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In this paper, the stability of switched neural networks (SNNs) with interval parameter uncertainties and time delays is investigated.
First, the conditions for the existence and uniqueness of the equilibrium point of the system are discussed. Second, the average dwell
time approach and M-matrix property are employed to obtain conditions to ensure the globally exponential stability of the delayed
SNNs under constrained switching. Third, by resorting to inequality technique and the idea of vector Lyapunov function, sufficient
condition to ensure the robust exponential stability of the delayed SNNs under arbitrary switching is derived. The form of the
constructed Lyapunov functions is simple, which has certain commonality in studying delayed SNNs, and the proposed results
not only are explicit but also reveal the relationship between the constrained switching and the arbitrary switching of the SNNs.
Finally, two numerical examples are presented to illustrate the effectiveness and less conservativeness of the main results
compared with the existing literature.

1. Introduction

In the past years, neural networks have been widely studied
and successfully applied to various realms such as dynamic
optimization, associative memory, and pattern recognition
and to solve nonlinear algebraic equations and so on [1–5].
In the real world, the connections among different nodes
of the networks are not always fixed or consistent, which
frequently result in link failure and new link creation.
Therefore, the abrupt changes in the structures and param-
eters of the neural networks often occur, which bring about
switchings among certain different topologies and the insta-
bility of the networks [6]. In application’s point of view, a
fundamental problem of applying neural networks is stabil-
ity. This is a prerequisite for ensuring that the developed
networks can work normally [7–10]. Thus, a popular topic
about the stability analysis and stabilization of SNNs has
been considered in [11–24].

A switched neural network is a hybrid system, which is
essentially composed of a family of subnetworks and a
switching signal which defines a specially designated subnet-
work being activated at each instant of time. SNNs have
attracted significant attention and have been successfully
applied to many fields such as artificial intelligence, high-
speed signal processing, and gene selection in DNA microar-
ray analysis [25–28]. Generally, a switching system can be
described by the following differential equation:

x = fσ x , 1

where fp p ∈P is a family of functions parameterized by
some index set P and switching signal σ is a piecewise con-
stant and right continuous function of time mapping from
0, +∞ to P . The original motivation for the study on
switched systems comes partly from that switching among
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different systems may cause many nonlinear system behav-
iors such as chaos and multiple limit cycles [29]. In recent
years, switched systems have gained increasing attention
because many practical systems (for example, constrained
robotics, computer-controlled systems, and automated
highway systems) can be modeled as switched systems.
Furthermore, from the point of view of control, multicon-
troller switching is an effective way to deal with complex
systems. It is well-known that time delays are inevitable
in a practical control design which usually leads to unsatis-
factory performances and the stability of the dynamic sys-
tems may even be destroyed with the increase of delays
[30–35]. Attributing to the interaction among the discrete
dynamics, continuous dynamics, and time delays, the
behaviors of delayed SNNs are very complicated. Besides,
due to many inevitable factors such as modelling errors
and external perturbations, the models certainly contain
uncertainties which can have a serious effect on the dynam-
ical behavior of the systems. To analyze the robustness of
the SNNs, one feasible method is to assume that the
parameters are included in certain intervals [36]. Therefore,
the robust stability analysis of SNNs with interval parame-
ter uncertainties and time delays is of practical and theoret-
ical importance.

For switched dynamical systems, the unpredictable
change of system dynamics, such as abrupt perturbation
of external environment or sudden change of the system
structure due to the failure of a component, may cause
the sudden change of the switching signal. In these cases,
in order to keep the system working, the system should be
stable under arbitrary switching. A typical approach for
the stability analysis of switched dynamical systems with
arbitrary switching signal is to search for a suitable com-
mon Lyapunov function (CLF) V x such that the rate of
the decrease of V x along the trajectories of systems is
not affected by switching (see, e.g., [37–40] and the refer-
ences therein). If the CLF for the systems does not exist
or is not known, in this case, we can study the stability of
the system by using multiple Lyapunov functions (MLFs)
Vp x , p ∈P , (see [37, 41, 42]). However, it is worth noting
that to apply this MLF method, one needs to know some
information of the state at each switching time. This is to
be contrasted with the Lyapunov second method, which
do not need to know the knowledge of the solutions. For
example, Wu et al. studied the exponential stability of
delayed SNNs by using a linear matrix inequality approach
and an average dwell time method [12]; based on the piece-
wise Lyapunov function technique and average dwell time
approach, the problem of the exponential stability of SNNs

with constant and time-varying delays was investigated,
respectively, in [43] and in [44]; by resorting to a novel
delay division method, the stability analysis for uncertain
SNNs with mixed time-varying delays was addressed. A
common feature in these articles is that they all resort to
scalar Lyapunov function (or functional). In this paper,
the stability of the delayed SNNs with switching signal will
be studied by using the idea of vector Lyapunov function
with simple forms, which have certain commonality in
studying SNNs, and this is the main reason why the
obtained results in this paper have less conservativeness.
By using the M-matrix property and average dwell time
approach, the differential inequalities with time delays will
be constructed. By the stability analysis of the differential
inequalities, the sufficient conditions to ensure the robust
exponential stability of the SNNs under arbitrary switching
and constrained switching will be obtained.

Compared with the existing results on SNNs, the con-
tributions of this paper are listed as follows: (a) the forms
of the constructed Lyapunov functions are simple, which
have certain commonality in studying delayed SNNs under
arbitrary switching; (b) unlike asymptotic stability, we ana-
lyze the exponential stability of SNNs which include uncer-
tainty and time delays, and the exponential convergence
rate can also be obtained; (c) the obtained results not only
have less conservativeness but also reveal the relationship
between the constrained switching and the arbitrary
switching of the delayed SNNs; and (d) comparing with
most of the previous results obtained by linear matrix
inequalities approach (to apply LMIs approach, one has
to determine too many unknown parameters), the pro-
posed criteria are straightforward, which are conducive to
practical applications.

