∣M x ≥ d ; hence, a clear relation-
ship between expected capacity and network reliability can be
readily determined by the following theorem.

Theorem 3. The expected capacity can be calculated as E
C =∑D

d=1 Rd − Rd+1 × d.

Proof 3.

Pr x ∣M x = d

= Pr x ∣M x ≥ d – Pr x ∣M x > d

= Pr x ∣M x ≥ d – Pr x ∣M x ≥ d + 1
= Rd – Rd+1

21

Thus,

EC = 〠
D

d=1
Pr x ∣M x = d × d = 〠

D

d=1
Rd − Rd+1 × d 22

In addition, it is noted that when d =D, Rd+1 = RD+1 = 0.
Theorem 3 indicates that calculating EC is equivalent to the
computation of Rd for all possible d values. Hence, the pro-
posed d-minimal path algorithm is required to run multiple
times for obtaining EC.

6. A Case Study of a Coal Delivery Network

Network reliability and expected capacity are two perfor-
mance indicators for measuring the level of service of a
freight network in a complex environment. In this section,
we take a practical coal delivery network shown in Figure 3
as a case study to demonstrate the implications of both net-
work reliability and expected capacity.

6.1. Performance Assessment in terms of Network Reliability.
It is well known that coal is the largest source of energy in
China and is used to generate a significant chunk of the
nation’s electricity. Every year, thousands of million tons
of coal is transported from the producing area to the
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Figure 2: A benchmark network for the numerical example.
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consumption area, so the efficient and safe movement of
coal over space plays an extremely important part in sus-
taining the national economic development. Datong City
in Shanxi Province that produces about 400 million tons
of coal every year is a famous coal-producing area in
China, and a large proportion of the produced coal is
transported and sold all over the country. A producer
owning a coal enterprise located at Datong City produces
thermal coal. Thermal coal is usually used in power indus-
try to generate electricity. Owing to price advantage, the
producer has been one of the chief thermal coal suppliers
for many Chinese power enterprises. One of its customers
is a large power enterprise located at Lianyungang City in
Jiangsu Province that is one of the richest provinces in
China. Figure 3 describes the coal delivery network from
Datong to Lianyungang, in which the coal commodity
can pass through several transfer centers in different cities.

Coal is transported by train or ship. The capacity data on
routes derived from the database of logistics service providers
are provided in Table 3. That is, each route has multiple pos-
sible carrying capacities, such as 0, 1,… , 5 (unit: 104 tons),
following a given probability distribution. Supposing that
the amount of coal ordered by the power enterprise at
Lianyungang is 6× 104 tons, i.e., demand level d = 6 units
of coal. The proposed algorithm is utilized to evaluate
the network reliability R6.

First, a total number of 41 6-minimal paths are
obtained by using the proposed algorithm. Then, based
on all 6-minimal paths and (1), the value of the performance
index R6 is calculated as 0.820714. Therefore, the probabil-
ity that the freight network in Figure 3 can successfully

deliver 6× 104 tons of coal commodities from Datong to
Lianyungang is 0.820714. Undoubtedly, the reliability
value 0.820714 reveals valuable knowledge on the opera-
tional performance of the delivery network and can be
regarded as a decision criterion. For example, if the value
0.820714 is below the expectation of the manager, it means
that the service performance of the network does not meet
the requirement; otherwise, the service performance of the
network is acceptable.

6.2. Performance Assessment in terms of Expected Capacity.
By Equation (22), it needs to compute network reliabilities
at different demand levels in order to obtain expected capac-
ity EC. Obviously, the largest network capacity isD = 7. Thus,
the proposed algorithm is utilized to compute network
reliabilities at different demand levels from 1 to 7. The
results are summarized in Table 4. Moreover, the reliability
difference between two neighboring demand levels is calcu-
lated and adopted to compute EC. The final computational
results are also presented in Table 4 by which we make the
following observations:

(1) As expected, network reliability declines as the
demand level d rises. In addition, the reliability
difference between two neighboring demand levels
Rd – Rd+1 increases as the demand level d increases

Table 2: Computational times of both algorithms.

Demand level d 9 10 11 12 13 14 15 16 Average

Tnew 18.893 19.728 19.878 18.597 15.396 10.996 6.716 3.622 14.228

TCL 18.964 19.802 20.445 19.173 20.442 19.714 18.781 18.216 19.442

Note: TCL and Tnew are the computational times (in CPU seconds) consumed by Chen and Lin’s algorithm [22] and the proposed algorithm, respectively.
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Figure 3: The coal delivery network from Datong to Lianyungang.

Table 3: Capacity data of each arc (route) in Figure 3.

Route ei

Available capacity (unit: 104 tons)
0 1 2 3 4 5

Probability

e1 0.005 0.012 0.017 0.021 0.032 0.913

e2 0.011 0.043 0.946 — — —

e3 0.005 0.011 0.023 0.039 0.922

e4 0.012 0.029 0.959 — —

e5 0.011 0.018 0.025 0.946 —

e6 0.012 0.026 0.034 0.928 —

e7 0.007 0.019 0.974 — —

e8 0.006 0.015 0.979 — —

e9 0.011 0.043 0.946 — —

e10 0.008 0.013 0.026 0.953 —

e11 0.012 0.046 0.942 — —

e12 0.006 0.019 0.034 0.941 —

e13 0.007 0.012 0.029 0.952 — —

e14 0.009 0.016 0.029 0.035 0.911

e15 0.006 0.011 0.015 0.022 0.034 0.912
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(2) For the demand level d = 6, it is noteworthy that
the expected capacity EC = 6 312942 is larger than
demand level d = 6, which means the service per-
formance of the network is relatively desirable
from the perspective of the average network capac-
ity level

In summary, both network reliability and expected
capacity can be adopted to assess the performance level of a
freight network from different aspects, which provides man-
agers useful tools for making reasonable evaluation on the
operational state of their freight network.

7. Conclusions

Reliability evaluation assists supervisors in understanding
network service performance. This paper is devoted to per-
formance assessment of a freight network in the light of reli-
ability analysis. On one hand, this paper presents an efficient
d-minimal path–based algorithm to evaluate the freight net-
work reliability that at least d units of commodity demand
can be successfully delivered from the source to the destina-
tion. An improved model is constructed by redefining capac-
ity bounds of arcs and minimal paths to enhance the
efficiency of solving d-minimal paths. On the other hand, this
paper puts forward a new concept of expected capacity to
assess the service performance of a freight network. In addi-
tion, a practical case study regarding a coal delivery network
is provided to demonstrate the implications of both network
reliability and expected capacity.

For future research, there is still potential for developing
a new reliability model to meet practical needs. For example,
we only consider the transmission of a single type of com-
modity in the freight network, and yet, it is much more valu-
able to assess the performance of multicommodity freight
networks in which multiple types of cargoes are delivered
from the source to the destination simultaneously.
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