
CONSISTENCY PROOF OF A FRAGMENT OF PV WITH

SUBSTITUTION IN BOUNDED ARITHMETIC

YORIYUKI YAMAGATA

Abstract. This paper presents proof that Buss’s S2
2 can prove the consistency

of a fragment of Cook and Urquhart’s PV from which induction has been

removed but substitution has been retained. This result improves Beckmann’s
result, which proves the consistency of such a system without substitution in

bounded arithmetic S1
2 .

Our proof relies on the notion of “computation” of the terms of PV. In our

work, we first prove that, in the system under consideration, if an equation

is proved and either its left- or right-hand side is computed, then there is
a corresponding computation for its right- or left-hand side, respectively. By

carefully computing the bound of the size of the computation, the proof of this

theorem inside a bounded arithmetic is obtained, from which the consistency
of the system is readily proven.

This result apparently implies the separation of bounded arithmetic because

Buss and Ignjatović stated that it is not possible to prove the consistency of a
fragment of PV without induction but with substitution in Buss’s S1

2 . How-

ever, their proof actually shows that it is not possible to prove the consistency

of the system, which is obtained by the addition of propositional logic and
other axioms to a system such as ours. On the other hand, the system that we

have considered is strictly equational, which is a property on which our proof
relies.

1. Introduction

Ever since Buss showed the relation between his hierarchy of bounded arithmetic,
Si2, i = 1, 2, . . ., and the polynomial time hierarchy of computational complexity [3],
the question of whether his hierarchy collapses at some i = n has become a central
question in bounded arithmetic. This is because the collapse of Buss’s hierarchy
implies the collapse of polynomial time hierarchy.

A classical way to prove the separation of theories is to use the second incomplete-
ness theorem of Gödel. For example, if it is proved that S2 proves the consistency
of S1

2 , S1
2 6= S2 is obtained, because S1

2 cannot prove its own consistency.
Wilkie and Paris showed that S2 cannot prove the consistency of Robinson arith-

metic Q [11], which is a much weaker system. Although this result stems more from
the free use of unbounded quantifiers than from the power of arithmetic, Pudlák
showed that S2 cannot prove the consistency of bounded proofs (proofs in which
the formulas only have bounded quantifiers) of S1

2 [9]. The result was refined by
Takeuti [10], as well as by Buss and Ignjatović [4], who showed that, even if induc-
tion is removed from S1

2 , S2 is still not able to prove the consistency of its bounded
proofs.

2000 Mathematics Subject Classification. 03F30, 03D15.
Key words and phrases. bounded arithmetic, consistency proof, computational complexity.

1

2 YORIYUKI YAMAGATA

Thus, it will be interesting to delineate theories that can be proven to be consis-
tent in S2 and S1

2 in order to find a theory T that can be proven to be consistent in
S2 but not in S1

2 . In particular, we focus on Cook and Urquhart’s system PV [6],
which is essentially an equational version of S1

2 . Buss and Ignjatović stated that PV
cannot prove the consistency of PV−, a system based on PV from which induction
has been removed but substitution is retained. On the other hand, Beckmann [1]
later proved that S1

2 can prove the consistency of a theory obtained from PV− by
removing the substitution rule.

This paper presents proof that S2
2 is capable of proving the consistency of purely

equational PV−, in which proofs are formulated as trees. This result apparently
implies that S1

2 (S2
2 is based on the result of Buss and Ignjatović. However, their

proof actually shows that PV cannot prove the consistency of the extension of PV−

that contains propositional logic and BASICe axioms. On the other hand, our
PV− is strictly equational, which is a property on which our proof relies. Although
Buss and Ignjatović stated that their proof can be extended to purely equational
PV−, there is a gap in their reasoning. We discuss this in Section 8.4 in detail.

The consistency of PV− can be proven by using the following strategy. Beck-
mann used a rewriting system to prove the consistency of PV− by excluding the
substitution rule. According to the terminology of programming language theory,
the use of a rewriting system to define the evaluation of terms is known as small-step
semantics (referred to as structural operational semantics in [8]).

There is an alternative approach toward obtaining the abovementioned defini-
tion, namely, big-step semantics (referred to as natural semantics in [7]). In big-step
semantics, the relation 〈t, ρ〉 ↓ v, where t is a term, ρ is an assignment to free vari-
ables in t, and v is the value of t under assignment ρ, is defined. We treat 〈t, ρ〉 ↓ v
as a statement in a derivation and provide rules for deriving 〈t, ρ〉 ↓ v. For technical
reasons, it is assumed that such derivations are directed acyclic graphs (DAGs) in
this paper.

However, it is still not possible to prove the induction step for the substitution
rule, because bounded arithmetic cannot prove the existence of a value for each
term of PV. We overcome this difficulty by allowing an approximate value of a
computation, in a way similar to that described in Beckmann’s paper [1].

Then, we attempt to prove that 〈t, ρ〉 ↓ v implies that 〈u, ρ〉 ↓ v for any given
assignment ρ by induction on the construction of the proof χ of t = u. We call
this fact soundness (with respect to our computational semantics). It is possible
to set bounds for all quantifiers that appear in the induction hypothesis of this
induction by setting a bound on the Gödel number of ρ and bounds on the Gödel
numbers of the derivation of 〈t, ρ〉 ↓ v and 〈u, ρ〉 ↓ v. Because induction is carried
out on bounded formulas, the proof can be carried out inside Si2 for some i. Let the
number of primitive symbols in a size(a). We can show that size(ρ) is polynomially
bounded by size(χ).

The bounds for the derivations are more difficult to obtain. Although it is
possible to bound the number of nodes in the above-mentioned derivations, bounds
for the Gödel numbers of these derivations are not trivially obtained, because there
are no (obvious) bounds for the terms that appear in the derivations. This difficulty
is overcome by employing the call-by-value style of big-step semantics, in which a

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 3

derivation has the form

(1)

〈f1(~x), ν1〉 ↓ w1, . . . 〈fk(~x, y1, . . . , yl−1), νl〉 ↓ wl, (〈ti, ρ〉 ↓ vi)i=1,...,m

〈f(~t), ρ〉 ↓ v.

where νj denotes the environment that maps xi to vi and yk to wk for i = 1, . . . ,m
and k = 1, . . . , j− 1. m is the number of the arguments of f . Because the numbers
of symbols in t1, . . . , tm and f1, . . . , fl are bounded by size(f(~t)), and the size of
the values appearing in the derivation can be proven to be polynomially bounded
by the number of nodes in the derivation and the size of conclusions, the size of the
terms that appear in this derivation can be polynomially bounded by the number
of nodes and size of the conclusions of the derivation. Thus, all the quantifiers in
the induction hypothesis are bounded by the Gödel number of χ.

The part of the induction step that is most difficult to prove is the sound-
ness of the substitution rule. The proof is divided into two parts. First, it
is proven that if σ derives 〈t1[u/x], ρ〉 ↓ v1, . . . , 〈tn[u/x], ρ〉 ↓ vn and contains
a computation of 〈t, ρ〉 ↓ v, then there exists τ that derives 〈t1, ρ[x 7→ v]〉 ↓
v1, . . . , 〈tn, ρ[x 7→ v]〉 ↓ vn (Substitution I). Next, it is proven that if σ derives
〈t1, ρ[x 7→ v]〉 ↓ v1, . . . , 〈tn, ρ[x 7→ v]〉 ↓ vn and contains a computation of 〈t, ρ〉 ↓ v,
then there exists τ that derives 〈t1[u/x], ρ〉 ↓ v1, . . . , 〈tn[u/x], ρ〉 ↓ vn (Substitution
II).

The intuition underlying the proof of Substitution I is explained as follows. The
näıve method, which uses induction on the length of σ, is ineffective. This is because
an assumption of the last inference of σ may be used as an assumption of another
inference; thus, it may not be a conclusion of σ1, which is obtained from σ by
removing the last inference. Therefore, it is not possible to apply the induction
hypothesis to σ1. To transform all the assumptions into conclusions, it is necessary
to increase the length of σ1 from σ by duplicating the inferences from which the
assumptions are derived. Therefore, induction cannot be used on the length of σ.

Instead, we use induction on size(t1[ε/x])+· · ·+size(tn[ε/x]) where ε is a constant
symbol. Then, we prove that for all nodes(σ) ≤ U−size(t1[ε/x])−· · ·−size(tn[ε/x]),
where U is a large integer that is fixed during the proof of soundness, we have τ ,
which derives 〈t1, ρ[x 7→ w]〉 ↓ v1, . . . , 〈tn, ρ[x 7→ w]〉 ↓ vn and satisfies nodes(τ) ≤
nodes(σ) + size(t1[ε/x]) + · · · + size(tn[ε/x]) where w is a value of u. Because all
the quantifiers are bounded, the proof can be carried out in S2, in particular S2

2 .
This paper is a revised version of the paper titled “Consistency proof of a feasible

arithmetic inside a bounded arithmetic,” [12] which was posted to ArXiv. It is
revised from two aspects. First, it addresses the problem in the proof that causes
Beckmann’s counter-example. Second, it strengthens the meta-theory from S1

2 to
S2
2 , which is used to prove consistency. S2

2 is necessary to prove the soundness of
transitivity and substitution rules We discuss this point in Section 8.3.

