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Abstract
The interplay between the virus, infected cells and immune responses to SARS-
CoV-2 is still under debate. By extending the basic model of viral dynamics, we pro-
pose here a formal approach to describe neutralisation versus weak (or non-)neutral-
isation scenarios and compare them with the possible effects of antibody-dependent 
enhancement (ADE). The theoretical model is consistent with the data available in 
the literature; we show that both weakly neutralising antibodies and ADE can result 
in final viral clearance or disease progression, but that the immunodynamics are dif-
ferent in each case. As a significant proportion of the world’s population is already 
naturally immune or vaccinated, we also discuss the implications for secondary 
infections after vaccination or in the presence of immune system dysfunctions.
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1  Background

SARS-CoV-2 is a new virus of the coronavirus family, responsible for the ongo-
ing COVID-19 pandemic. To date, there are more than 300 million cases and over 
five million deaths worldwide (John’s Hopkins University 2000). SARS-CoV-2 
is the third severe beta-coronavirus to emerge in the last 20 years, after SARS-
CoV-1 and MERS-CoV. Hence the growing need for effective drugs and/or vac-
cines, not only in the immediate future but also in anticipation of a subsequent 
coronavirus resurgence.

However, the promising initial successes of antiviral treatments have also 
raised the possibility of negative side-effects. With regard to vaccines, an autoim-
mune disease (which lead to the temporary suspension of clinical trials) occurred 
during the AstraZeneca vaccine trial (9 September 2020); this context has dem-
onstrated the importance of understanding qualitatively and quantitatively the 
immune response to primary infection and challenges (vaccines fall into both cat-
egories). In particular, relevant mathematical models of immune dynamics may 
be of interest to understand and predict the complicated behavior often observed.

We focus here on humoral adaptive immunity (antibody-mediated immunity) 
and refer to future works for an extension to the cellular and/or innate immune 
system. For clinical reasons and also for the understanding of those studying 
vaccines, antibody responses are of paramount importance. However, the neu-
tralizing abilities of antibodies are still under discussion, especially as weak or 
non-neutralizing antibodies can promote infection through a process called anti-
body-dependent enhancement (hereafter abbreviated ‘ADE’) (Taylor et al. 2015; 
Iwasaki and Yang 2020; Yip et al. 2014; Jaume et al. 2011), see also the online 
supplementary information (Danchin et  al. 2020). Therefore, here we studied 
both primary and secondary COVID-19.

To summarize, we propose a mathematical model of the immune response and 
virus dynamics that includes the possibility of weakly neutralizing antibodies and 
/ or ADE and discuss its implications. At the time of writing the second ver-
sion of the manuscript (January 2022) a significant part of the world’s population 
is either vaccinated or naturally immunized and the consequences of reinfection 
events are a major source of uncertainty concerning the evolution of the pan-
demic. This situation naturally calls for scientific investigation.

2  Methods

2.1  Mathematical Model

We present below the viral and immune response model. It is a compartmental 
model similar to those used to describe the epidemic propagation, see Kermack 
and McKendrick (1927), Diekmann et  al. (2000), Hethcote (2000), Ng et  al. 
(2003) for a general introduction and Faraz et al. (2020), Drożdżal et al. (2021), 
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Liu et al. (2020), Danchin and Turinici (2021), Dolbeault and Turinici (2020) and 
Danchin et al. (2021) for COVID-19 specific works.

The viral-host interaction (excluding the immune response) is called the basic 
model of virus dynamics. It has been extensively validated both theoretically and 
experimentally, see Nowak and May (2000, Eq. (3.1), p. 18) and Wodarz (2007, Eqs. 
(2.3)–(2.4), p. 26) and references therein. See also Louzoun (2007), Castro et  al. 
(2016) and Eftimie et al. (2016) for general overviews of mathematical immunology.

The model involves several classes: that of the target cells, denoted T, the infected 
cells, denoted I, the free virus denoted V and the antibodies denoted A. The model is 
illustrated in Fig. 1.

Target cells T, which in our case are the epithelial cells with ACE2 receptors 
located, for instance in the respiratory tracts including lungs, nasal and trachea/bron-
chial tissues, are produced at a rate Λ and die at rate � . The parameters Λ and � 
define tissue dynamics in the absence of infection, see also “Model Without a Virus, 
Nor Immune Response” section in “Appendix 3”. When these susceptible cells meet 
free virus particles V, they become infected at a rate �0 . Furthermore, target cells can 
also become infected via ADE if virus entry is mediated by antibodies. The parame-
ter �1 represents the rate of ADE infection route which is the result of a three-species 
interaction: T, A and V.

Infected (initially target) cells, denoted I, die at a rate � . Note that this death rate 
will often be larger than the death rate of uninfected cells because viruses cause cell 
damage and cell death, Wodarz (2007) and Nowak and May (2000). Infected cells 
produce new virus particles at a rate � , and the free virus particles which have been 
released from infected cells decay at a rate c called the clearance rate.

Free virions are neutralized by antibodies A, which can block virus entry into 
cells but also facilitate phagocytosis, at a rate b. Finally, the antibodies can be stimu-
lated by the free virus with a production rate a while declining at a rate of � (see 
for instance Wodarz 2007, eq. (9.4), p.126)). Note that alternative proposals for 

Fig. 1  Graphical illustration of the flow in the model (1)–(5)
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the antibody dynamics exist, see e.g. André and Gandon André et al. (2006) who 
assume that immune response, once started, grows at a constant rate while Pawlek 
et al. (2016) design a more complex model that takes into account the macrophage 
activation. The complete model reads (all constants are positive):

Several hypotheses in this model need to be further documented. The first one in 
that all infected cells including ADE infected cells support viral replication and can 
produce virus. However, to date, it is still unclear whether ADE infected cells can 
support viral replication in vivo, Yip et al. (2014) and Jaume et al. (2011). Here we 
choose not to distinguish between virus productive and non productive infected cells 
to keep the model simple (see however the comments in “Appendix  4”). For the 
same reason, we do not discriminate between neutralizing, weakly neutralizing or 
non-neutralizing antibodies but consider all as members of the same class, the anti-
bodies neutralizing capacity will therefore be the average of the neutralizing power 
and the average is described by the parameter b; on the other hand the ADE mag-
nitude will be monitored by parameter �1 . These parameters are the most important 
part of the immune response and the object of our study.