Notation. Let x = x1,⋯, xn
T denote a column vector of

Rn (the symbol “T” denotes transpose), x denote x =
x1 , x2 ,⋯, xn

T, and x denote a vector norm defined
by x = x21 + x22 +⋯ + x2n

1/2. For x, y ∈Rn, x > y means
that each pair of the corresponding elements of x and y sat-
isfies the inequality “>.” For matrix A = aij n×n, A denote
A = aij n×n. C −τ, t0 ;Rn denotes the set of continuous
functions mapping from −τ, t0 to Rn.

2. Preliminaries

The model of a delayed SNNs can be described by the delayed
differential equations as follows:

dwi t
dt

= −eσ t
i wi t + 〠

n

j=1
aσ t
ij gσ t

j wj t + 〠
n

j=1
bσ t
ij gσ t

j wj t − τ
σ t
ij + Jσ t

i ,

wi s + t0 = ϕi s , s ∈ −τ, 0 ,

2
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where i = 1, 2,… , n, n is the number of neurons, wi t is the
state of neuron i at time t, σ t : 0, +∞ → Σ = 1, 2,⋯,m
is the switching signal, which is a piecewise constant and
right continuous function of time, andσ t = k ∈ Σmeans that
the kth subnetwork is activated. Ek = diag ek1, ek2,⋯, ekn
denotes the neuron self-feedback coefficient matrix of the
k subnetwork, and eki > 0 represents the rate with which
the ith unit will reset its potential to the resting state in iso-
lation when disconnected from the networks and external

inputs; gk w t = gk
1 w1 t , gk

2 w2 t ,⋯, gk
n wn t

T
is

the activation functions of neurons at time t; Ak = akij n×n
and Bk = bkij n×n

are the connection weight matrices of the

kth subnetwork, and akij and bkij denote the connection
strengths of the jth neuron on the ith neuron at time t and
t − τkij, respectively; the delay τ

k
ij ≥ 0 is the bounded function

with τk =max1≤i,j≤n τkij ≥ 0 and τ =max1≤k≤m τk ; Jk =
Jk1, Jk2,⋯, Jkn

T
is the constant external input vector of the k

th subnetwork. wi s + t0 = ϕi s is the initial condition of
the system, where ϕi ∈ C −τ, t0 ,R , i = 1, 2,… , n.

We assume that the switching signal σ t is unknown
a priori. Corresponding to the switching signal σ t , we
have a switching sequence t0, i0 ⋯ tk, ik ⋯ ∣ik∈Σ,k=0,1,⋯ ,
which means that the ikth subsystem is activated when t
∈ tk, tk+1 . We also assume that there is only finite switching
in any finite interval and satisfy the following conditions.

Assumption 1. Each activation function gk
i ⋅ in the delayed

SNNs (2) is assumed to satisfy

Lk
i ≤

gki u − gki v
u − v

≤ Lki , 3

for any u, v ∈R, u ≠ v, i = 1, 2,… , n, k ∈ Σ, where Lk
i and Lki

are known constant scalars and Lk
i < Lki .

Remark 1. Assumption 1 was first proposed in [45]. The con-

stants Lk
i and L

k
i in this assumption are allowed to be any real

number (positive, negative, or zero). Therefore, the activation
functions can be nonmonotonic, which are more general
than commonly used Lipschitz conditions and sigmoid func-
tions. Such assumption is very useful to obtain less conserva-
tive results.
To facilitate the following analysis, let Lk = diag Lk1, Lk2,⋯,
Lkn with Lki =max Lk

i , L
k
i . In order to study the stability

of SNNs under parameter uncertainties, for k ∈ Σ, the matri-
ces are intervalized as follows:

EI
k = Ek = diag eki

n×n
Ek ≤ Ek ≤ Ek, i e , 0 < eki ≤ eki ≤ eki ,

AI
k = Ak = akij

n×n
Ak ≤Ak ≤Ak, i e , akij ≤ akij ≤ akij ,

BI
k = Bk = bkij

n×n
Bk ≤ Bk ≤ Bk, i e , bkij ≤ bkij ≤ b

k
ij

4

Define

E∗
k = diag ek1, e

k
2,⋯, ekn ,

A∗
k = ak∗ij

n×n
with ak∗ij =max akij , a

k
ij ,

B∗
k = bk∗ij

n×n
with bk∗ij =max bkij , b

k
ij ,

B⋆
k = bk⋆ij

n×n
with bk⋆ij =min bkij , b

k
ij

5

Definition 1. For the delayed SNNs (2), the equilibrium point
w∗ = w1,w2,⋯,wn

T is said to be robustly exponentially
stable if for each E ∈ EI

k, A ∈AI
k, and B ∈ BI

k, there exist con-
stants λ > 0 and M > 1 such that

w t −w∗ ≤M ϕ − w∗
t0
exp −λ t − t0 , t ≥ t0,

6

where ϕ −w∗
t0
=∑n

i=1 sups∈ −τ,t0 ϕi s −w∗
i

2 1/2
.

3. Existence and Uniqueness of the
Equilibrium Point

The purpose of the present section is to give a sufficient con-
dition which ensures that the equilibrium point of each sub-
system satisfies the existence and uniqueness, which implies
that for any initial condition ϕ ∈ C −τ, t0 ;Rn , system (2)
admits a solution w t, t0, ϕ which exists in a maximal inter-
val −τ, t0 +K , where 0 <K ≤∞.

Definition 2. A real n × n matrix A = aij n×n is said to be an
M-matrix if aij ≤ 0, i, j = 1, 2,… , n, i ≠ j, and all successive
principal minors of A are positive.

Lemma 1 ([46]).
Let A = aij be an n × n matrix with nonpositive

off-diagonal elements. Then the following statements
are equivalent:

(i) A is an M-matrix

(ii) There exists a vector ξ > 0 such that Aξ > 0.

Definition 3. A mappingℋ ℝn →ℝn is a homeomorphism
of Rn onto itself if ℋ ∈ C0, ℋ is one to one, ℋ is onto, and
the inverse mapping ℋ−1 ∈ C0, where C0 denotes the set of
continuous functions.