The remainder of this paper is organized as follows. Section 2 summarizes the
preliminaries. Section 3 introduces PV and PV−, which is the target of our consis-
tency proof. Section 4 introduces the notion of (approximate) computation. Section
5 shows that for each computation σ, size(σ) is polynomially bounded by the num-
ber of nodes in σ and the number of primitive symbols in the conclusion of σ.
Section 6 presents technical lemmas that are used in the consistency proof. Section
7 presents the proofs of the consistency of PV−. Finally, Section 8 concludes the
paper with a brief discussion.

4 YORIYUKI YAMAGATA

2. Preliminary

The sequence a1, a2, . . . , an is often abbreviated as ~a. If we treat the sequence
a1, a2, . . . , an as a single object, we write [a1, a2, . . . , an]. For each sequence a, (a)i
is its i-th element. We denote an empty sequence by [] in the meta-language. For
integer n, |n| denotes its length of binary representation. For a set A of integers,∑
A denotes the sum of all members of A.
Many types of objects are considered as proofs of PV, terms of PV, or the

computation of these terms, all of which require the assignment of Gödel numbers
to them. As all the objects under consideration can be coded as finite sequences of
primitive symbols, it will suffice to encode these sequences of symbols. Variables
x1, x2, . . . are encoded by variable names x and natural numbers 1, 2, . . ., which
can be represented by binary strings. Function symbols for all polynomial time
functions are encoded using trees of the primitive functions and labels that show
how the function is derived using Cobham’s inductive definition of polynomial time
functions. Thus, the symbols that are used in our systems are finite, which enables
us to use the numbers 0, . . . , N to code these symbols. Then, the sequence of
symbols is coded as N + 1-adic numbers.

For each object a consisting of symbols, size(a) denotes the number of primitive
symbols in a, that is, the number of N + 1-adic numbers in its Gödel number. If a
is a sequence or tree in an object language, nodes(a) denotes the number of nodes
in a.

We use the notation a ≡ b when a and b are syntactically equivalent.
For a given term t, the notion of subterm u is defined in the usual way. Further,

u may be identical to t. If t 6≡ u, we call u a proper subterm.

3. PV and related systems

In this section, we introduce our version of PV and PV−.
PV is formulated as a theory of binary strings rather than integers. We identify

binary strings and integers which are represented in little endian (the least signif-
icant bit appears at the right most position). The differences between our version
of PV and the original PV are discussed in Section 8.1.

PV provides the symbols for the empty sequence ε and its binary successors 0, 1
denoted by b, b1, . . ., which add 0 or 1 to the leftmost positions of strings. If a
term is solely constructed by ε, 0, 1, it is referred to as a numeral. Although binary
successors are functions, the notation we use for them employs a special convention
to omit the parentheses after the function symbol. Thus, we write 01x instead of
0(1(x)).

The language of PV contains function symbols for all polynomial time func-
tions. In particular, it contains the constant ε, binary successors 0, 1 and εn, projin.
The intuitive meaning is that εn is the n-ary constant function whose value is ε,
and projkn is the projection function. From here, a function symbol for a polyno-
mial time function f and f itself are often identified. The terms are denoted by
t, t1, . . . , u, r, s, . . .

For each function symbol f of a polynomial time function, let Base(f) be the set
of function symbols that are used in Cobham’s recursive definition of f . We assume
that Base(f) always contains ε, 0, and 1, regardless of f . For a set of function
symbols S, we define Base(S) =

⋃
f∈S Base(f). If α represents any sequence of

symbols, Base(α) is defined by the union of Base(f) for the function symbols f

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 5

that appear in α. Base(f) is computable by a polynomial time function. For each
function symbol f , ar(f) is the arity of f . We encode f ≡ ε, 0, 1, εn,projin by

dεe = d[Fun, ε]e(2)

d0e = d[Fun, 0]e(3)

d1e = d[Fun, 1]e(4)

dεne = d[Fun, ε,

n︷ ︸︸ ︷
· · ·#]e(5)

dprojine = d[Fun,proj, i,

n︷ ︸︸ ︷
· · ·#]e(6)

where # is a “filler” symbol. Then, a function defined by the composition of g
and h1, . . . , hm is encoded as [Fun, comp, g, h1, . . . , hn]. A function defined by the
recurrence of gε, g0, g1 is encoded as [Fun, rec, gε, g0, g1]. Then, for any function
symbols f , which are defined by Cobham’s inductive definition, ar(f) ≤ size(f) is
satisfied.

The only predicate in the vocabulary of PV is the equality =. Our PV does not
have inequalities ≤,≥, The formulas t1 = t2 of PV are formed by connecting
two terms t1, t2 by the equality =. We consider PV to be purely equational; hence,
the formulas do not contain propositional connectives and quantifiers.

There are three types of axioms and inferences in PV: defining axioms, equality
axioms, and induction. We consider that the proofs in PV are all tree-like, not DAG-
like. This restriction to the representation of proofs is essential to our consistency
proof.

3.1. Defining axioms. For all of Cobham’s defining equations of polynomial time
functions, there are corresponding defining axioms in PV. For the constant function
εn, the defining axiom is

(7) εn(x1, . . . , xn) = ε

for a positive integer n. For the projection function, the defining axiom is

(8) projin(x1, . . . , xn) = xi

for a positive integer n and an integer i, 1 ≤ i ≤ n. For the binary successor
functions 0 and 1, there is no defining axiom. If the function f(x1, . . . , xn) is
defined by the composition of g and h1, . . . , hm, the defining axiom is

(9) f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)).

For the function defined by recursion of binary strings, there are three defining
axioms:

f(ε, x1, · · · , xn) = gε(x1, · · · , xn)(10)

f(0x, x1, · · · , xn) = g0(x, f(x, ~x), x1, · · · , xn)(11)

f(1x, x1, · · · , xn) = g1(x, f(x, ~x), x1, · · · , xn).(12)

Using Cobham’s recursive definition of polynomial time functions, it is easy to see
that all polynomial time functions can be defined using these defining axioms. Even
though Cook and Urquhart’s PV [6] requires all recursion schema to be bounded
by a function with a polynomial growth rate, we do not impose this restriction.

6 YORIYUKI YAMAGATA

Thus, our theory can be extended beyond polynomial time functions. However,
this paper focuses on the theory based on polynomial time functions.

We present defining axioms of forms f(~x) = t, but we also introduce defining
axioms of forms t = f(~x).

3.2. Equality axioms. The identity axiom is formulated as

(13) t = t

The remaining equality axioms are formulated as inference rules rather than
axioms.

(14)
u = t
t = u

(15)
t = u u = r

t = r

(16)

t1 = u1 · · · tn = un
f(t1, . . . , tn) = f(u1, . . . , un)

(17)

t(x) = u(x)

t(r) = u(r)

for any term r.

3.3. Induction.

(18)

t1(ε) = t2(ε) t1(six) = vi(t1(x)) t2(six) = vi(t2(x)) (i = 0, 1)

t1(x) = t2(x)

The system PV contains defining axioms, equality axioms, and induction as axioms
and inference rules. In contrast, the system PV− contains only defining axioms and
equality axioms as axioms and inference rules. This paper demonstrates that the
consistency of PV− can be proven by S2

2 .

4. Approximate computation

In this section, we define the notion of approximate computations as being the
representation of the evaluations of the terms of PV. The idea that the computation
values can be approximated using the ∗ symbol comes from Beckmann [1] but we
only allow ∗ contained in numerals.

Definition 1 (Approximate values). Let D be terms that are created by 0, 1 from
constants ε, ∗. ∗ stands for the unknown value. The elements of D are called
g-numerals. For v ∈ D, nodes(v) is defined as the number of symbols ∗, ε, 0, 1. D
has an order structure. For any v, w ∈ D, let E be the relation that is recursively
defined by

(1) ε E ε
(2) v E ∗
(3) v E w =⇒ bv E bw for i = 0, 1.

If v E w, w is often written as v∗.

Lemma 1 (S1
2). E in D is the order relation.

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 7

Proof. Transitivity law : we prove that f v E w and w E z, v E z by induction on
nodes(v) + nodes(w) + nodes(z). If z ≡ ∗ then the conclusion follows. If v ≡ ∗ then
w ≡ ∗ and z ≡ ∗ must hold. Therefore, v E z. Next, if z ≡ ε, then v ≡ w ≡ ε.
Thus, v E z. If v ≡ ε then z must be either ∗ or ε. For both cases, v E z. Finally,
v ≡ b1v

′, w ≡ b2w
′ and z ≡ b3z

′. Then, b1 ≡ b2 ≡ b3, v′ E w′ and z E z′ hold. By
induction hypothesis, v′ E z′ is therefore v E z. Other cases are trivial.