3  Stability of Equilibria and Further Considerations

We operate under the assumptions that all parameters are positive and furthermore 
the following two assumptions hold (see “Appendix 3” for details):

where we define as in Nowak and May (2000, Eq. (6.2), p. 53):

Note that (7) implies in particular R0 > 1 which is a standard condition for such 
models. We will further denote

(1)dT∕dt = Λ − �T − �(A)VT

(2)dI∕dt = �(A)VT − �I

(3)dV∕dt = �I − cV − bAV

(4)dA∕dt = aVA − �A

(5)�(A) = �0 + �1A.

(6)Assumption 1: 𝛿 > 𝜇.

(7)Assumption 2:
(
R0 − 1

) 𝜇
𝛽0

>
𝜎

a
.

(8)R0 =
�0�Λ

c��
.
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3.1  Stability of the Equilibrium without ADE

With these definitions we can give the main theoretical properties of the model 
depending on the presence or not of the ADE term.

Proposition 1 The model (1)–(4) without ADE i.e., �(A) = �0 (that is �1 = 0 ) has a 
single stable equilibrium given by:

Proof The proof of the stability of the equilibrium (10) is technical and is given in 
full detail in “Model: Virus and Immune Response but No Enhancement” section in 
“Appendix 3”.   ◻

3.2  Stability of the Equilibrium with ADE

We investigate now the full model having a non-null ADE term 𝛽1 > 0.

Proposition 2 The model (1)–(4) has three equilibria:

1. the trivial equilibrium T = T∗ = Λ∕�,V = I = A = 0 which is unstable;
2. the immmunosuppression equilibrium, also unstable, given by : 

3. and a third equilibrium characterized as follows:

• the antibody level Af  is the unique positive solution of the following second 
order equation in the unknown A: 

• the other quantities are: 

The following affirmations hold true concerning this third equilibrium

(a) when �1 is small enough the equilibrium is stable;

(9)Vis ∶=
(
R0 − 1

) �
�0

, Vt ∶= �∕a.

(10)T =
Λ

� + �0V
t
, I =

�0ΛV
t

�(� + �0V
t)
, V = Vt, A =

c(Vis − Vt)

�0b(� + �0V
t)
.

(11)T = Tis ∶=
�c

�0�
, I = Iis ∶=

(
R0 − 1

) c�

��0
, V = Vis ∶=

(
R0 − 1

) �
�0

, A = 0.

(12)��(A)Λ = �(c + bA)(� + �(A)Vt);

(13)Tf =
�(c + bAf )

��(Af )
, If =

V(c + bAf )

�
, V = Vt =

�

a
.
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(b) when �1 is large enough the equilibrium is stable;
(c) however there exist choices of parameters (in particular values of �1 ) for which 

this equilibrium is unstable.

Proof The proof is presented in “Appendix 3”.

3.3  Dynamical Aspects

The equilibrium analysis in the previous sections does not yet tell the full story 
of the evolution of the system (1)–(4). Depending on the parameters, a common 
behavior is the following: initially A will increase as response to V being above 
threshold Vt; the increase of A will drive both I and V to zero. Such a dynamics 
is stable over a long period and in practice I and V will keep small values for a 
time long enough to ensure virus clearance (when V is small enough, due to the 
random nature of the events, V will disappear).

Taking I and V to be constant equal to zero, the new evolution is:

Note that equations for I and V are missing because if the initial states are 
V(0) = I(0) = 0 then V(t) = I(t) for all t ≥ 0 . This evolution drives T to Λ∕� and A to 
zero. If however during the slow decay of A a challenge is presented in the form of a 
virus load V > 𝜎∕a a new infection will start and V and I will rise again.

In conclusion, the stable equilibrium (12)–(13) is not necessarily reached in 
practice. The precise dynamics depends crucially on the parameters b and �1 , see 
main text for details.

4  Results

4.1  Theoretical Results

We refer the reader to Sect. 3 for the rigorous statements concerning the theoreti-
cal properties of the model (1)–(5). Several situations may occur, but in summary 
the absence of ADE (i.e., �1 = 0 ) insures stable equilibrium while intermediate �1 
values (neither too small not too large) may provide examples of unstable equilib-
ria; moreover, stochastic events prevent the stable equilibrium state to be reached 
in practice, cf. Sect. 3.3. The parameters b and �1 are shown to be the most impor-
tant for the viral-host-antibody dynamics.

(14)dT∕dt = Λ − �T

(15)dA∕dt = −�A.
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4.2  Empirical Results: Initial Infection

Taking into account the available data from the literature and the methodology in 
“Appendix 1” we run a numerical procedure to fit the model parameters to repro-
duce at best the viral load data in Fig. 2 (left) and obtained the values in Table 1. 
The numerical simulation for a primary infection corresponding to these param-
eters is shown in Fig. 3.