Lemma 2 ([47]).
If ℋ u ∈ C0 satisfies the following conditions:

(i) ℋ u is injective on ℝn

(ii) ℋ u →∞ as u →∞

Then ℋ u is a homeomorphism of Rn.
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Theorem 1. Under Assumption 1, if for all k ∈ Σ, C∗
k =

E∗
k − A∗

k + B∗
k Lk are nonsingular M-matrices, then for each

specified switching signal σ t , system (2) has a unique equi-
librium point.

Proof 1. Because the equilibrium point of subsystems,

dwi t
dt

= −eki wi t + 〠
n

j=1
akijg

k
j wj t

+ 〠
n

j=1
bkijg

k
j wj t − τkij + Jki

7

satisfies the following equation:

−eki wi t + 〠
n

j=1
akij + bkij gk

j wj t + Jki = 0, 8

for i = 1, 2,… , n and k ∈ Σ. Let

ℋk w t = ℋk
1 w t ,ℋk

2 w t ,⋯,ℋk
n w t

T
,

9

where

ℋk
i w t = −eki wi t + 〠

n

j=1
akij + bkij gkj wj t + Jki ,

10

for i = 1, 2,… , n. In the following, we will give a proof that
ℋk w t are homeomorphisms of Rn onto itself.

First, we prove that ℋk w t are injective mappings on
Rn. Actually, if there exist vectors x = x1, x2,⋯, xn

T, y =
y1, y2,⋯yn

T, and x ≠ y such that ℋk x =ℋk y ; then

−eki xi − yi + 〠
n

j=1
akij + bkij gkj xj − gk

j yj = 0, 11

for i = 1, 2,… , n and k = 1, 2,… ,m. From Assumption 1, it
can be derived that

−eki xi − yi + 〠
n

j=1
akij + bkij Lkj xj − yj ≥ 0, 12

for i = 1, 2,… , n. That is,

Ek − Ak + Bk Lk x − y ≤ 0 13

Let Ck = Ek − Ak + Bk Lk. Obviously, Ck have nonpo-
sitive off-diagonal entries and Ck ≥ C∗

k which implies that Ck
are nonsingular M-matrices. From Theorem 2.3 of [48], we
can get x = y. That is,

xi = yi, i = 1, 2,… , n, 14

which is a contradiction. As a result, ℋk w t are injective
mappings on ℝn.

Next, we prove that ℋk w t →∞ as w t →∞.
Because Ck are nonsingular M-matrices, we know that

there exist positive diagonal matrices Dk = diag dk1, d
k
2,⋯,

dkn , which make matrices DkCk +CT
kDk positively definite.

Let

ℋk w t = ℋk
1 w t ,ℋk

2 w t ,⋯,ℋk
n w t

T
,

15

where

ℋk
i w t = −eki wi t + 〠

n

j=1
akij + bkij gkj wj t − gkj 0 ,

16

for i = 1, 2,… , n. Calculate

w1,w2,⋯,wn Dkℋ
k w t

= 〠
n

i=1
wid

k
iℋ

k
i w t = 〠

n

i=1
−eki d

k
i w

2
i t

+ 〠
n

j=1
akij + bkij dki wi t gkj wj t − gkj 0

≤ 〠
n

i=1
−eki d

k
i w

2
i t + 〠

n

j=1
akij + bkij dki L

k
j wi t wj t

= − w1 t , w2 t ,⋯, wn t DkCk w1 t , w2

· t ,⋯, wn t T = −
1
2
w t T DkCk + CT

kDk w t

≤ −
1
2
λmin DkCk + CT

kDk w t 2

17

Using Schwartz inequality, we have

w t ⋅ Dk ⋅ ℋk w t ≥
1
2
λmin DkCk + CT

kDk w t 2

18

When w t ≠ 0, we get

ℋk w t ≥
1
2
λmin DkCk + CT

kDk
w t
Dk

, 19

which implies ℋk w t →∞ as w t →∞.

Since ℋk w t →∞ implies ℋk w t →∞, by
Lemma 2, we know that ℋk w t are homeomorphisms of
ℝn. So each subnetwork has a unique equilibrium point.
Therefore, for each specified switching signal σ t , system
(2) has a unique equilibrium point. The proof is completed.
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4. Exponential Stability of the Delayed SNNs

4.1. Exponential Stability under Constrained Switching. In this
section, we will give a sufficient condition ensuring the global
exponential stability of delayed SNNs (2) by using the aver-
age dwell time method. Let Q be an M-matrix; we denote

Λ Q ≜ ξ ∈ℝn ∣Qξ > 0, ξ > 0 20

Definition 4 (see [37]).
Let Nσ t1, t2 denote the number of discontinuities of a
switching signal σ on an interval t1, t2 . T > 0 is called the
average dwell time, if for any t2 ≥ t1 ≥ 0 and N0 ≥ 0,

Nσ t1, t2 ≤N0 +
t2 − t1
T

21

hold.

Theorem 2. Under Assumption 1, if for all k ∈ Σ, C∗
k = E∗

k −
A∗
k + B∗

k Lk are nonsingular M-matrices, then for all Ek ∈
EI
k, Ak ∈AI

k, Bk ∈ BI
k and any external input Jk, the delayed

SNN (2) is robustly exponentially stable for any switching
signal with the average dwell time satisfying