Anti-symmetry law : we prove f v E w and w E v, v ≡ w by induction on
nodes(v) + nodes(w). If v ≡ ∗, then w must be ∗; therefore, v ≡ w. Similarly, if
v ≡ ε, then w must be ε; therefore, v ≡ w. By a symmetric argument, we can
assume that v and w are neither ∗ nor ε. Then, v ≡ bv′ and w ≡ bw′. v′ E w′ and
w′ E v′ must hold. Therefore, v′ ≡ w′. Thus, v ≡ w′. �

Definition 2. Let v1, . . . , vn be g-numerals and t be a term of PV− with free
variables x1, . . . , xn. An environment ρ of t is a map from x1, . . . , xn to v1, . . . , vn
respectively. Let dom(ρ) be {x1, . . . , xn}. Let

(19) B(ρ) =
m

max
i=1

nodes(ρ(xi)),

L(ρ) = n and S(ρ) = size(ρi). The empty environment is denoted by [].
Let v be a g-numeral, t be a term of PV−, and ρ be an environment of t. The

form 〈t, ρ〉 ↓ v is referred to as a (computation) judgment, t as the main term,
ρ as the environment, and v as the value (of t). Because we allow approximate
computations, a term t may have several g-numerals as values under the same
environment.

If a computational judgment 〈t, ρ〉 ↓ v has a form 〈f(x1, . . . , xn), ρ〉 ↓ w or
〈v, ρ〉 ↓ w where v is a numeral, then it is called purely numerical. An inference
of a computational judgment is also called purely numerical if its conclusion and
premises are purely numerical.

A computation judgment can be derived using the following rules. Each rule is
attached by a symbol such as ∗ called a label.

In the following rules, on the contrary to the case of terms t(t1, . . . , tn),
f(t1, . . . , tn) for any function symbol f means that t1, . . . , tn really appears in
f(t1, . . . , tn).

(20) 〈t, ρ〉 ↓ ∗
∗

for any term t.

(21) 〈x, ρ[x 7→ v]〉 ↓ v∗ Env

where v E v∗.

(22) 〈v, ρ〉 ↓ v∗
v

where v is a numeral and v∗ is an approximation of v.

(23)

〈t, ρ〉 ↓ v
〈bt, ρ〉 ↓ bv∗ b

8 YORIYUKI YAMAGATA

where b is either 0 or 1, v∗ is an approximation of v, v is a g-numeral and t is not
a numeral.

(24)

(〈ti, ρ〉 ↓ vi)i=1,...,m

〈εm(t1, . . . , tm), ρ〉 ↓ ε ε
m

where εm is the m-ary constant function of which the value is always ε. (〈ti, ρ〉 ↓
vi)i=1,...,m is the sequence 〈ti1 , ρ〉 ↓ v1, . . . , 〈tik , ρ〉 ↓ vm of judgments. We use the
similar notation from here.

(25)

(〈tj , ρ〉 ↓ vj)j=1,...,m

〈projim(t1, . . . , tm), ρ〉 ↓ v∗i
projim

for i = 1, · · · ,m. v∗i is an approximation of vi.
If f is defined by composition, we have the following rule.

(26)

〈g(~y, ξ〉 ↓ z 〈h1(~x), ν〉 ↓ w1 · · · 〈hm(~x), ν〉 ↓ wm (〈ti, ρ〉 ↓ vi)i=1,...,n

〈f(t1, . . . , tn), ρ〉 ↓ z∗
comp

where ~y = y1, . . . , ym, ~x = x1, . . . , xn, ν(xi) = vi, i = 1, . . . , n and ξ(yj) = wj , j =
1, . . . ,m.

If f is defined by recursion, we have the following rules.

(27)

〈gε(x1, . . . , xn), ξ〉 ↓ z 〈t, ρ〉 ↓ ε (〈ti, ρ〉 ↓ vi)i=1,...,n

〈f(t, t1, . . . , tn), ρ〉 ↓ z∗
rec-ε

where ξ(xi) = vi for i = 1, . . . , n.

(28)

〈gi(x0, y, ~x), ξ〉 ↓ z 〈t, ρ〉 ↓ iv0 〈f(x0, ~x), ν〉 ↓ w (〈tj , ρ〉 ↓ vj)j=1,...,n

〈f(t, t1, . . . , tn), ρ〉 ↓ z∗ rec-b

where b = 0, 1 and ~x = x1, . . . , xn. The environment ν is defined by ν(xj) = vj for
j = 1, . . . , n and ν(x0) = v0, while ξ is defined by ξ(xj) = vj , ξ(x0) = v0, ξ(y) = w.

Definition 3 (Computation Sequence). A computation sequence σ is a sequence
σ1, . . . σL, where each σi is a sequence

(29) [R, 〈ti, ρi〉 ↓ vi, n1i, . . . , nlii]
which satisfies nji < i, j = 1, . . . , li. Each inference

(30)

(σn1i
)2 · · · (σnlii

)2

(σi)2
(σi)1

must be a valid computation rule. Here, (a)i is a projection of [a1, . . . , an] to ai.
The computation judgments that are not used as assumptions of some inference
rule are referred to as conclusions of σ. If 〈t, ρ〉 ↓ v is the only conclusion of σ, it
is written as σ ` 〈t, ρ〉 ↓ v; however, if σ has multiple conclusions ~α, it is written as
σ ` ~α. If σ ` 〈t, ρ〉 ↓ v, ~α, σ is often considered to be a computation of 〈t, ρ〉 ↓ v.
Although a computation sequence σ is a sequence, σ is often considered to be a
DAG, of which the conclusions form the lowest elements.

If there is a computation sequence σ with conclusions 〈t, ρ〉 ↓ v, ~α such that
nodes(σ) ≤ b, we write `b 〈t, ρ〉 ↓ v, ~α.

For any sequence of computational judgments ~α = 〈t1, ρ1〉 ↓ v1, . . . , 〈tn, ρn〉 ↓ vn,
T (~α) = max{size(t1), . . . , size(tn)}. For a computation σ, M(σ) is defined as the

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 9

maximal size of the main terms of computational judgments in σ, and T (σ) = T (~α)
if ~α are conclusions of σ. For computational judgments α above, B(α), L(α),
and S(α) are defined by maxni=1B(ρi),maxni=1 L(ρi) and maxni=1 S(ρi) respectively.
For a computation σ with the conclusion α, B(σ) = B(α), L(σ) = L(α) and
S(σ) = S(α).

We would like to show that `|B| 〈t, ρ〉 ↓ v, ~α is definable in S1
2 . The obstacle

to do this is that, in the above definition, only the number of nodes of σ, and
not the number of primitive symbols, is bounded. Thus, it is required to bound
polynomially size(σ) by nodes(σ). This task is carried out in Section 5.

5. Estimating the size of a computation

This section proves the polynomial upper bound of the size of a computation
with respect to the number of nodes of the computation together with the size of
its conclusions. (S1

2) means that a statement is provable in the theory S1
2 , and (S2

2)
means that a statement is provable in the S2

2 .

Lemma 2 (S1
2). Let σ be a computation of 〈t1, ρ1〉 ↓ v1, . . . , 〈tm, ρm〉 ↓ vm. Then,

Base(t1, . . . , tm) contains all function symbols that appear in the main terms of σ.
If f(x1, . . . , xn) is a main term that appears in σ, size(f) ≤ T (σ) and

size(f(x1, . . . , xn)) ≤ T (σ) + 2 +

n∑
i=1

size(xi)(31)

≤ pM (T (σ))(32)

for a polynomial pM .

Proof. The first half of the lemma is proven by induction on σ. Because f is
contained in Base(t1, . . . , tm), size(f) ≤ T (σ). size(xi) is polynomially increased by
size(i), as xi is a compound symbol constructed from the symbol x and i. Because
i ≤ n ≤ ar(f) ≤ size(f) ≤ T (σ), size(i) ≤ T (σ). Thus, there is a polynomial pM
that satisfies (32). �

Lemma 3 (S1
2). Let v is a g-numeral that appears as a value in σ. Then,

nodes(v) ≤ max{B(σ), T (σ)}+ nodes(σ).

To prove this lemma, we define a wighted directed graph Gσ and prove related
lemmas.

Definition 4. In a computational judgement 〈t, ρ〉 ↓ v, we call v the righthand
and 〈t, ρ〉 the lefthand. The nodes of the weighted directed graph Gσ consist of all
righthands and lefthands of computational judgements of σ. For each node η, we
define an integer N(η) as nodes(v) if η is a value v, and as max(N(t), B(ρ)), where
N(t) is defined as the maximal nodes(v) of numerals v which are contained in t, if
η is the lefthand 〈t, ρ〉. For each inference of σ, edges of Gσ are defined as follows.

(33) 〈t, ρ〉 ↓ ∗
∗

In this case, we connect a edge from t to ∗. The weight is 0.

(34) 〈x, ρ[x 7→ v]〉 ↓ v∗ Env

10 YORIYUKI YAMAGATA

In this case, we connect a edge from 〈x, ρ[x 7→ v]〉 to the the righthand side v∗. The
weights of the edge are 0.

(35) 〈v, ρ〉 ↓ v∗
v

In this case, we connect a edge from v to v∗. The weight is 0.

(36)

〈t, ρ〉 ↓ v
〈bt, ρ〉 ↓ bv∗ b

In this case, we connect the lefthand of the lower judgement to the lefthand of the
upper judgement and the righthand of the upper judgement to the righthand of the
lower judgement. The weight is 0 for the edge which connects the lefthand and 1
for the edge which connects the righthand.