There is a 20% fall of target cells which either become infected or naturally die. 
The viral load peaks around 4-5 days after symptoms onset at 1.8 × 106 copies/ml. 
While SARS-CoV-1 viral load, as MERS-CoV, peaked around 10 days after symp-
toms onset, most studies agree that SARS-CoV-2 viral load peaks sooner, around 
5 days, Lescure et  al. (2020) and Zou et  al. (2020). Concerning antibodies, they 
increase sharply until week 2 then slower until a month after infection and start to 
decrease within 2–3 months (Long et al. 2020; Seow et al. 2020). Qualitative agree-
ment is observed with clinically observed variations variations of viral load and par-
tially with antibodies concentration depicted in Fig. 2 (see references in the figure).

Note that, although we expect agreement between V(t) and the viral load evo-
lution in Fig. 2 (left) (which corresponds to a precise, real patient) the antibody 

Fig. 2  Left Clinically observed typical variation of SARS-CoV-2 viral load in nasopharyngeal swab nor-
malised using cell quantification. Data taken from Lescure et al. (2020, Fig. 3, p. 703, patient 4). Right 
Typical time variations for IgG. Data taken from Padoan et al. (2020, Fig. 2, p. 1085). Note that the anti-
body data is a mean over several days and corresponds to a different patient cohort

Table 1  Baseline parameters use in numerical simulations of the model (1)–(4)

� Λ � �
0

�
1

� c b

9.66 9.66 × 10
6 59.74 1.28 × 10

−6 0 16.22 1.45 0.52
a � I(0) V(0) A(0)
9.15 × 10

−7 0.02 372.11 994.84 1.17
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data from Padoan et al. (2020, Fig. 2, p. 1085) does not correspond to the same 
patient (data unavailable) but is a mean value over several days and patients 
(not always the same). Each individual is likely to have his own immuno-kinetic 
parameters: the parameters of the individual that may fit the A(t) data from Fig. 2 
(right) are not the same as the parameters that fit the data in left side of the same 
figure.

The equilibrium state (10) when �1 = 0 (no ADE present) is reached after 2 years 
for all variables in Fig. 3. However, viral load and infected cells reach a minimum 
within several weeks post-infection before increasing and oscillating toward equi-
librium state (10) (simulations not shown here). Therefore, if the virus load is very 
small close to the minimum, all other variables decrease towards 0 and the infection 
has vanished. The equilibrium state (10) is stable but not reached in practice as the 
patient is cured.

4.3  Empirical Results: Secondary Infection, Variants, Vaccination

We focus on a scenario where the immuno-kinetic parameters such as the neutral-
izing efficacy (b) or the ADE parameter ( �1 ) change; the causes can be multiple: a 
primary infection with a different variant, vaccination, or some immune evolution 

Fig. 3  Numerical simulation of the first infection without ADE for model (1)–(4) and parameters in 
Table 1. A good fit for the viral load from Fig. 2 is obtained (data is truncated below the value 1). On 
the contrary the fit is not as good for A(t) because data does not correspond to the same patient (joint 
V(t)/A(t) data was not available)
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(aging being an example). In all cases we investigate the infection, called challenge, 
that takes place with a different set of b of �1 parameters than in Table 1.

4.3.1  Variation of the Neutralizing Capacity b

When there is no ADE, decreasing the neutralizing capacity of antibodies (param-
eter b) leads on the one hand to a higher viral load peak but on the other hand to 
higher antibodies concentrations. The less neutralizing the antibodies are, the more 
abundant they are in order to have the infection always cleared. The simulations 
results are presented in Fig. 4. Infection resolution is obtained with little target cell 
destruction for larger values of b. On the contrary, low values of b will lead to sig-
nificant increase of the antibody number and simultaneous decay of target cells, both 
largely pejorative for the patient.

In the cases where the viral load reaches low values the infection stops before 
converging to the theoretical equilibrium.

Fig. 4  Numerical simulation of the model (1)–(4) and parameters in Table  1. Only the neutralizing 
capacity b is changed around the nominal value b = 0.52 . Lower value of the neutralizing capacity b 
(solid blue line) leads to lower target cell count and higher antibody levels. See Fig. 6 for simulation over 
a longer time span
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4.3.2  Presence of ADE ( ̌
1
> 0)

We investigated in Figs. 5 and 6 the possibility of the ADE mechanism present 
( 𝛽1 > 0 ), for a range of possible parameter �1 values. We plot all variables upon 
challenge with the same neutralizing capacity for antibodies. A higher ADE 
parameter leads to more destroyed target cells, more infected cells, more viral 
load and more antibodies. However the antibodies concentration is restricted by 
an upper limit (see Fig. 5 and compare with theoretical insights in the proof of 
point 3b of Proposition 2 in “Appendix 3”). Therefore after some threshold value, 
a higher �1 ADE parameter cannot be compensated by more antibodies.

For example, unlike �1 = 10−8 , if �1 = 10−6 the viral load directly stabilizes to 
its equilibrium state (13), without reaching a minimum close to 0 while oscillat-
ing (simulation not shown here). In this case, the infection wins (leading to res-
piratory function disruption and possibly patient death). Large values of �1 lead to 
significant (possibly total) destruction of target cells.

Fig. 5  The effect of the ADE parameter �
1
 [the model (1)–(4)]. The secondary (challenge) infection has 

fixed neutralizing antibodies capacity b but several possible �
1
 (ADE) parameter values; for all other 

parameters we use the nominal values given in Table 1. See Fig. 7 for simulation over a longer time span
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5  Discussion

We studied the immune response to infection and reinfection with SARS-CoV-2 
using a numerical model; the model can also take into account the possible pres-
ence of ADE, either during the first infection or during a challenge (secondary 
infection or reinfection with a different phenotype, after vaccination, etc.).

As there is no clear evidence to date that ADE occurs in severe COVID-19 
patients, we assume that ADE only occurs in the case of challenge.