T >T ∗ =
ln ϑ

ε
, 22

where ε > 0 is determined by inequalities

−eki + ε

exp ετk
ξki + 〠

n

j=1
ξkj L

k
j ak∗ji + bk∗ji < 0, 23

for some given ξk = ξk1, ξ
k
2,⋯, ξkn

T
∈Λ C∗

k and ϑ=
max1≤i≤n,1≤ik−1≤m ηik−1i , ηik−1i βik−1

i ≥ 1 with

ηik−1i =
max1≤i≤n ξ

ik
i

min1≤i≤n ξ
ik−1
i

,

β
ik−1
i =

max1≤j≤n exp ετikij Likj b
ik∗
ij

min1≤j≤n exp ετik−1ij Lik−1j bik−1⋆ij

24

Proof 2. According to Theorem 1, we know that if C∗
k =

E∗
k − A∗

k + B∗
k Lk are M-matrices, then the system has a

unique equilibrium point for each specified switching signal.
Let w∗ = w∗

1 ,w∗
2 ,⋯,w∗

n
T be an equilibrium point of system

(2) and w t = w1 t ,w2 t ,⋯,wn t T be any solution of
system (2). Denote xi t =wi t −w∗

i , f
k
j xj t = gkj xj t +

w∗
j − gkj w∗

j , and ψi s = ϕi s −w∗
i ; then system (2) can

be rewritten as

with i = 1, 2,… , n.
Due toC∗

k beingM-matrices, by Lemma1 (ii), we know that

there exist ξki > 0 and δki > 0, k ∈ Σ, i = 1, 2,⋯, n such that

−eki ξ
k
i + 〠

n

j=1
ξkj L

k
j ak∗ji + bk∗ji = −δki < 0 26

Consider a Lyapunov functional candidate

V x, t = 〠
n

i=1
ξ
σ t
i exp εt xi

+ 〠
n

j=1
Lσ t
j bσ t

ij

t

t−τσ t
i j

exp ε s + τ
σ t
ij xj s ds

27

Calculating the upper right derivativeD+V ofV along the
solutions of (25), we get

D+V x, t = 〠
n

i=1
ξ
σ t
i exp εt sgn xi

dxi
dt

+ ε exp εt xi

+ 〠
n

j=1
Lσ t
j bσ t

ij exp ε t + τ
σ t
ij xj t

−exp εt xj t − τ
σ t
ij

= 〠
n

i=1
ξ
σ t
i exp εt sgnxi −e

σ t
i xi t

+ 〠
n

j=1
aσ t
ij f σ t

j xj t

+ 〠
n

j=1
bσ t
ij f σ t

j xj t − τ
σ t
ij + ε exp εt xi

dxi t
dt

= −eσ t
i xi t + 〠

n

j=1
aσ t
ij f σ t

j xj t + 〠
n

j=1
bσ t
ij f σ t

j xj t − τ
σ t
ij ,

xi s + t0 = ψi s , s ∈ −τ, 0 ,

25
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+ 〠
n

j=1
Lσ t
j bσ t

ij exp ε t + τ
σ t
ij xj t

− exp εt xj t − τ
σ t
ij ≤ 〠

n

i=1
ξ
σ t
i exp εt −eσ t

i xi t

+ 〠
n

j=1
aσ t
ij f σ t

j xj t + 〠
n

j=1
bσ t
ij f σ t

j xj t − τ
σ t
ij

+ ε exp εt xi + 〠
n

j=1
Lσ t
j bσ t

ij exp ε t + τ
σ t
ij xj t

− exp εt xj t − τ
σ t
ij ≤ 〠

n

i=1
ξ
σ t
i exp εt −eσ t

i xi t

+ 〠
n

j=1
Lσ t
j aσ t

ij xj t + 〠
n

j=1
Lσ t
j bσ t

ij xj t − τ
σ t
ij

+ ε exp εt xi + 〠
n

j=1
Lσ t
j bσ t

ij exp ε t + τ
σ t
ij xj t

− exp εt xj t − τ
σ t
ij = 〠

n

i=1
exp εt ξσ t

i −eσ t
i + ε xi t

+ 〠
n

j=1
aσ t
ij + exp ετ

σ t
ij bσ t

ij Lσ t
j xj t

≤ exp εt 〠
n

i=1
−eσ t

i + ε ξ
σ t
i + exp ετσ t

· 〠
n

j=1
ξ
σ t
j Lσ t

j aσ t
ji + bσ t

ji xi t ≤ exp ε t + τσ t

· 〠
n

i=1

−eσ t
i + ε

exp ετσ t
ξ
σ t
i + 〠

n

j=1
ξ
σ t
j Lσ t

j aσ t ∗
ji + bσ t ∗

ji xi t

= exp ε t + τσ t 〠
n

i=1
−δσ t

i +
−eσ t

i + ε

exp ετσ t
+ eσ t

i ξ
σ t
i

· xi t

28

Defining functions,

ℱk
i z = −δki +

−eki + z

exp zτk
+ eki ξki ,  i = 1, 2,⋯, n,  k ∈ Σ

29

Obviously, ℱk
i 0 = −δki < 0. Since ℱk

i z are continu-
ous functions, there exist εki > 0, i = 1, 2,⋯, n , such that
ℱk

i εki < 0. Let ε =min1≤k≤m,1≤i≤n εki ; we can get ℱk
i ε <

0, i = 1, 2,⋯, n, k ∈ Σ . Combining it with inequality (28),
we get

D+V x, t ≤ exp ε t + τσ t 〠
n

i=1
ℱσ t

i ε xi t ≤ 0

30

So for t ∈ tk, tk+1 ,

V x, t ≤V x, tk 31

For convenience, we denote σ t = ik when t ∈ tk, tk+1 ,
k = 0, 1,… , n. That is, the ikth subnetwork is activated for
t ∈ tk, tk+1 ; then

V x, tk = 〠
n

i=1
ξiki exp εtk xi tk

+ 〠
n

j=1
Likj bikij

tk

tk−τ
ik
i j

exp ε s + τikij xj s ds

= 〠
n

i=1
ξ
ik
i exp εt−k xi t

−
k

+ 〠
n

j=1
Likj bikij

t−k

t−k−τ
ik
i j

exp ε s + τ
ik
ij xj s ds

≤ 〠
n

i=1
η
ik−1
i ξ

ik−1
i exp εt−k xi t

−
k

+ βik−1
i 〠

n

j=1
Lik−1j bik−1ij

t−k

t−k−τ
ik−1
i j

exp ε s

+ τik−1ij xj s ds ,

32

where

η
ik−1
i =

max1≤i≤n ξiki

min1≤i≤n ξik−1i

,

βik−1
i =

max1≤j≤n exp ετ
ik
ij Likj b

ik∗
ij

min1≤j≤n exp ετ
ik−1
ij Lik−1j bik−1⋆ij

33

Let ϑ=max1≤i≤n,1≤ik−1≤m η
ik−1
i , ηik−1i β

ik−1
i ≥ 1; we can get

V x, tk ≤ ϑ〠
n

i=1
ξ
ik−1
i exp εt−k xi t

−
k + 〠

n

j=1
Lik−1j bik−1ij

·
t−k

t−k−τ
ik−1
i j

exp ε s + τik−1ij xj s ds = ϑV x, t−k

34

Combining (31) and (34) yields

D+V x, t ≤V x, tk ≤ ϑV x, t−k
≤ ϑV x, tk−1 ≤⋯ ≤ ϑNσ t0,t V x, t0

35
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When t = t0, the i0th subnetwork is activated; then