(37)

(〈ti, ρ〉 ↓ vi)i=1,...,n

〈εn(t1, . . . , tn), ρ〉 ↓ ε ε
n

In this case, we connect the lefthand of the conclusion to all lefthands of the
premises. The weights are all 0. ε is connected from its lefthand side of the
judgement. The weight is 0.

(38)

(〈tj , ρ〉 ↓ vj)j=1,...,n

〈projin(t1, . . . , tn), ρ〉 ↓ v∗i
projin

In this case, we connect the lefthand of the conclusion to all lefthands of the
premises, and vi in the premise to v∗i in the conclusion. The weights are all 0.

(39)

〈g(~y), µ〉 ↓ z 〈h1(~x), ν〉 ↓ w1 · · · 〈hm(~x), ν〉 ↓ wm (〈ti, ρ〉 ↓ vi)i=1,...,n

〈f(t1, . . . , tn), ρ〉 ↓ z
comp

In this case, we connect the lefthand of the conclusion to all 〈ti, ρ〉, i = 1, . . . ,m.
The weights are 0. Further, all vi, i = 1, . . . , n in the premises are connected to
〈hj(~x), ν〉, j = 1, . . . ,m. z in the premises is connected to z in the conclusion. The
weights are all 0.

(40)

〈gε(~x), ν〉 ↓ z {〈t, ρ〉 ↓ ε} (〈ti, ρ〉 ↓ vi)i=1,...,n

〈f(t, t1, . . . , tn), ρ〉 ↓ z
rec-ε

In this case, 〈t, ρ〉 and 〈ti, ρ〉, i = 1, . . . , n in the premises are connected from
〈f(t, t1, . . . , tn), ρ〉. vi, i = 1, . . . , n is connected to 〈gε(~x), ν〉. z in the premise
is connected to z in the conclusion. The weights are all 0.

(41)
〈gb(x0, y, ~x), ξ〉 ↓ z {〈t, ρ〉 ↓ bv0} 〈f(y, ~x), ν〉 ↓ w (〈ti, ρ〉 ↓ vi)i=1,...,n

〈f(t, t1, . . . , tn), ρ〉 ↓ z rec-b

In this case, 〈t, ρ〉 and 〈ti, ρ〉, i = 1, . . . , n in the premises are connected from
〈f(t, t1, . . . , tn), ρ〉. All vi, i = 1, . . . , n and bv0 are connected to 〈f(y, ~x), ν〉. bv0,
all vi, i = 1, . . . , n and w are connected to 〈gi(x0, y, ~x), ξ〉. Finally, z in the premise
is connected to z in the conclusion. The weights are all 0.

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 11

Lemma 4 (S1
2). Let η be a node of Gσ. Assume that from η1, . . . , ηk the edges

e1, . . . , ek run to η. If k ≥ 1, N(η) ≤ w(ei) + N(ηi) for some i = 1, . . . , k where
w(ei) is the weight of ei.

Let p = η0
e1← η1

e2← η2 · · ·
el← ηl be a path in Gσ. p is called a bounding path if

for each k = 0, . . . , l − 1, N(ηk) ≤ w(ek+1) +N(ηk+1) holds.

Lemma 5. (S1
2) If a judgement 〈t, ρ〉 ↓ v appears in σ, there is a bounding path

from 〈t, ρ〉 to v in Gσ.

Proof. Assume that σi ≡ 〈t, ρ〉 ↓ v. We prove the statement of the lemma by
induction on i. �

Lemma 6. (S1
2) If a judgement 〈t, ρ〉 ↓ v appears in σ, there is a bounding path of

〈t, ρ〉 from a lefthand of a conclusion.

Proof. Assume that σi ≡ 〈t, ρ〉 ↓ v. We prove the statement of the lemma by
induction on i. �

Lemma 7. (S1
2) To each righthand side of an assumption of an inference in σ,

there is a bounding path of Gσ from a lefthand of a conclusion.

Proof. By Lemmas 5 and 6. �

Lemma 8. (S1
2) For each node η of Gσ, there is an acyclic path η

e1← η1
e2← η2 · · ·

el←
ηl such that

(1) ηl is a lefthand of a conclusion of σ.

(2) N(η) ≤ N(ηl) +
∑l
i=1 w(ei).

Proof. By Lemma 5 and 7, there is a bounding path p from a lefthand of conclusion
to η. Assume that it contains a cycle ηi, . . . , ηj = ηi. Because p is a bounding path,
N(ηi) = N(ηj) ≤ w(ej+1) + N(ηj+1). Thus, η1, . . . , ηi, ηj+1, ηl is also a bounding
path. In this way, we can remove all cycles from p. �

Proof of Lemma 3. For each value v which appears in a judgement of σ, N(v) ≤
N(〈tk, ρk〉) +

∑l
i=1 w(ei) holds, where v

e1← η1
e2← η2 · · ·

el← ηl = 〈tk, ρk〉 is an
acyclic bounding path from a righthand of a conclusion to v. N(〈tk, ρk〉) ≤
max(T (σ), B(σ)) holds.

∑l
i=1 w(ei) is bounded by the number of b-rules in σ.

Thus, N(v) is bounded by max(T (σ), B(σ)) + nodes(σ). �

Lemma 9 (S1
2). Let σ be a computation of 〈t1, ρ1〉 ↓ v1, . . . , 〈tm, ρm〉 ↓ vm.

Then, for any environment ρ that appears in σ, L(ρ) ≤ max{L(σ), T (σ)}, B(ρ) ≤
max{B(σ), T (σ)} + nodes(σ) and S(ρ) ≤ pS(B(σ), T (σ),nodes(σ)) for some poly-
nomial pS.

Proof. L(ρ) ≤ max{L(σ), T (σ)} holds because ar(f) ≤ T (σ) for f that appears
in σ. B(ρ) ≤ max{B(σ), T (σ)} + nodes(σ) holds by Lemma 3. The polynomial
bound for S(σ) is obtained from the bounds of L(σ) and B(σ) together with the
fact that all variables in ρ appear in either environments of conclusions of σ or
x1, . . . , xar(f), f ∈ Base(~α) where ~α are the conclusions of σ. �

Lemma 10. (S1
2) There is a polynomial p such that if there is a computation σ of

〈t1, ρ1〉 ↓ v1, . . . , 〈tm, ρm〉 ↓ vm then size(σ) ≤ p(size(~t), size(~ρ),nodes(σ)) holds.

Proof. By Lemma 2, 3 and 9. �

12 YORIYUKI YAMAGATA

Lemma 11. The relation `|B| ~α on integers B and judgments ~α can be defined

using a Σb1-formula.

Proof. Immediate from Lemma 10. �

6. Basic properties of computations

In this section, the basic properties of computations are proved. After proving
technical lemmas (Lemma 12, 13), we prove the lemmas concerning the forms of
values of computations of ε, 0t, 1t and numerals (Lemma 14, 15). Lemma 15 is cru-
cial for our consistency proof because it shows that the numerals are only computed
to the equal numerals. Next we prove Lemma 16, which states the values v1 and v2
obtained by computations of the same term t are always compatible, that is, either
v1 E v2 or v2 E v1. This enables us to extract the most “accurate” value v(t, ρ, σ)
of a term t from a computation σ of t under an assignment ρ (Definition 5). Sub-
stitution lemmas (Lemma 20, 21) establish the relation between substitution into
a term which is evaluated by a computation, and assignment in the environment in
which the term is evaluated. These lemmas enable us to extend a consistency proof
to the substitution rule. Unlike other lemmas in this section, substitution lemmas
are proved in S2

2 . Finally, we prove Lemmas 22 and 23 which are used to prove
“soundness” of defining axioms in Section 7.

Lemma 12 (S1
2). If 〈t, ρ〉 ↓ v appears as a node in the computation sequence

σ, σ ` ~α (as a DAG), there is a computation sequence τ such that τ ` 〈t, ρ〉 ↓ v, ~α,
nodes(τ) ≤ nodes(σ) + 1 and M(τ) = M(σ).

Proof. If 〈t, ρ〉 ↓ v is derived according to the inference R, another instance of R is
added to σ, which uses the same assumptions as R, in which case τ is obtained. �

Lemma 13 (S1
2). If there is a computation σ such that σ ` α, ~α, then there exists

τ such that τ ` ~α and nodes(τ) ≤ nodes(σ).

Lemma 14 (S1
2). If 〈ε, ρ〉 ↓ v is contained in a computation σ, then either v ≡ ε

or v ≡ ∗. If 〈bt, ρ〉 ↓ v, where t is not a numeral, is contained in σ, then either
v ≡ iv0 for some g-numeral v0 or v ≡ ∗. If v ≡ iv0, then σ contains 〈t, ρ〉 ↓ v′0 and
v′0 E v0.

Proof. By induction on nodes(σ). The only rule that can derive 〈ε, ρ〉 ↓ v is either
v or ∗-rule. Thus, v is either ε or ∗. Similarly, if σ derives 〈bt, ρ〉 ↓ v , the only rule
that can derive this is ∗ or i-rule. If v ≡ iv0, 〈bt, ρ〉 ↓ iv0 can only be derived by i.
Thus, the assumptions contain 〈t, ρ〉 ↓ v′0 where v′0 E v0. �

Lemma 15 (S1
2). If 〈v, ρ〉 ↓ w, in which v is a numeral, is contained in a compu-

tation σ, then v E w.