We started from a classical virus-host dynamic (Wodarz 2007; Tang et  al. 
2020) and modified it by adding the parameter �1 to account for a possible ADE 
mechanism. In order to keep the model at its lowest complexity, we do not distin-
guish between ADE triggering and neutralising antibodies.

We performed a theoretical study of our system by calculating steady states 
and stability with and without ADE. We showed that stochastic events can also 
play a role and prevent the stable steady state from being reached in practice; we 
identified the parameters b (neutralising capacity) and �1 (presence of ADE) as 
crucial for the dynamics of our system.

Next, we calibrated our parameter values to match the reference viral load from 
the literature (Lescure et al. 2020; Seow et al. 2020) and obtained good results.

We then studied a secondary infection (or an infection following vaccination 
or another immune event) which may have different immunodynamic parameters. 
We saw that without ADE, the low neutralising capacity of antibodies was sys-
tematically compensated by higher concentrations of antibodies leading to viral 
clearance. On the other hand, the addition of an ADE was not always associated 
with viral clearance but possibly with high target cell killing. Simulations and 
equilibrium analysis showed that the antibody concentration had an upper limit 
that prevented a higher ADE from being compensated by an unlimited amount of 
antibody. Therefore, ADE should be taken into consideration as a serious risk in 
understanding the disease, treatment and vaccine development and programming.

On the other hand, we have shown that the results are sensitive to the capacity 
of neutralizing antibodies (the b parameter); it should be noted that a decrease 
in this parameter can occur in several situations, e.g. due to degradation of the 
immune function, malfunctioning of the antibody immunodominance mechanism 
that ends up selecting too many weakly neutralizing antibodies or due to poorly 
calibrated therapeutic interventions. Regardless of the cause, such a decrease in 
neutralizing capacity is likely to imply a substantial deterioration of the outcome.

In summary, our results seem to confirm that the presence of ADE correlates 
mainly with significant target cell destruction, whereas the loss of neutralizing 
capacity correlates with both a higher number of antibodies (leading to inflamma-
tion) and a higher target cell destruction.
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5.1  Limitations and Future Work

Like any other model, our model of course has several limitations. First, we 
assumed that all infected cells supported viral replication, including ADE-
infected cells. Concerning SARS-CoV-2, the questions of ADE is still under 
debate, but for SARS-CoV-1 in  vitro ADE evidence suggested abortive viral 
replication in ADE infected cells. Therefore, if we changed the model (1)–(4) to 
include this distinction, the steady state would change and ADE could be com-
pensated for. Similarly, we did not distinguish between old and new antibodies 
secreted upon challenge. This would involve more parameters and change the 
equilibrium levels but not intrinsically change the behavior of the variables. 
The dynamic antibody model can also be modified to include, for example, con-
stant antibody production after a threshold or more specific effects (André et al. 
2006; Pawelek et al. 2016). As far as parameter are concerned, we did not have 
enough usable data to train our model and better fit the parameters. Finally, a 
single model can hardly account for the extreme variability in clinical outcomes 
of COVID-19, see Callaway et al. (2020); some studies proposed that part of this 
variability comes from genetics, see e.g., Ellinghaus et al. (2020) where genetic 
information from about 4,000 people from Italy and Spain was correlated with 
COVID-19 severity. This may lead to a variability of our model parameters in the 
form of random variables.

To date (January 2022), billions of people have been vaccinated, at least by 
one injection, and over half a billion have been infected. Fortunately, despite the 
spread of the highly contagious omicron variant, it appears that morbidity and 
mortality are declining. This implies that, for the time being, the most disastrous 
consequences of the phenomena included in this model are not being observed. 
However, it must be emphasized that human polymorphism, viral polymorphism 
and highly variable environmental conditions, as well as the considerable variety 
of vaccination protocols, mean that there may be isolates where ADE or the other 
immune responses we have explored could be significant. It is therefore particu-
larly important to monitor variations in morbidity and mortality around the world 
so that a rapid response can be implemented if there is a local increase. Finally, 
the types of vaccines used are very different. For those based on well-established 
technologies, we do not foresee any consequences other than those discussed in 
this work, except perhaps in terms of vaccination protocols (time between pri-
mary and booster injections. In contrast, the use of vaccines based on indirect 
antigen production (adenovirus or synthetic RNA-based vaccines) requires spe-
cific encapsulation of the active ingredient in a variety of capsules or cassettes. 
These containers can, by themselves, be immunogenic. The consequence would 
be that after several immunisations, patients would develop a response against the 
vaccine, rendering it ineffective against the disease. We have not considered this 
possibility in our work.

Another limitation of this work is that in a secondary challenge there would be 
presumably already present memory cells allowing for a faster antibody response, 
thus increasing the value of A(0) relatively to a primary infection. This circumstance 
was not considered in this work.
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The more science sheds light on the full picture of SARS-CoV-2, the more 
complex and precise details our model can go into. In the meantime, the main 
take-home message is that, with parameters consistent with the available clinical 
data, neutralizing capacity and ADE mechanisms can play an important immuno-
logical role in the outcome of primary and secondary infection.

Appendix 1: Choice of Simulation Parameters

Parameters’ order of magnitude were derived from literature, see Lee et al. (2009) 
for μ, Lescure et al. (2020) for ω, clearance data from Tang et al. (2020), Li et al. 
(2020), Long et al. (2020) and Seow et al. (2020). To obtain the precise values, 
we then fitted the model to the SARS-CoV-2 clinical data available in Fig. 2 and 
obtained the values in Table 1 (simulation results are shown in Fig. 3).

Appendix 2: Sensitivity with Respect to Parameters

We plot here a longer time evolution corresponding to Figs. 4 and 5. This allows to 
see the difference between initial dynamics and the long time equilibrium, cf. con-
siderations in Sect. 3.3.