V x, t0 = 〠
n

i=1
ξi0i exp εt0 xi t0 + 〠

n

j=1
Li0j bi0ij

·
t0

t0−τ
i0
i j

exp ε s + τi0ij xj s ds

= 〠
n

i=1
ξi0i exp εt0 wi t0 −w∗

i

+ 〠
n

j=1
Li0j bi0ij

t0

t0−τ
i0
i j

exp ε s + τi0ij wj s −w∗
j ds

≤ 〠
n

i=1
ξi0i exp εt0 sups∈ t0−τ,t0 ϕi s −w∗

i

+ τi0 〠
n

j=1
Li0j bi0ij exp ε t0 + τi0 sups∈ t0−τ,t0 ϕi s

−w∗
j = exp εt0 〠

n

i=1
ξi0i sups∈ t0−τ,t0 ϕi s −w∗

i

+ τi0 exp εt0 〠
n

i=1
ξi0i 〠

n

j=1
Li0j bi0ij exp ετi0

· sups∈ t0−τ,t0 ϕi s −w∗
j

≤ exp εt0 〠
n

i=1
ξi0i sups∈ t0−τ,t0 ϕi s −w∗

i

+ τi0 exp εt0 〠
n

i=1
〠
n

j=1
ξi0j L

i0
i bi0ji exp ετi0

· sups∈ t0−τ,t0 ϕi s −w∗
i

= exp εt0 〠
n

i=1
ξi0i + τi0 〠

n

j=1
ξi0j L

i0
i bi0ji exp ετi0

· sups∈ t0−τ,t0 ϕi s −w∗
i

≤ exp εt0 Mi0 〠
n

i=1
sups∈ t0−τ,t0 ϕi s −w∗

i
2

1/2

= exp εt0 Mi0 ϕ −w t0
,

36

where

Mi0 = n max
1≤i≤n

ξi0i + τi0 〠
n

j=1
ξi0j L

i0
i bi0ji exp ετi0

37

Combining (27), (35), and (36) yields

exp εt 〠
n

i=1
ξ
ik
i xi t ≤ ϑNσ t0,t exp εt0 Mi0 ϕ −w∗

t0

38

Let ξ =min1≤i≤n,1≤k≤m ξki ; (38) becomes

w t −w∗ ≤
ϑNσ t0,t Mi0

ξ
ϕ −w∗

t0
exp −ε t − t0

= ϑNσ t0,t exp −ε t − t0
Mi0

ξ
ϕ −w∗

t0

= exp Nσ t0, t ln ϑ − ε t − t0
Mi0

ξ
ϕ −w∗

t0

≤ exp N0 ln ϑ +
t − t0
T

ln ϑ − ε t − t0
Mi0

ξ
ϕ −w∗

t0

= exp
t − t0
T

ln ϑ − ε t − t0 ϑN0
Mi0

ξ
ϕ −w∗

t0

= exp − t − t0
ε − ln ϑ

T
ϑN0

Mi0

ξ
ϕ −w∗

t0

39

Let M = ϑN0Mi0 /ξ and λ = ε − lnϑ/T ; we have

w t −w∗ ≤M ϕ −w∗
t0
exp −λ t − t0 , 40

when T > ln ϑ/ε and λ > 0. According to Definition 1, equi-
librium point system (2) w∗ is robustly exponentially stable.
The proof is completed.

Remark 2. For all k ∈ Σ, C∗
k are M-matrices which mean

that delayed SNN (2) is globally exponentially stable
under constrained switching. From the definitions of ℱk

i
z functions, we know that the value of ε relies on vector

ξk = ξk1, ξ
k
2,⋯, ξkn

T
∈Λ C∗

k . So, for obtaining the maxi-
mum convergence rate λ∗ or the minimum average dwell
time T ∗, one can solve the optimization problem under
constraint conditions ℱk

i λ, ξk < 0, ξk ∈Λ C∗
k , i = 1, 2,⋯,

n, k ∈ Σ .

4.2. Exponential Stability under Arbitrary Switching. Define
the indicator function

γ t = γ1 t , γ2 t ,⋯, γm t T, 41

where

γk t =
1, when the kth subnetwork is activated,

0, otherwise,
42

with k = 1, 2,… ,m. Therefore, delayed SNN system (25) can
be described as follows:

dxi t
dt

= 〠
m

k=1
γk t −eki xi t + 〠

n

j=1
akij f

k
j xj t + 〠

n

j=1
bkij f

k
j xj t − τkij ,

xi s + t0 = ψi s , s ∈ −τ, 0 ,  i = 1,… , n

43
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For any switching signal, only one subnetwork is acti-
vated at any time, so it follows that ∑m

k=1γk t = 1.

Theorem 3. Under Assumption 1, the equilibrium point of
delayed SNNs (2) is robustly exponentially stable for all Ek ∈
EI
k,Ak ∈AI

k, Bk in BI
k, and any switching signal if the following

conditions are satisfied:

(i) C∗
k = E∗

k − A∗
k + B∗

k Lk, k ∈ Σ, are nonsingular M-
matrices

(ii) χ = ∩ m
k=1Λ C∗

k is nonempty.

Moreover, the exponential convergence rate of system (2)
is equal to λ, which is determined by

−ξi eki − λ + 〠
n

j=1
ξjL

k
j ak∗ij + eλτ

k

bk∗ij < 0, 44

for a given vector ξ ∈ χ.