Proof. The only rules that can derive 〈v, ρ〉 ↓ w are ∗ and v-rules. �

Lemma 16 (S1
2). Let t be a term and v, w are g-numerals. If both 〈t, ρ〉 ↓ v and

〈t, ρ〉 ↓ w are present in a computation, then v E w or w E v.

We write v 4 w when v E w or w E v. 4 is reflexive and symmetric, but not
transitive.

To prove the lemma, the next lemma, same as Lemma 4.4. in [1], is to be
observed.

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 13

Lemma 17 (S1
2). If g-numerals w, u, v have relations w E u,w E v, then u4 v.

Proof. By induction on nodes(w) + nodes(u) + nodes(v).
If w = ∗, u = v = ∗; therefore, u4 v. If w = ε, u, v are either ∗ or ε. Therefore,

u4 v. If w = bw′ for some b = 0, 1 and u′, there are two possibilities of u.

(1) u is ∗
(2) u is bu′

If u is ∗, u 4 v. Therefore, u 4 v. If u is bu′, w′ E u′. There are also two
possibilities of v. The only non-trivial case is the case in which v = bv′. The other
case is symmetric. By induction hypothesis, u′ 4 v′. Therefore, u4 v. �

Corollary 1 (S1
2). If u4v for g-numerals u, v and u E u′ and v E v′, then u′4v′.

Proof. We assume u E v. Then, u E v E v′. Thus, u E u′ and u E v′. Using
Lemma 17, u′ 4 v′. �

Lemma 18 (S1
2). Let f be a function symbol and w1, . . . , wm, v1, . . . , vm be g-

numerals such that wi 4 vi for any i = 1, . . . ,m. Let ρ(x1) = w1, . . . , ρ(xm) = wm
and ν(x1) = v1, . . . , ρ(xm) = vm. We assume that 〈f(x1, . . . , xm), ρ〉 ↓ w and
〈f(x1, . . . , xm), ν〉 ↓ v are present in the same computation σ. Then, w4 v.

Proof. We assume that 〈f(x1, . . . , xm), ρ〉 ↓ w is i-the judgment of σ, while
〈f(x1, . . . , xm), ν〉 ↓ v is the j-th judgment of σ. The lemma is proved by in-
duction on i + j and case analysis of the rules that derive these statements. Al-
though it appears that we use induction on Π0

1-formula (because f and g-numerals
w1, . . . , wm, v1, . . . , vm are not bounded), we actually need to consider only those
that are included in the computation σ. Thus, the quantifier is bounded. Because
∗ is compatible with any g-numerals, we assume that w and v are not ∗. This as-
sumption makes it possible to uniquely determine the label R of the rules deriving
i- and j-th judgment by f .

The possible R are among the b, εm, projim, comp, rec-ε, and rec-b-rule.
The case in which R is b, εm or projim is trivial.
The case in which R is comp is considered. The last rules have the following

forms.

〈g(~y), ρ0〉 ↓ w 〈h1(~x), ρ∗〉 ↓ z1 · · · 〈hk(~x), ρ∗〉 ↓ zk (〈xi, ρ〉 ↓ w∗i)i=1,...,m

〈f(x1, . . . , xm), ρ〉 ↓ w
comp

(42)

〈g(~y), ν0〉 ↓ v 〈h1(~x), ν∗〉 ↓ z′1 · · · 〈hk(~x), ν∗〉 ↓ z′k (〈xi, ρ〉 ↓ v∗i)i=1,...,m

〈f(x1, . . . , xm), ν〉 ↓ v
comp

(43)

where ρ∗(x1) = w∗1 for i = 1, . . . ,m, ν∗(xi) = v∗i for i = 1, . . . ,m, ρ0(y1) =
z1, . . . , ρ0(yk) = zk and ν0(y1) = z′1, . . . , νk(yk) = z′k. By induction hypothesis,
zi 4 z′i for each i = 1, . . . ,m. By induction hypothesis, w4 v.

Finally, the case in which the last rule is either rec-ε or rec-b, b = 0, 1 is consid-
ered. Because the case for rec-ε is similar to comp, we consider the case in which

14 YORIYUKI YAMAGATA

the last rule is rec-b.

〈gi(y, x0, ~x), ρ∗[y 7→ z]〉 ↓ w 〈f(x0, ~x), ρ∗〉 ↓ z (〈xi, ρ〉 ↓ wi)i=0,...,m

〈f(x0, ~x), ρ〉 ↓ w(44)

〈gi(y, x0, ~x), ν∗[y 7→ z′]〉 ↓ v 〈f(x0, ~x), ν∗〉 ↓ z′ (〈xi, ρ〉 ↓ vi)i=0,...,m

〈f(x0, ~x), ν〉 ↓ v(45)

Here, ~x = x1, . . . , xm, ρ∗(x1) = w∗1 , . . . , ρ
∗(xm) = w∗m while ρ∗(x0) = w′0 when

w∗0 = bw′0. Similarly, ν∗(x1) = v∗1 , . . . , ν
∗(xm) = v∗m, while ν∗(x0) = v∗0 when

v∗0 = bv′0. w∗1 , v
∗
1 must be in the above forms, otherwise the inference is not valid.

Because w04 v0, . . . , wm4 vm, w∗04 v∗0 , . . . , w∗m4 v∗m. Further, by definition of E,
w′04v′0. By induction hypothesis, z4z′. Again, by applying induction hypothesis,
w4 v. �

Proof of Lemma 16. We assume that 〈t, ρ〉 ↓ v is i-the judgment of σ, while 〈t, ρ〉 ↓
w is the j-th judgment of σ. The lemma is proved by induction on i + j and case
analysis of the rules that derives these statements. Because the case in which either
v or w is ∗ is trivial, we can assume that the rules that derive 〈t, ρ〉 ↓ v and 〈t, ρ〉 ↓ w
has the same label R.

If R is Env, t ≡ x for a variable x and both derivations have forms

〈x, ρ[x 7→ v0]〉 ↓ v(46)

〈x, ρ[x 7→ v0]〉 ↓ w(47)

where v0 E v, w. By Lemma 17, v4 w holds.
Thus, we can assume that t = f(t1, . . . , tn). If f ≡ 0, 1, then the proof is trivial

by induction hypothesis.
Otherwise, the derivations have the following forms.

~β (〈ti, ρ〉 ↓ vi)i=1,...,n

〈f(t1, . . . , tn), ρ〉 ↓ v(48)

~γ (〈ti, ρ〉 ↓ wi)i=1,...,n

〈f(t1, . . . , tn), ρ〉 ↓ w(49)

where

β = 〈f1(y11 , . . . , y
1
m1

), ρ1〉 ↓ z1, . . . 〈fk(yk1 , . . . , y
k
m1

), ρk〉 ↓ zk(50)

γ = 〈f1(y11 , . . . , y
1
m1

), ν1〉 ↓ z′1, . . . 〈fk(yk1 , . . . , y
k
m1

), νk〉 ↓ z′k.(51)

By induction hypothesis, vi 4 wi for all i = 1, . . . , n. Using Lemma 18 repeatedly,
we obtain z1 4 z′1. Because z1 E v and z′1 E w, v4 w. �

Note that if v1 4 v2, the infimum of v1 and v2 exists. This fact enables the
following definition.

Definition 5. Let t be a term of PV−, and σ be a computation. Assume σ contains
computational judgments 〈t, ρ〉 ↓ v1, . . . , 〈t, ρ〉 ↓ vn. By Lemma 16, v1, . . . , vn are
compatible. v(t, ρ, σ) is defined as infimum of them. If there is no computational
judgment of t with the environment ρ in σ, v(t, ρ, σ) = ∗.

Lemma 19. Let σ be a computation, t be a term, and ρ be an environment. Let
v = v(t, ρ, σ). If v is a g-numeral other than ∗, σ contains a judgment 〈t, ρ〉 ↓ v.

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 15

Lemma 20 (S2
2 , Substitution Lemma I). Let σ be a computation that contains

occurrences of judgments

(52) 〈t1(u1, . . . , un), ρ〉 ↓ v1, . . . , 〈tm(u1, . . . , un), ρ〉 ↓ vm.
as conclusions. Assume that v(ui, ρ, σ) E wi for i = 1, . . . , n and let ρ′ = ρ[x1 7→
w1, . . . , xn 7→ wn] where x1, . . . , xn are fresh variables. Then, there is a computation
τ such that nodes(τ) ≤ nodes(σ) +

∑m
j=1 size(tj(ε, . . . , ε)) and τ has conclusions

(53) 〈t1, ρ′〉 ↓ v1, . . . , 〈tm, ρ′〉 ↓ vm.
Further, τ contains all judgments in σ as judgments and all conclusions in σ as
conclusions.

Each 〈tj(u1, . . . , un), ρ〉 ↓ vj , j = 1, . . . ,m is an occurrence of a judgment but
denoted as if it is a judgment by abusing notations. Similarly, u1, . . . , un in each
〈tj(u1, . . . , un), ρ〉 ↓ vj , j = 1, . . . ,m are occurrences of terms but denoted as if they
are terms.