Appendix 3: Mathematical Properties of the Model

We describe in an incremental way the mathematical properties of the main model 
(1)–(5). We take advantage of this description to illustrate the hypotheses (6) and 
(7). The results in “Model Without a Virus, Nor Immune Response” section and 
“Model: Virus and Immune Response but No Enhancement” section in “Appen-
dix 3” are known, see e.g., Perelson et al. (1993), Nowak and May (2000), Smith 
et al. (2003) and Wodarz (2007) while those in the main text (Propositions 1, 2 and 
their proofs in this appendix) are, to the best of our knowledge, original.

Model Without a Virus, Nor Immune Response

In absence of any infection the equations for the target cells are (see Wodarz 
2007; Nowak and May 2000):

Since the Jacobian matrix at equilibrium (a 1 × 1 matrix) is the constant −� therefore 
the equilibrium is stable, in fact any initial data T(0) will converge to the equilibrium

(16)dT∕dt = Λ − �T .

(17)T∗ = Λ∕�.
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Model with Virus but No Immune Response

We employ the basic model of virus dynamics, see Nowak and May (2000, Eq. 
(3.1), p. 18) and also Wodarz (2007, Eqs. (2.3)–(2.4), p. 26) described by the 
equations:

The initial conditions are:

which express the fact that the initial state for T is the stable equilibrium seen in 
“Model Without a Virus, Nor Immune Response” section in “Appendix 3”, there are 
initially no infected cells and the initial viral load is strictly positive.

(18)dT∕dt = Λ − �T − �0VT ,

(19)dI∕dt = �0VT − �I,

(20)dV∕dt = �I − cV .

(21)T(0) = T∗ = Λ∕𝜇, I(0) = 0, V(0) > 0,

Fig. 6  Simulation in Fig. 4 for a longer time span



1 3

COVID‑19 Adaptive Humoral Immunity Models: Weakly Neutralizing… Page 15 of 24    23 

It is natural to assume that the decay rate of infected cells is at least as large as 
the decay rate of healthy cells, i.e., assumption (6).

In this model, an infection is only possible if the basic reproduction ratio of the 
virus in the absence of immune response, defined in (8) is strictly super-unitary, 
that is

Otherwise, that is if R0 ≤ 1 , the initial viral load can only decrease. The model has 
two equilibria:

- trivial equilibrium: T = T∗ = Λ∕� , V = I = 0 . The Jacobian matrix at equilib-

rium is 
⎛⎜⎜⎝

−� 0 − �0T
∗

0 − � �0T
∗

0 � − c

⎞⎟⎟⎠
 . The eigenvalues of this matrix, under condition (22), 

are all real but not all negative: one of them is �1 = −� but the product of the 
other two is �c − ��0T

∗ ≤ 0 thus at least one is positive. Therefore, under assump-
tion (22), this critical point is not a stable equilibrium.

- the "immunosuppression" equilibrium (11)

(22)R0 > 1.

Fig. 7  Simulation in 5 for a longer time span
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The Jacobian matrix is J =

⎛
⎜⎜⎝

−� − �0V
is 0 − �0T

is

�0V
is − � �0T

is

0 � − c

⎞
⎟⎟⎠
 ; the characteristic poly-

nomial P(X) = det(X ⋅ I − J) can be computed directly and is 
P(X) = (X + �)(X + c)(X + � + �0V

is) − �c(X + �) . Denote �i , i = 1, 2, 3 the roots 
of P(X). Note that 
P(−𝛿 − c − 𝜇 − 𝛽

0
Vis) = −(c + 𝜇 + 𝛽

0
Vis)(𝛿 + 𝜇 + 𝛽

0
Vis)(𝛿 + c) + 𝛿c(𝛿 + c + 𝛽

0
Vis) < 0 

(only negative factors remain after immediate simplifications) and 
P(0) = 𝛿c𝛽0V

is > 0 . Thus P(X) has a negative real root, denote it �1 , such that 
−𝛿 − c − 𝜇 − 𝛽0V

is < 𝜆1 < 0 . The product of all roots is −P(0) = −𝛿c𝛽0V
is < 0 , 

thus 𝜆2 ⋅ 𝜆3 > 0 ; the sum of all roots is −𝛿 − c − 𝜇 − 𝛽0V
is < 𝜆1 , which means that 

𝜆2 + 𝜆3 < 0 . It follows that both �2 and �3 have negative real part. Therefore the 
equilibrium is stable.

Note that this conclusion can also be reached using the Routh–Hurwitz crite-
rion (see an example of use below).

It is important to note that the viral load Vis is the viral load that the infection 
will cause in a completely immunodeficient individual. We expect Vis to be signif-
icantly high, see in “Model: Virus and Immune Response but No Enhancement” 
section in “Appendix 3” for details.

Model: Virus and Immune Response but No Enhancement

In this section we consider the model (1)–(4) with no ADE i.e., �(A) = �0 that is 
�1 = 0 . This model is similar to other in the literature (see for instance Wodarz 
2007, eq. (2.9), p. 29) who consider also the cytotoxic effect of the immune 
response on the infected cells; however they do not consider virus destruction 
by antibodies. In particular there virus load is constant. Another similar model 
is Wodarz (2007), Eqs. (8.1)–(8.3). With respect to the previous section here the 
immune response is present. It is triggered by a threshold set at Vt (see definition 
in (9)). It is natural to suppose that the immune response threshold is a very small 
value and in any case a value smaller than the immunosupression viral load Vis in 
(11). That is we can make the hypothesis that Vis > Vt i.e. assumption (7) holds.