Proof 3. Consider Lyapunov function candidates vi t = xi
t exp λ t − t0 . Calculating the upper right derivative
D+vi of vi along the solutions of (43), we get

D+vi t = exp λ t − t0 sgn xi 〠
m

k=1
γk t −eki xi t

+ 〠
n

j=1
akij f

k
j xj t + 〠

n

j=1
bkij f

k
j xj t − τkij

+ λ exp λ t − t0 xi t

≤ exp λ t − t0 〠
m

k=1
γk t −eki + λ xi t

+ 〠
n

j=1
akij f kj xj t + 〠

n

j=1
bkij f kj xj t − τkij

≤ exp λ t − t0 〠
m

k=1
γk t −eki + λ xi t

+ 〠
n

j=1
Lkj a

k
ij xj t + 〠

n

j=1
Lkj b

k
ij xj t − τkij

≤ exp λ t − t0 〠
m

k=1
γk t −eki + λ xi t

+ 〠
n

j=1
Lkj a

k∗
ij xj t + 〠

n

j=1
Lkj b

k∗
i j xj t − τkij

≤ 〠
m

k=1
γk t −eki + λ exp λ t − t0 xi t

+ 〠
n

j=1
Lkj a

k∗
ij exp λ t − t0 xj t

+ exp λτk 〠
n

j=1
Lkj b

k∗
ij exp λ t − τkij − t0 xj t − τkij

45

Substituting vi t = exp λ t − t0 xi t into the above
inequality, we can get

D+vi t ≤ 〠
m

k=1
γk t −eki + λ vi t + 〠

n

j=1
Lkj a

k∗
ij vj t

+ exp λτk 〠
n

j=1
Lkj b

k∗
ij supt−τk≤s≤tvj s ,

46

for i = 1, 2,… , n.
Since C∗

k are nonsingular M-matrices and χ is nonempty,
from Lemma 1, we know that there exists at least one vector
ξ = ξ1, ξ2,⋯, ξn

T ∈ χ ⊆Λ C∗
k such that

−eki ξi + 〠
n

j=1
ak∗ij + bk∗ij Lkj ξj < 0, 47

for i = 1, 2,… , n, k ∈ Σ.
Consider functions

Gk
i zki = −ξi eki − zki + 〠

n

j=1
ak∗ij + exp zki τ

k bk∗ij Lkj ξj,

48

with i = 1, 2,… , n and k = 1, 2,… ,m.
By inequality (47) and the definition of functions Gk

i , it
is clear that Gk

i zki ∈ C0 and Gk
i 0 < 0. Because dGk

i zki /
dzki > 0, there are constants λki > 0 such that

Gk
i λki = −ξi eki − λki + 〠

n

j=1
ak∗ij + exp λki τ

k bk∗ij Lkj ξj = 0

49

Let 0 < λ <min1≤k≤m,1≤i≤n λki ; then

Gk
i λ = −ξi eki − λ + 〠

n

j=1
ak∗ij + exp λτk bk∗ij Lkj ξj < 0

50

for i = 1, 2,… , n and k ∈ Σ.
Let l0 = ϕ −w∗

t0
/ξmin, where ξmin = min1≤i≤n ξi . So

vi s = exp λ s − t0 ϕi s −w∗
i < ξil0, t0 − τ ≤ s < t0,

 i = 1, 2,… , n
51

For t ≥ t0, we claim that vi t < ξil0, i = 1, 2,… , n. If this
is not true, there exist some i and corresponding t′ > 0, which
make vi t′ = ξil0, D+vi t′ ≥ 0, and vj t < ξjl0 for t0 ≤ t ≤ t′,
j = 1, 2,… , n, j ≠ i. However, applying (44) and (46) leads to
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D+vi t′ ≤ 〠
m

k=1
γk t′ −eki + λ vi t′ + 〠

n

j=1
Lkj a

k∗
ij vj t′

+ exp λτk 〠
n

j=1
Lkj b

k∗
ij supt′−τk≤s≤t′vj s

≤ 〠
m

k=1
γk t′ −eki + λ ξil0 + 〠

n

j=1
Lkj a

k∗
ij ξjl0

+ exp λτk 〠
n

j=1
Lkj b

k∗
ij ξ jl0 < 0

52

This is a contradiction. So vi t < ξil0, i = 1, 2,… , n, for
t ≥ t0. That is, for t ≥ t0,

xi < ξil0 exp −λ t − t0

=
ξi
ξmin

ϕ −w∗
t0
exp −λ t − t0 , i = 1, 2,… , n

53

Let M = n ⋅max1≤i≤n ξi /ξmin; then we can get

w −w∗ <M ϕ − w∗
t0
exp −λ t − t0 , 54

for t ≥ t0. From Definition 1, the equilibrium point of system
(2) is robustly exponentially stable. Moreover, the exponen-
tial convergence rate is λ. The proof is completed.

Remark 3. The existence of exponential convergence rate λ
has been proved, and from the definitions of functions
Gk

i z and (44), we know that the value of λ relies on vec-
tor ξ = ξ1, ξ2,⋯, ξn

T ∈ χ. So, for obtaining maximum
convergence rate λ∗, one can solve the optimization prob-
lem under constraint conditions Gk

i λ, ξ < 0, ξ ∈ χ i = 1, 2,
⋯, n, k ∈ Σ .
By virtue of Theorem 3, it is easy to get the following
result.

Corollary 1. Under Assumption 1, if for k ∈ Σ, C∗
k = E∗

k −
A∗
k + B∗

k Lk are nonsingular M-matrices, then for all Ek

∈ EI
k, Ak ∈ AI

k, and Bk ∈ BI
k, the equilibrium point of system

(2) is robustly exponentially stable for any switching signal
with the average dwell time satisfying

T >T ∗ =
ln ηmax

λ
, 55

where ηmax = max1≤i≤n,1≤k≤m ξki /min1≤i≤n,1≤k≤m ξki and λ >
0 is determined by inequality

ξki −eki + λ + 〠
n

j=1
ak∗ij + exp λτk bk∗ij Lkj ξ

k
j < 0, 56

for some given ξk = ξk1, ξ
k
2,⋯, ξkn

T
∈ χ C∗

k .