Proof. Let U be a fixed integer larger then nodes(σ) +
∑m
j=1 size(tj(ε, . . . , ε)). By

induction on

(54)
∑
{size(sd(ε, . . . , ε)) | 〈sd(u1, . . . , un), ρ〉 ↓ zd ∈ A}

and subinduction on nodes(κ), we prove the following induction hypothesis (Claim
1).

Claim 1. Let κ be a computation with distinguished occurrences of judgments

(55) A ≡ 〈s1(u1, . . . , un), ρ〉 ↓ z1, . . . , 〈sk(u1, . . . , un), ρ〉 ↓ zk
among conclusions and satisfies

nodes(κ) ≤ U −
k∑
d=1

size(sd(ε, . . . , ε))(56)

T (κ) ≤ T (σ)(57)

B(κ) ≤ B(σ).(58)

Further, κ contains all judgments of σ. Then, there is a computation λ that has all
conclusions of κ and 〈s1, ρ′〉 ↓ z1, . . . , 〈sk, ρ′〉 ↓ zk as conclusions. λ satisfies

nodes(λ) ≤ nodes(κ) +

k∑
d=1

size(sd(ε, . . . , ε))(59)

and contains all judgments in κ.

The claim is a Πb
2-formula because first κ is universally quantified and λ is ex-

istentially quantified next. Because κ changes through the induction steps, quan-
tification over κ is necessary. The quantification on κ is polynomially bounded,
because of the conditions of (56), (57), and (58). The quantification of λ is also
polynomially bounded, because T (λ) and B(λ) are polynomially bounded by |κ|.
Therefore, the proof can be formalized by Πb

2-PIND. From the claim, our lemma is
readily proven. Therefore, our proof can be formalized in S2

2 .
We can safely assume that the last judgment is 〈s1(u1, . . . , un), ρ〉 ↓ w1. We

use case analysis of the last rule of κ. Because κ contains all judgments of σ,
v(ui, ρ, κ) E wi for i = 1, . . . , n.

16 YORIYUKI YAMAGATA

If the last rule of κ is either ∗ or Env-rule, the proof is trivial.
If the last rule of κ is v-rule, s1(u1, . . . , un) ≡ b1 · · · bl(u1) and u1 is a numeral.

First we remove 〈s1, ρ〉 ↓ v1 from A and use the induction hypothesis. We obtain
the computation τ1. We add the rules

(60)

〈x, ρ′〉 ↓ z∗1
Env

....
〈b1 · · · bl(x), ρ′〉 ↓ b1 · · · blz∗1

to τ1. Let this computation τ .

(61) nodes(τ) ≤ nodes(σ) + 1 +

k∑
d=2

size(sd(ε, . . . , ε))

Therefore, we can prove the lemma.
The case in which the last rule of κ is either 0, 1, εm, proj, comp or rec-rule.

Then, the computation rule has a form

(62)

~β (〈rq(u1, . . . , un), ρ〉 ↓ pq)q=1,...,l

〈f(r1(u1, . . . , un), . . . , rl(u1, . . . , un)), ρ〉 ↓ w1
pair

where ~β is purely numerical, which can be empty. Let κ1 be a computation
obtained by making (〈rq(u1, . . . , un), ρ〉 ↓ pq)q=1,...,l conclusions. This increases
nodes(κ1) from nodes(κ) at most l. By explicitly counting parentheses and a

comma,
∑l
q=1 size(rq(ε, . . . , ε)) + l + 2 ≤ size(s1(ε, . . . , ε)). Because

nodes(κ1)(63)

≤ nodes(κ) + l(64)

≤ U −
k∑
d=1

size(sd(ε, . . . , ε)) + l(65)

≤ U −
l∑

q=1

size(rq(ε, . . . , ε))− l − 2−
k∑
d=2

size(sd(ε, . . . , ε)) + l(66)

≤ U −
l∑

q=1

size(rq(ε, . . . , ε))−
k∑
d=2

size(sd(ε, . . . , ε))− 2(67)

we can apply the induction hypothesis to κ1. Therefore, we obtain λ1 that contains
all conclusions of κ plus (〈rq, ρ′〉 ↓ pq)q=1,...,l, (〈sd, ρ′〉 ↓ zd)d=1,...,m as conclusions.

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 17

By adding one rule to λ1, we obtain λ.

nodes(λ)(68)

≤ nodes(λ1) + 1(69)

≤ nodes(κ1) +

l∑
q=1

size(rq(ε, . . . , ε)) +

k∑
i=2

size(sd(ε, . . . , ε)) + 1(70)

≤ nodes(κ) + l +

l∑
q=1

size(rq(ε, . . . , ε)) +

k∑
d=2

size(sd(ε, . . . , ε)) + 1(71)

≤ nodes(κ) +

k∑
d=1

size(sd(ε, . . . , ε))− 1(72)

By construction, λ contains all judgments in κ. �

Lemma 21 (S2
2 , Substitution Lemma II). Let σ be a computation with conclu-

sions 〈tj(x1, . . . , xn), ρ[x1 7→ w1, . . . , xn 7→ wn]〉 ↓ vj for j = 1, . . . ,m. We assume
that variables x1, . . . , xn are not in the domain of ρ and does not appear in the
main terms of conclusions, except t1, . . . , tm. Assume that v(ui, ρ, σ) E wi for
i = 1, . . . , n. Then, there is a computation τ that has all the conclusions of σ plus
〈tj(u1, . . . , un), ρ〉 ↓ v′j where v′j E vj for j = 1, . . . ,m as conclusions and

(73) nodes(τ) ≤ nodes(σ) +

m∑
j=1

size(tj(ε, . . . , ε)).

Further, τ contains all judgments in σ.

Proof. Similar to Lemma 20, let U be an integer larger than nodes(σ) +∑m
j=1 size(tj(ε, . . . , ε)). By induction on

(74)
∑
{size(sd(ε, . . . , ε)) | 〈sd(x1, . . . , xn), ρ〉 ↓ zd ∈ A}

and subinduction on nodes(κ), we prove the following induction hypothesis (Claim
2).

Claim 2. Let ρ′ = ρ[x1 7→ w1, . . . , xn 7→ wn]. Let κ be a computation with conclu-
sions

(75) A ≡ 〈s1(x1, . . . , xn), ρ′〉 ↓ z′1, . . . , 〈sk(x1, . . . , xn), ρ′〉 ↓ z′k

Assume that κ contains all judgments of σ. We assume that variables x1, . . . , xn do
not appear in the main terms of conclusions, except s1, . . . , sk. Further, we assume
that κ satisfies

nodes(κ) ≤ U −
k∑
d=1

sd(ε, . . . , ε)(76)

T (κ) ≤ T (σ)(77)

B(κ) ≤ B(σ).(78)

18 YORIYUKI YAMAGATA

Then, there is a computation λ of which the conclusions are 〈sd(u1, . . . , un), ρ〉 ↓ z′d
where z′d E zd for d = 1, . . . , k and

(79) nodes(λ) ≤ nodes(κ) +

k∑
d=1

size(sd(ε, . . . , ε)).

Further, λ contains all judgments in κ.

As Claim 1, the claim is Πb
2-formula, because first κ is universally quantified

and λ is existentially quantified next. Because κ changes through the induction
steps, quantification over κ is necessary. The quantification on κ is polynomially
bounded, because of the conditions of (76), (77), and (78). The quantification of
λ is also polynomially bounded, because T (λ) and B(λ) are polynomially bounded
by |κ|. Therefore, the proof can be formalized by Πb

2-PIND. Therefore, our proof
can be formalized in S2

2 . From the claim, our lemma is readily proven. Because κ
contains all judgments of σ, v(ui, ρ, κ) E wi.

We can safely assume that the last judgment is 〈s1(x1, . . . , xn), ρ′〉 ↓ z1. We use
case analysis on the last rule of κ.

If the last rule of κ is either ∗ or v-rule, the proof is trivial.
If the last rule of κ is Env-rule for xi, we replace it by 〈ui, ρ〉 ↓ v(ui, ρ, κ).
The case in which the last rule of κ is either εm, 0, 1, proj, comp, or rec-rule.

Then, the computation rule has the form

(80)

~β (〈rq, ρ′〉 ↓ pq)q=1,...,l

〈f(r1, . . . , rl), ρ
′〉 ↓ z1

where ~β is purely numerical, which can be empty. Let κ1 be the computation
obtained by making (〈rq, ρ〉 ↓ pq)q=1,...,l conclusions by increasing nodes(κ) at
most l. We add (〈rq, ρ〉 ↓ pq)q=1,...,l to A while removing the occurrence of
〈s1(x1, . . . , xn), ρ′〉 ↓ z1 from A. By explicitly counting parentheses and a comma,

(81)

l∑
d=1

size(rq(ε, . . . , ε)) + l + 2 ≤ size(s1(ε, . . . , ε)).