The Jacobian matrix is:

With these provisions, one can find analytically the critical points (equilibria 
candidates): 

1. T = T∗ = Λ∕� , V = I = A = 0 , which is the high dimensional analog of equilib-
rium (17). However, unlike in “Model Without a Virus, Nor Immune Response” 

(23)J =

⎛
⎜⎜⎜⎝

−(� + �0V
is) 0 − �0T 0

�0V − � �0T 0

0 � − (c + bA) − bV

0 0 aA aV − �

⎞
⎟⎟⎟⎠
.
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section in Appendix 3, this equilibrium is not stable any more (the determinant 
of the Jacobian matrix is negative when hypothesis (22) is satisfied.

2. the immunosuppression equilibrium (11) with A = 0 ; again this equilibrium is not 
stable any more because the condition (7) implies that the eigenvalue aVis − � is 
positive.

3. the only critical point left is (10). We prove that it is stable in the following. Note 
that the equilibrium value of the antibody level is positive due to condition (7).

Proof of the Proposition 1 The equilibrium is stable when the real parts of the 
eigenvalues of the Jacobian matrix are negative. This is the same as saying that 
the roots of the polynomials P0(X) = det(X ⋅ I − J) have negative real parts 
(here I is the identity matrix). Such a polynomial is called stable and, if we write 
P0(X) = �4X

4 + �3X
3 + �2X

2 + �1X
1 + �0 then, following the Routh–Hurwitz crite-

rion Routh (1877), (Gradshteyn and Ryzhik 2000, p. 1076), the stability holds true 
when

and

Unfortunately, checking in general these conditions is very difficult because the 
expressions involved are highly non-linear in the original parameters of the model 
(a,b, c, � , etc.). We therefore need to exploit to the full extent the specific setting of 
our model. To this end we will make the following change of variables:

After replacing all new variables and direct computations, we obtain:
�0 = c���w , �1 =

c�(a2��w+a2�2w+a�0��w+a�0��+a�0��w+�
2
0
��)

a(a�+�0�)
,

�2 =
a2c�2w+a2c�2+a2c��w+a2��2+a�0c��w+2a�0c��+2a�0���+�

2
0
c�2+�2

0
��2

a(a�+�0�)
,

�3 =
a2��+a2�2+a�0��+2a�0��+ac(a�(w+1)+�0�)+�20�

2

a(a�+�0�)
 , �4 = 1.

Since all parameters involved are positive we obtain that the condition (24) is sat-
isfied. To check the remaining condition (25) we obtain

where the multi-variable polynomial Q0 is seen, after long but straightforward com-
putations (see also the symbolic computation code Danchin et al. (2020)) to be equal 
to :

(24)𝛾k > 0, k = 0, 1, 2, 3, 4

(25)𝛾1𝛾2𝛾3 > 𝛾4𝛾
2
1
+ 𝛾2

3
𝛾0.

(26)𝜁 = 𝛿 − 𝜇 > 0, w = R0 − 1 −
𝜎𝛽0

𝜇a
> 0.

(27)�1�2�3 − �4�
2
1
+ �2

3
�0 =

ac

a3
(
a� + �0�

)3Q0(w, a, c, �0,�, �, �),
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Q
0
(w, a, c, �

0
,�, �, � ) = w3a6c2�5 + 2w3a6c2�4� + w3a6c2�3�� + w3a5c2�

0
�5

+ 3w3a5c2�
0
�4� + w3a5c2�

0
�4� + w3a5c2�

0
�3�2

+ w3a5c2�
0
�3�� + w3a4c2�2

0
�4� + w3a4c2�2

0
�3�2 + w3a4c2�2

0
�3��

+ 2w2a6c2�5 + 2w2a6c2�4� + w2a6c2�3�� + 2w2a6c�6

+ w2a6c�5� + 3w2a5c2�
0
�5 + 8w2a5c2�

0
�4� + 3w2a5c2�

0
�4�

+ 3w2a5c2�
0
�3�2 + 2w2a5c2�

0
�3�� + w2a5c2�

0
�2�2� + 3w2a5c�

0
�6

+ 5w2a5c�
0
�5� + 5w2a5c�

0
�5� + 2w2a5c�

0
�4�2 − w2a5c�

0
�3��2

+ 6w2a4c2�2
0
�4� + 8w2a4c2�2

0
�3�2 + 6w2a4c2�2

0
�3�� + w2a4c2�2

0
�2�3

+ 2w2a4c2�2
0
�2�2� + 6w2a4c�2

0
�5� + 6w2a4c�2

0
�4�2 + 9w2a4c�2

0
�4��

− w2a4c�2
0
�3�2� + 3w2a4c�2

0
�3��2 − w2a4c�2

0
�2�2�2 + 3w2a3c2�3

0
�3�2

+ 2w2a3c2�3
0
�2�3 + 3w2a3c2�3

0
�2�2� + 4w2a3c�3

0
�4�2 + 4w2a3c�3

0
�3�3

+ 5w2a3c�3
0
�3�2� + w2a3c�3

0
�2�2�2 + w2a2c�4

0
�3�3 + w2a2c�4

0
�2�4

+ w2a2c�4
0
�2�3� + wa6c2�5 + 2wa6c�6 + wa6c�5� + 3wa5c2�

0
�5

+ 5wa5c2�
0
�4� + 3wa5c2�

0
�4� + wa5c2�

0
�3�� + 6wa5c�

0
�6

+ 7wa5c�
0
�5� + 10wa5c�

0
�5� + wa5c�

0
�4�� + 4wa5c�

0
�4�2

− wa5c�
0
�3��2 + 2wa5�

0
�7 + 5wa5�

0
�6� + 4wa5�

0
�5�2

+ wa5�
0
�4�3 + 9wa4c2�2

0
�4� + 8wa4c2�2

0
�3�2 + 9wa4c2�2

0
�3��

+ 2wa4c2�2
0
�2�2� + 18wa4c�2

0
�5� + 11wa4c�2

0
�4�2 + 28wa4c�2

0
�4��

− wa4c�2
0
�3�2� + 10wa4c�2

0
�3��2 − 2wa4c�2

0
�2�2�2 + 7wa4�2

0
�6�

+ 17wa4�2
0
�5�� + 13wa4�2

0
�4��2 + 3wa4�2

0
�3��3 + 9wa3c2�3

0
�3�2

+ 5wa3c2�3
0
�2�3 + 9wa3c2�3

0
�2�2� + wa3c2�3

0
��3� + 20wa3c�3

0
�4�2

+ 10wa3c�3
0
�3�3 + 28wa3c�3

0
�3�2� − wa3c�3

0
�2�3� + 8wa3c�3

0
�2�2�2

− wa3c�3
0
��3�2 + 9wa3�3

0
�5�2 + 21wa3�3

0
�4�2� + 15wa3�3

0
�3�2�2

+ 3wa3�3
0
�2�2�3 + 3wa2c2�4

0
�2�3 + wa2c2�4

0
��4 + 3wa2c2�4

0
��3�

+ 10wa2c�4
0
�3�3 + 5wa2c�4

0
�2�4 + 12wa2c�4

0
�2�3� + 2wa2c�4

0
��3�2

+ 5wa2�4
0
�4�3 + 11wa2�4

0
�3�3� + 7wa2�4

0
�2�3�2 + wa2�4

0
��3�3

+ 2wac�5
0
�2�4 + wac�5

0
��5 + 2wac�5

0
��4� + wa�5

0
�3�4

+ 2wa�5
0
�2�4� + wa�5

0
��4�2 + a5c2�

0
�5 + a5c2�

0
�4� + 3a5c�

0
�6

+ 5a5c�
0
�5� + 2a5c�

0
�4�2 + 2a5�

0
�7 + 5a5�

0
�6� + 4a5�

0
�5�2

+ a5�
0
�4�3 + 4a4c2�2

0
�4� + 4a4c2�2

0
�3�� + 12a4c�2

0
�5� + 19a4c�2

0
�4��

+ 7a4c�2
0
�3��2 + 9a4�2

0
�6� + 22a4�2

0
�5�� + 17a4�2

0
�4��2 + 4a4�2

0
�3��3

+ 6a3c2�3
0
�3�2 + 6a3c2�3

0
�2�2� + 19a3c�3

0
�4�2 + 28a3c�3

0
�3�2� + 9a3c�3

0
�2�2�2 + 16a3�3

0
�5�2

+ 38a3�3
0
�4�2� + 28a3�3

0
�3�2�2 + 6a3�3

0
�2�2�3 + 4a2c2�4

0
�2�3

+ 4a2c2�4
0
��3� + 15a2c�4

0
�3�3 + 20a2c�4

0
�2�3� + 5a2c�4

0
��3�2 + 14a2�4

0
�4�3 + 32a2�4

0
�3�3�

+ 22a2�4
0
�2�3�2 + 4a2�4

0
��3�3 + ac2�5

0
��4 + ac2�5

0
�4� + 6ac�5

0
�2�4 + 7ac�5

0
��4� + ac�5

0
�4�2

+ 6a�5
0
�3�4 + 13a�5

0
�2�4� + 8a�5

0
��4�2 + a�5

0
�4�3 + c�6

0
��5 + c�6

0
�5� + �6

0
�2�5

+ 2�6
0
��5� + �6

0
�5�2.
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Most of the monomials in Q0 have positive coefficients, except the follow-
ing ones: −w2a5c�0�

3��2 , −w2a4c�2
0
�3�2� , −w2a4c�2

0
�2�2�2 , −wa5c�0�3��2 , 

−wa4c�2
0
�3�2� , −2wa4c�2

0
�2�2�2 , −wa3c�3

0
�2�3� , −wa3c�3

0
��3�2 . However, in all 

cases we can come up with two terms that render the total sum positive. For instance 
the term −w2a5c�0�

3��2 (term 27 of the polynomial) is negative but, when we com-
bine it with the terms w3a6c2�3��∕2 (half of thethird term) and wa4�2

0
�3��∕2 (half 

of the term 79), both appearing with positive coeffcients, we obtain a positive num-
ber w3a6c2�3��∕2 − w2a5c�0�

3��2 + wa4�2
0
�3��3∕2 =

wa�3��

2
(wac − �0�)

2 ≥ 0.

The interested reader can check that in the same way that:

– the 36th monomial compensate with monomials 7 and 92;
– the 38th monomial compensate with monomials 3 and 104;
– the 61th monomial compensate with monomials 14 and 128;
– the 73th monomial compensate with monomials 13 and 145;
– the 75th monomial compensate with monomials 14 and 146;
– the 87th monomial compensate with monomials 20 and 154;
– the 89th monomial compensate with monomials 22 and 155.

This allows to state that Q0 > 0 which concludes the proof. which concludes the 
proof.   ◻

Full Model: Virus, Immune System and ADE

Proof of the Proposition 2 We consider the model (1)–(4) with �(A) = �0 + �1A 
( 𝛽1 > 0 ). The analysis of this dynamics is more involved. The first two equilibria, 
having A = 0 are the complete analogues of the equilibria seen in previous sections 
and have no dynamical interest. Since A = 0 the parameter �1 that multiplies A has 
no impact and the proof of the instability of the trivial equilibrium and immunosu-
pression equilibrium follow exactly the same arguments as before.

To find the third equilibrium, note that after immediate computations we find that 
the antibody level is solution of the second order equation (12). Such an equation 
has two solutions but exactly one is positive because the product of roots is negative; 
thus only a single point is an admissible equilibrium, namely the positive solution 
of (12) (with respect to the unknown A); setting to zero all derivatives we obtain the 
other values as in (13).