Proof 4. Consider Lyapunov function candidates vi t = xi
t exp λ t − tk . For convenience, we assume that the
jkth subsystem is activated when t ∈ tk, tk+1 . Calculating
the upper right derivative D+vi t of vi t along the solutions
of (25), we get

D+vi t = exp λ t − tk sgn xi −ejki xi t + 〠
n

j=1
ajkij f

jk
j xj t

+ 〠
n

j=1
bjkij f

jk
j xj t − τ

jk
ij t + λ exp λ t − tk xi t

57

It can be known from Theorem 3 that there exists λjk
i > 0

such that

G
jk
i λ

jk
i = −ξjki e jki − λ

jk
i

+ 〠
n

j=1
ajk∗ij + exp λ

jk
i τ

jk bjk∗ij Ljk
j ξ

jk
j = 0

58

Let 0 < λ <min1≤i≤n λ
jk
i ; then

G
jk
i λ = −ξjki e jki − λ + 〠

n

j=1
bjk∗ij + exp λτjk cjk∗ij Ljk

j ξ
jk
j < 0

59

for i = 1, 2,… , n, jk ∈ Σ.
By the proof of Theorem 3, we know that

xi t <
ξ
jk
i

min1≤i≤n ξ
jk
i

x tk exp −λ t − tk , 60

for t ∈ tk, tk+1 . Since the system state is continuous, it
follows from (60) that

xi t <
ξ
jk
i

min1≤i≤n ξ
jk
i

xi tk exp −λ t − tk

<⋯ < exp 〠
k

l=0
ln ηjl − λ t − t0 xi t0

< exp k + 1 ln ηmax − λ t − t0 xi t0
= ηmax exp Nσ t0, t ln ηmax − λ t − t0 xi t0

≤ ηmax
N0+1 exp − λ −

ln ηmax
T

t − t0 xi t0 ,

61

where η jv = ξ
jv
i /min1≤i≤n ξ

jv
i and ηmax = max1≤jv≤m ηjv .

Let M = n ηmax
N0+1 and ε = λ − lnηmax/T yield
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w t −w∗ ≤M ϕ −w∗
t0
exp −ε t − t0 62

When T >T ∗ = ln ηmax/λ, ε > 0. According to Defini-
tion 1, system (2) is robustly exponentially stable, and the
exponential convergence rate is ε. The proof is completed.

Remark 4. Stability conditions in Theorems 2 and 3 and
Corollary 1 are explicit for SNNs, which are convenient to
verify in practice. However, they have the disadvantage of
neglecting the signs of entries in the connection weight
matrices Ak and Bk, and thus, differences between excitatory
and inhibitory effects might be ignored.

Remark 5. Theorems 2 and 3 and Corollary 1 reflect the
relationship between arbitrary switching and constrained
switching of system (2). If C∗

k are M-matrices for all k ∈
Σ, then system (2) would be exponentially stable at least
under constrained switching. If χ = ∩ m

k=1Λ C∗
k is non-

empty, then system (2) is exponentially stable for any switch-
ing signal.

5. Numerical Examples

We present two examples to illustrate the main results.

Example 1. Consider a delayed SNNs with two subnetworks,
and the relevant parameters of system (25) are given as fol-
lows [18, 21]:

E1 =

2 0 0

0 3 0

0 0 2

,

A1 =

1 0 −0 4 0 4

−0 4 0 2 0 2

0 2 0 4 −0 4

,

B1 =

0 3 0 2 0 3

0 2 0 2 0 2

0 3 0 2 0 2

,

E2 =

3 0 0

0 2 8 0

0 0 2

,

A2 =

1 5 −0 3 0 4

−0 4 0 3 0 4

0 2 0 3 −0 5

,

B2 =

0 2 0 3 0 3

0 3 0 2 0 2

0 3 0 3 0 2

63

Take the activation functions as f1 x = 1/2 x1 + sin x1 ,
tanh x2 , 1/2 x3 + 1 − x3 − 1 T and f2 x = 1/2 x1
+ sin x1 , 1/2 x2 + sin x2 , 1/2 x3 + sin x3

T.
Obviously, f1 x = f2 x satisfy Assumption 1 and L1 =
L2 = diag 1,1,1 .

Step 1. Determine whether C∗
k = E∗

k − A∗
k + B∗

k Lk are M-
matrices.

C∗
1 =

0 7 −0 6 −0 7

−0 6 2 6 −0 4

−0 5 −0 6 1 4

,

C∗
2 =

1 3 −0 6 −0 7

−0 7 2 3 −0 6

−0 5 −0 6 1 3

64

are bothM-matrices, which imply that the considered SNN is
at least exponentially stable under constrained switching. If χ
is nonempty, then the system is exponentially stable under
arbitrary switching.

Step 2. Determine whether χ = ∩ 2
k=1Λ C∗

k is nonempty.

Let ξ = 0 2146,0 1000,0 1288 T; then we can get C∗
1ξ > 0

and C∗
2ξ > 0. That is, ∩ 2

k=1Λ C∗
k ≠∅. Therefore, the con-

sidered SNN is globally exponentially stable for any
switching signal.

Step 3. Calculate the maximum exponential convergence
rate λ.
By using LINGOsolver,we can get themaximumconvergence
rate λ = 0 6999 under the constraint conditions Gk

i λ, ξ < 0,
ξ ∈ χ = ∩ 2

k=1Λ C∗
k , k, i = 1, 2, and the corresponding vector

ξ = 0 2605,0 1205,0 1562 T.

The numerical simulations are given in Figures 1–5. We
can see that the state trajectories converge to the equilibrium
point of the system, which is consistent with the conclusion
of Theorem 3. On the other hand, from [18, 21], we know
that when the average dwell time of switched signal is greater
than or equal to 9.1936s and 0.8396s; then the considered
neural network is exponentially stable. Table 1 shows that
the stability criteria obtained in this paper are less conserva-
tive than those in [18, 21].