Because

nodes(κ1)(82)

≤ nodes(κ) + l(83)

≤ U −
k∑
d=1

size(sd(ε, . . . , ε)) + l(84)

≤ U −
l∑

q=1

size(rq(ε, . . . , ε))− l − 2−
k∑
d=2

size(sd(ε, . . . , ε)) + l(85)

≤ U −
l∑

q=1

size(rq(ε, . . . , ε))−
k∑
d=2

size(sd(ε, . . . , ε))− 2(86)

Thus, we can apply the induction hypothesis to κ1. Therefore, we obtain λ1 of which
conclusions are (〈rq(u1, . . . , un), ρ〉 ↓ p′q)q=1,...,l, (〈sd(u1, . . . , un), ρ〉 ↓ z′d)d=2,...,k,

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 19

where p′q E pq and z′d E zd. By adding one rule to λ1, we obtain λ

(87)

~β (〈rq(u1, . . . , un), ρ〉 ↓ p′q)q=1,...,l

〈s1(u1, . . . , un), ρ〉 ↓ z1.

nodes(λ) is bounded by

nodes(λ1) + 1(88)

≤ nodes(κ1) +

l∑
q=1

size(rq(ε, . . . , ε)) +

k∑
d=2

size(sd(ε, . . . , ε)) + 1(89)

≤ nodes(κ) + l +

l∑
q=1

size(rq(ε, . . . , ε)) +

m∑
d=2

size(sd(ε, . . . , ε)) + 1(90)

≤ nodes(κ) +

m∑
d=1

size(sd(ε, . . . , ε))− 1(91)

By construction, λ contains all judgments in κ. �

Lemma 22 (S1
2). Let

(92) f(~u) = t

is a substitution instance of the defining axiom of a function f . If `|B| 〈f(~u), ρ〉 ↓
v, ~α, then

(93) `|B|+size(f(~u)=t) 〈t, ρ〉 ↓ v′, ~α

such that v′ E v.

Proof. Let σ be a computation sequence that derives `|B| 〈f(~u), ρ〉 ↓ v, ~α. The
lemma is proven by conducting a case analysis of the inference rule R of 〈f(~u), ρ〉 ↓ v
and the defining axioms of f .

If R is ∗-rule, the proof is obvious. Therefore, we assume that R is not a ∗-rule.
Then, R is determined by the defining axiom of f .

For the case that f ≡ ε or f ≡ 0, 1, the defining axioms do not exist. Thus, the
lemma vacuously holds.

For the case in which f ≡ εn, R has the form

(94)

(〈ui, ρ〉 ↓ wi)i=1,...,n

〈εn(u1, . . . , un), ρ〉 ↓ ε.

Then,

(95) 〈ε, ρ〉 ↓ ε.

The case is valid.
For the case in which f ≡ projni , R has the form

(96)

(〈uj , ρ〉 ↓ wj)j=1,...,n

〈projni (u1, . . . , un), ρ〉 ↓ w∗i .

Because wi E w∗i , the lemma is proved.

20 YORIYUKI YAMAGATA

For the case in which f is defined by the composition g(h1(x), . . . , hn(x)), the
inference R of σ that derives 〈f(u1, . . . , un), ρ〉 ↓ v, has the following form.

(97)

〈g(~y), ξ〉 ↓ v 〈h1(~x), ν〉 ↓ w1 · · · 〈hm(~x), ν〉 ↓ wm (〈ui, ρ〉 ↓ zi)i=1,...,n

〈f(u1, . . . , un), ρ〉 ↓ v

Because ν(xi) = zi, i = 1, . . . , n, using Lemma 21 repeatedly, τ1 ` 〈g(~y), ξ〉 ↓
v, 〈h1(~u), ρ〉 ↓ w′1, . . . , 〈hm(~u), ρ〉 ↓ w′m where w′1 E w1, . . . , w

′
m E xm is obtained,

in which

(98) nodes(τ1) ≤ nodes(σ) +

m∑
j

size(hj(~ε)).

Again, using Lemma 21, τ ` 〈g(~h(~u)), ρ〉 ↓ v′, ~α where v′ E v, is obtained where

nodes(τ) ≤ nodes(τ1) + size(g(~ε))(99)

≤ nodes(σ) + size(g(~ε)) +

m∑
j

size(hj(~ε))(100)

≤ nodes(σ) + size(g(~h(~u))) +m(101)

≤ nodes(σ) + size(f(~u) = g(~h(~u))).(102)

The case is valid.
If f is defined by recursion, the inference that derives 〈f(u1, . . . , un), ρ〉 ↓ v has

the form.

(103)

〈gε(~x), ν〉 ↓ v 〈ε, ρ〉 ↓ ε (〈ui, ρ〉 ↓ zi)i=2,...,n

〈f(ε, u2, . . . , un), ρ〉 ↓ v

or for each b = 0, 1,
(104)
〈gb(y, ~x), ν[y 7→ w]〉 ↓ v 〈f(x0, ~x), ν〉 ↓ w 〈bu, ρ〉 ↓ bz0 (〈ui, ρ〉 ↓ zi)i=2,...,n

〈f(bu, ~u), ρ〉 ↓ v

where ν(x0) = z0, while ν(xk) = zk, k = 2, . . . , n. First, consider the case
of (103). According to Lemma 21 and Lemma 13, we have τ that satisfies
τ ` 〈g(u1, . . . , un), ρ〉 ↓ v′, ~α where v′ E v and nodes(τ) ≤ nodes(σ) + size(g(~ε)).
Thus, the case has been shown to be valid. Next, consider the case of (104). Ac-
cording to Lemma 14, 〈u, ρ〉 ↓ z′0, z′0 E z0 is contained in σ. According to Lemma
21, we have τ1 that has the conclusion 〈f(u, ~u), ρ〉 ↓ w′, where w E w′. Because τ1
contains all the judgments of σ, 〈gb(y, ~x), ν[y 7→ w]〉 ↓ v, and 〈ui, ρ〉 ↓ zi, i = 2, . . . , n
appear in τ1. Using Lemma 21 again, we obtain τ ` 〈gb(u, f(u, ~u), ~u), ρ〉 ↓ v′, where
v′ E v.

nodes(τ) ≤ nodes(τ1) + size(gb(~ε))(105)

≤ nodes(σ) + size(f(~ε)) + size(gb(~ε))(106)

≤ nodes(σ) + size(gb(u, f(u, ~u), ~u)) + 1(107)

The case is valid. �

Lemma 23. (S1
2) Let

(108) f(~u) = t

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 21

is a substitution instance of the defining axiom of a function f . If `|B| 〈t, ρ〉 ↓ v, ~α,
then

(109) `|B|+size(f(~u)=t) 〈f(~u), ρ〉 ↓ v′, ~α
such that v′ E v.

Proof. Let σ be a computation that derives `|B| 〈t, ρ〉 ↓ v, ~α. The lemma is proven
by conducting a case analysis of the defining axiom of f . Because the case in which
v ≡ ∗ is trivial, we assume that v 6≡ ∗.

In the case in which (108) has the form

(110) εn(u1, . . . , um) = ε,

By the computation rule

(111)

〈u1, ρ〉 ↓ ∗ . . . 〈um, ρ〉 ↓ ∗
〈εn(u1, . . . , um), ρ〉 ↓ ε

`size(εn(u1,...,um)=ε) 〈εn(u1, . . . , um), ρ〉 ↓ ε holds. By Lemma 14, if 〈ε, ρ〉 ↓ v, then
v is either ∗ or ε. Therefore, the case is valid.

In the case for which (108) has the form

(112) projni (u1, . . . , um) = ui,

the computation rule

(113)

〈u1, ρ〉 ↓ ∗ · · · 〈ui−1, ρ〉 ↓ ∗ 〈ui, ρ〉 ↓ v 〈ui+1, ρ〉 ↓ ∗ · · · 〈um, ρ〉 ↓ ∗
〈projni (u1, . . . , um), ρ〉 ↓ v.

applies. By assumption, `|B| 〈ti, ρ〉 ↓ v. Thus, `|B|+m 〈projni (t1, . . . , tm), ρ〉 ↓ v.
Therefore, the case is valid.

The case for which f is defined by the composition of g, h1, . . . , hm is presented
next. Let σ be a computation of 〈g(h1(~u), . . . , hm(~u))), ρ〉 ↓ v. Then, σ has the
following form.

(114)

~β 〈h1(~u), ρ〉 ↓ w1 . . . 〈hm(~u), ρ〉 ↓ wm
〈g(h1(~u), . . . , hm(~u)), ρ〉 ↓ v

where ~β is purely numerical. Let v1 = v(u1, ρ, σ), . . . , vn = v(un, ρ, σ) and ν(x1) =
v1, . . . , ν(xn) = vn. By repeatedly applying Lemma 20, we obtain a computation τ1
that has the conclusion 〈g(h1(~x), . . . , hm(~x)), ν〉 ↓ v. Because v is not ∗, τ1 contains
the inference

(115)

~γ 〈h1(~x), ν〉 ↓ w1 . . . 〈hm(~x), ν〉 ↓ wm
〈g(h1(~x), . . . , hm(~x)), ν〉 ↓ v

where nodes(τ1) ≤ nodes(σ) +
∑m
j=1 size((hj(~ε)). By applying Lemma 20, we

obtain δ1 that contains the judgment 〈g(y1, . . . , ym), ξ〉 ↓ v, where ξ(y1) =
w1, . . . , ξ(ym) = wm, and satisfies nodes(δ1) ≤ nodes(τ1) + size(g(~ε)). δ1 con-
tains 〈h1(~x), ν〉 ↓ w1, . . . , 〈hm(~x), ν〉 ↓ wm. δ1 also contains 〈ui, ρ〉 ↓ vi for
i = 1, . . . ,m unless vi is ∗. If vi is ∗, we add 〈ui, ρ〉 ↓ ∗ to δ1, increas-
ing nodes(δ1) by at most n. Then, we obtain δ1 which satisfies nodes(δ1) ≤
nodes(σ) +

∑m
j=1 size(hj(~ε)) + size(g(~ε)) + n. Using these judgements, we can as-

semble an inference of the judgement 〈f(x1, . . . , xn), ρ〉 ↓ v.