To prove the properties of this equilibrium we start 
with the point 3c of the proposition; consider the values 
a = � = c = b = � = 1,� = 1.e−3, � = 2,Λ = 4, �0 = 0.0011 and �1 = 0.01188 ; 
all hypotheses are satisfied and the numerical values of the equilibrium are 
T = 333.33, I = 1.83,V = 1,A = 0.83 while the eigenvalues are − 3.45, 0.50, 0.01 
and  − 0.90. Since some eigenvalues are real and positive the equilibrium is not sta-
ble for this set of parameters. This completes the proof for this point. In practice the 
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evolution oscillates indefinitely between a state with high T value and one with very 
low T value.

Note that the point 3a of the conclusion is just a consequence of the continuity 
and the proposition 1, because both the equilibrium and the coefficients of the poly-
nomial P(X) = det(X ⋅ I − J) evaluated at the equilibrium depend smoothly on �1 . 
Since we proved that (24) and (25) are true for �1 = 0 by continuity the terms in the 
two conditions will remain strictly positive for �1 small enough and by the Routh–
Hurwitz criterion the equilibrium will be stable.

The only point remaining to be proved is 3b. Note that when �1 → ∞ the posi-
tive root Af  of the Eq. (12) converges to some quantity A∞ , and �(Af ) → ∞ ; 
moreover, we obtain from the definition of Tf  that lim�1→∞ Tf = 0 and 
lim�1→∞(�(A

f )Tf ) = lim�1→∞(�1T
f ) =

�(c+bA∞)

�A∞
 . Consider the Jacobian matrix:

 Let us compute P(X) = det(X ⋅ I − J) = det(J − X ⋅ I):

Thus the polynomial P(X) = det(X ⋅ I − J) can be written, to first order in �1 , as 
P(X) = R(X) + �(A)V(X + �)(X2 + X(c + bA) + aAbV) , where R(X) is a fourth 
order polynomial with leading term X4 and coefficients independent of �1 . Note 
that (X + �)(X2 + X(c + bA) + aAbV) is a stable polynomial. To finish the proof we 
invoke Lemma 1 below for � = �(A)V .

  ◻

Lemma 1 Let Z3 = �3X
3 + �2X

2 + �1X + �0 be a stable polynomial of order 3 with 
𝜙3 > 0 and Z4 = �4X

4 + �3X
3 + �2X

2 + �1X + �0 a polynomial of order four with 
𝜑4 > 0 . Then, for � large enough the polynomial Z4(X) + �Z3(X) is stable.

Proof Since 𝜙3 > 0 using the reciprocal of the Routh–Hurwitz criterion all 
coefficients �k are strictly positive and 𝜙1𝜙2 > 𝜙0𝜙3 . For � large enough this 
allows to check the Routh–Hurwitz criterion for the fourth order polynomial 

(28)J =

⎛
⎜⎜⎜⎝

−�(A)V − � 0 −�(A)T −�1TV

�(A)V � �(A)T �1TV

0 � −(c + bA) −bV

0 0 aA aV − �

.

⎞
⎟⎟⎟⎠

P(X) =

|

|

|

|

|

|

|

|

|

|

−�(A)V − � − X 0 − �(A)T − �1TV
�(A)V − � − X �(A)T �1TV

0 � − X − (c + bA) − bV
0 0 aA − X

|

|

|

|

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

|

|

−� − X − � − X 0 0
�(A)V − � − X �(A)T �1TV

0 � − X − (c + bA) − bV
0 0 aA − X

|

|

|

|

|

|

|

|

|

|

= −(� + X)
|

|

|

|

|

|

|

−� − X �(A)T �1TV
� − X − (c + bA) − bV
0 aA − X

|

|

|

|

|

|

|

− �(A)V
|

|

|

|

|

|

|

−� − X 0 0
� − X − (c + bA) − bV
0 aA − X

|

|

|

|

|

|

|

.
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Z4(X) + �Z3(X) : the coefficients will be positive and the last remaining condition 
is (𝜑1 + 𝜓𝜙1)(𝜑2 + 𝜓𝜙2)(𝜑3 + 𝜓𝜙3) > (𝜑0 + 𝜓𝜙0)(𝜑3 + 𝜓𝜙3)

2 + (𝜑1 + 𝜓𝜙1)𝜑
2
4
 , 

which is satisfied for � large enough (leading term (�1�2 − �0�3)�3 is positive).  
 ◻

Appendix 4: Extended Model Including a Latent Phase

We present here a version of the main model (1)–(5) extended to take into account 
a latent phase of the cells. The interest of such a model is to give a finer description 
of all states of the attacked cells; this comes however at the price of requiring sev-
eral more parameters (including the transition rate 𝜂 > 0 from the latent to infected, 
virus-producing, cells). In practice the choice of the model depends on the outcomes 
of interest and available data to fit. In our case the data to fit was relatively scarce 
thus we kept the restricted model (1)–(5) for the numerical simulations. Denoting L 
the number of latent infected cells (i.e., cells already infected but not yet producing 
viruses) we can write this model as:

The model is illustrated in Fig. 8. A rigorous theoretical analysis of this model could 
be undertaken along the lines presented in the previous sections: because the dI/dt 
equation is linear in I and L the equilibria will be, up to some constants, very simi-
lar; however the stability analysis, still using the Routh–Hurwitz criterion, is more 
involved and a full analysis is beyond the scope of this paper.

(29)dT∕dt = Λ − �T − �(A)VT

(30)dL∕dt = �(A)VT − �L − �L

(31)dI∕dt = �L − �I

(32)dV∕dt = �I − cV − bAV

(33)dA∕dt = aVA − �A

(34)�(A) = �0 + �1A.
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