Example 2. Consider the second-order delayed SNNs in
system (25) described by [49]: σ t : 0, +∞ →∑ = 1, 2 ,
f1 x = f2 x = 0 5x1 + 0 5 sin x1,0 5x2 + 0 5 sin x2

T, τkij t
= 0 5 + 0 5 sin t , i, j, k = 1, 2, and
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E1 =
3 99 0

0 2 99
,

E1 =
4 01 0

0 3 02
,

E2 =
2 81 0

0 3 60
,

E2 =
2 95 0

0 3 72
,

A1 =
1 19 2 35

0 05 0 03
,

A1 =
1 21 2 41

0 06 0 04
,

A2 =
0 87 −0 03

2 07 0 68
,

A2 =
1 01 0 10

2 28 0 80
,

B1 =
0 09 3 14

−0 05 0 43
,

B1 =
0 11 3 32

0 13 0 54
,

B2 =
0 11 −0 02

2 87 0 05
,

B2 =
0 35 0 10

3 00 0 13

65

Obviously, f1 x and f2 x satisfy Assumption 1 and L1 =
L2 = diag 1, 1 ,

A∗
1 =

3 99 0

0 2 99
,

B∗
1 =

1 21 2 41

0 06 0 04
,

C∗
1 =

0 11 3 32

0 13 0 54
,

A∗
2 =

2 81 0

0 3 60
,

B∗
2 =

1 01 0 10

2 28 0 80
,

C∗
2 =

0 35 0 10

3 00 0 13
66

Step 1. Determine whether C∗
k = E∗

k − A∗
k + B∗

k Lk, k = 1, 2,
are M-matrices.

C∗
1 =

2 67 −5 73

−0 19 2 41
,

C∗
2 =

1 45 −0 20

−5 28 2 67

67

are both M-matrices, which mean that the considered system
is at least globally exponentially stable under constrained
switching.

Step 2. Determine whether χ = ∩ 2
k=1Λ C∗

k , k = 1, 2, is
nonempty.
As shown in Figure 6, ∩ 2

k=1Λ C∗
k =∅. Therefore, we can

not claim that the considered system is stable under arbitrary
switching.

Step 3. Calculate the average dwell time T ∗.
By using LINGO solver, we can get the maximum conver-
gence rate λ = 0 4387 under the constraint conditions Gk

i λ,
ξk < 0, ξk ∈Λ C∗

k , k, i = 1, 2, and the corresponding vectors
ξ1 = 5 5719,1 4679 T, ξ2 = 1 2981,4 1662 T, and ηmax =
4 2923. So we can get the average dwell time T ∗ = ln ηmax/
λ = 3 3208s.

For numerical simulation, let Ek = E∗
k , Ak =A∗

k , and
Bk = B∗

k , where k = 1, 2, and choose the initial value ψ1, ψ2
T

= cos 2s − 0 4, sin 2s + 0 4 T, s ∈ −1, 0 . Figures 7–9
display the state responses and state norm responses of

0 5 10 15
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1

Time (s)
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x1
x2
x3

Figure 1: State responses of subnetwork 1 of the considered SNNs
for Example 1 with the initial condition ψ s = cos s − 0 4 ;
sin 2s + 0 4 ; tanh 2s T.
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these two subnetworks. Figures 10–13 display the state
responses and state norm responses of the delayed SNNs
under two different switching signals. From Figures 10
and 11, we can see that with the dwell time T 1 = 1s that
is less than T ∗, the trajectories can not converge to the
equilibrium point of the system; Figures 12 and 13 show that
with the dwell time T 2 = 4s that is larger than T ∗, the
trajectories converge to the equilibrium point of the sys-
tem. This is consistent with the conclusion of Corollary 1.

These two examples indicate the correctness and effec-
tiveness of the results proposed in this paper.

6. Conclusion

The existence, uniqueness, and robust exponential stability of
the equilibrium point of SNNs with time delays were

investigated in this paper. For each specified switching signal
σ t , conditions for guaranteeing the existence and unique-
ness of the delayed SNNs were obtained by resorting to
the homomorphism mapping theorem and M-matrix the-
ory. By using average dwell time approach, sufficient condi-
tions to ensure the robust exponential stability of the
delayed SNNs under constrained switching were derived,
and inequality technique and the idea of vector Lyapunov
function were employed to obtain conditions for ensuring
the globally exponential stability of the delayed SNNs under

Table 1: Stability conditions are derived by different methods.

Methods Switching signal Average dwell time

[18] Constrained 9.1936

[21] Constrained 0.8396

Theorem 3 Arbitrary —
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Figure 5: State norm response of the considered SNNs for Example
1 with switching signal.
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Figure 4: State responses of the considered SNNs for Example 1
with the initial condition ψ s = 3 5 ; 3 8 ; −3 8 T.
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Figure 3: State norm responses of the subnetworks of the
considered SNNs for Example 1.
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Figure 2: State responses of subnetwork 2 of the considered SNNs
for Example 1 with the initial condition ψ s = −cos s ; cos s ;
−tanh s − 0 2 T.
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Figure 7: State responses of subnetwork 1 of the considered SNNs
for Example 2.
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Figure 8: State responses of subnetwork 2 of the considered SNNs
for Example 2.
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Figure 9: State norm responses of the subnetworks of the
considered SNNs for Example 2.
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Figure 6: Λ C∗
k of the considered SNNs for Example 2.
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Figure 10: State responses of the considered SNNs for Example 2
with average dwell time T 1 = 1s <T ∗.
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Figure 11: State norm response of the considered SNNs for
Example 2 with average dwell time T 1 = 1s <T ∗.
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arbitrary switching. The obtained results not only have less
conservativeness but also reveal the relationship between
the constrained switching and the arbitrary switching of the
delayed SNNs. Finally, two numerical examples were pre-
sented to demonstrate the effectiveness and less conservative-
ness of the main results over existing literature.
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