(116)

〈g(y1, . . . , ym), ξ〉 ↓ v (〈hj(~x), ν〉 ↓ wj)j=1,...,m (〈ui, ρ〉 ↓ vi)i=1,...,n

〈f(u1, . . . , un), ρ〉 ↓ v

22 YORIYUKI YAMAGATA

Let τ be the computation that is created in this way.

nodes(τ) ≤ nodes(σ) +

m∑
j=1

size(hj(~ε)) + size(g(~ε)) + n+ 1(117)

≤ nodes(σ) + size(g(h1(~ε), . . . , hm(~ε))) +m+ n+ 1(118)

≤ nodes(σ) + size(f(~u) = t)(119)

because

size(g(h1(~ε), . . . , hm(~ε))) ≤ size(t)(120)

m ≤ size([Fun, comp, g, h1, . . . , hm]) = size(f)(121)

n+ 1 ≤ size((u1, . . . , un)).(122)

The case for which f is defined by recursion using gε, g0, g1 is presented next.
For the case of gε, the proof is similar to that of the case of the composition.
Consider the case in which the defining equation is f(bu0, ~u) = gb(u0, f(u0, ~u), ~u).
Then, there exists a derivation σ with the value of gb(u0, f(u0, ~u), ~u). Let w0 =
v(u0, ρ, σ), wi = v(ui, ρ, σ), i = 2, . . . , n and v0 = v(f(u0, ~u), ρ, σ). The environment
ξ is defined by ξ(x0) = w0, ξ(x2) = w2, . . . , ξ(xn) = wn and ξ(y) = v0. By Lemma
20, a computation τ with the conclusion 〈gb(x0, y, ~x), ξ〉 ↓ v is obtained. We can
assume that τ contains 〈f(u0, ~u), ρ〉 ↓ v0 as a conclusion by increasing nodes(τ) by
one. The environment ν is defined by ν(x0) = w0, ν(x2) = w2, . . . , ν(xn) = wn.
By Lemma 20, a computation µ with the conclusion 〈f(x0, ~x), ν〉 ↓ v0 is obtained.
µ still contains 〈gi(x0, y, ~x), ξ〉 ↓ v. Using these judgments, we can assemble a
computation δ of 〈f(bu0, ~u), ρ〉 ↓ v

(123)

〈g(x0, y, ~x), ξ〉 ↓ v
〈u0, ρ〉 ↓ v0
〈bu0, ρ〉 ↓ bv0 〈f(x0, ~x), ν〉 ↓ w0 (〈u, ρ〉 ↓ wi)i=1,...,n

〈f(bu0, ~u), ρ〉 ↓ v
by adding at most n+ 2 ∗-rules to derive assumptions. By summing up,

nodes(δ) ≤ nodes(µ) + n+ 2(124)

≤ nodes(τ) + n+ 2 + size(f(~ε)) + 1(125)

≤ nodes(σ) + n+ 3 + size(f(~ε)) + size(gi(~ε))(126)

≤ nodes(σ) + size(f(bu0, ~u) = gb(u0, f(u0, ~u), ~u))(127)

because

n+ 3 ≤ size(f(bu0, ~u))(128)

size(f(~ε)) + size(gb(~ε)) ≤ size(gb(u0, f(u0, ~u), ~u)) + 1.(129)

�

7. Consistency proof

This section proves the consistency of PV− inside S2
2 . To this end, we first prove

a type of soundness PV− by the notion of computation. We prove that, whenever
an equation t = u is proved, for each computation σ of t with an environment ρ
whose value is v, there is a computation τ of u with the environment ρ whose value
is v′, v′ E v. Further, the proof is carried out in S2

2 . The soundness of our semantics
implies consistency because the value of 1 is never 0 by Lemma 15; therefore, it is

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 23

impossible to derive 0 = 1. The use of S2
2 , and not S1

2 , is essential because we need
to quantify over a computation σ and an environment ρ in the proof of soundness.
This introduces two alternate quantifiers in the induction hypothesis.

Proposition 1 (S2
2). Let π be a tree-like PV−-proof that derives t = u. Then, for

any environment ρ for the free variables of t and u and computation σ ` 〈t, ρ〉 ↓ v,
there is a computation τ ` 〈u, ρ〉 ↓ v′ such that v′ E v, nodes(τ) ≤ nodes(σ) +
size(π).

Proof. We prove the following claim using induction on a tree-like PV−-proof χ.

Claim 3. Let U be an integer. Let χ be a tree-like PV− proof that derives r = s.
Then, for any

• environment ρ for free variables of r and s such that B(ρ) ≤ b 12 (U −
size(χ))2c and L(ρ) ≤ U − size(χ),
• computational judgements ~α ≡ α1, . . . , αl such that M(α) ≤ U − size(χ),
B(α) ≤ b 12 (U − size(χ))2c and L(α) ≤ U − size(χ),
• computation σ ` 〈r, ρ〉 ↓ v, ~α such that nodes(σ) ≤ U − size(χ),

there is a computation τ ` 〈s, ρ〉 ↓ v′, ~α such that v′ E v, nodes(τ) ≤ nodes(σ) +
size(χ).

From the claim, the proposition is immediate by letting U to be sufficiently large.
The claim is proven by induction on χ. Because the induction hypothesis can be
written by a formula with bounded universal quantifiers and one bounded existential
quantifier inside, the induction hypothesis can be written by a Πb

2-formula with
two free variable χ and U . Therefore, the claim can be proven in S2

2 . Use of Πb
2-

PIND is essential because quantification over computations is necessary to interpret
the transitivity rule and quantification over environments is necessary to interpret
substitution. The proof uses case analysis of the last rule of χ. Because for size(χ) >
U the claim vacuously holds, we can assume that size(χ) ≤ U .

The case for which the conclusion of χ is a defining axiom is proven using Lemma
22 and 23.

The case for which the axiom is the reflexive axiom is trivial.
The case for which the last inference of χ is a symmetry rule is trivial.
The case for which the last inference of χ is a transitivity rule is considered next.

(130)

.... χ1

t = u

.... χ2

u = w
t = w

Let σ be a computation a conclusion of which has a 〈t, ρ〉 ↓ v. By induction
hypothesis, there is a computation τ of 〈u, ρ〉 ↓ v′ such that nodes(τ) ≤ nodes(σ) +
size(χ1) and v′ E v. Because nodes(τ) ≤ U − size(χ) + size(χ1) ≤ U − size(χ2),
by induction hypothesis on χ2, there is a computation δ of 〈w, ρ〉 ↓ v′′ such that
nodes(δ) ≤ nodes(σ) + size(χ1) + size(χ2) and v′′ E v. Thus, the claim holds.

The case in which the last inference of χ is

(131)

.... χ1

u1 = s1 · · ·

.... χn
un = sn

f(u1, . . . , un) = f(s1, . . . , sn),

24 YORIYUKI YAMAGATA

is considered. Let σ be a computation of 〈f(u1, . . . , un), ρ〉 ↓ v. Let w1 =
v(u1, ρ, σ), . . . , wn = v(un, ρ, σ). By Lemma 19, increasing nodes(σ) by n, we ob-
tain a computation σ0 such that 〈u1, ρ〉 ↓ w1, . . . , 〈un, ρ〉 ↓ wn are contained in σ
as conclusions. The σ0 satisfies induction hypothesis on χ1, because

size(f(u1, . . . , un)) ≤ size(χ)− size(χ1)(132)

≤ U − size(χ1)(133)

nodes(σ) + n ≤ U − size(χ) + size(f(u1, . . . , un))(134)

≤ U − size(χ1)(135)

and size(ui) ≤ U−size(χ1) for i = 1, . . . , n by the similar reason as (133). Therefore,
we can transform σ to σ1 that has the same conclusions to σ except one of 〈u1, ρ〉 ↓
w1, which is replaced to 〈s1, ρ〉 ↓ w′1 where w′1 E w1. This increases nodes(σ1) by
size(χ1). Assume that we construct a computation σj that has the same conclusions
to σ, except 〈ui, ρ〉 ↓ wi, i = 1, . . . , j, which is replaced to 〈si, ρ〉 ↓ w′i, where w′i E wi
and nodes(σj) ≤ nodes(σ)+n+

∑j
i=1 size(χi). Then size(f(u1, . . . , un)) ≤ size(χ)−

size(χj+1) ≤ U − size(χj+1) and nodes(σj) ≤ U − size(χ) + n +
∑j
i=1 size(χi) ≤

U − size(χj+1) hold. Further, size(ui) ≤ U − size(χj+1) for i = 1, . . . , n holds.
Therefore, we can apply the induction hypothesis on χj+1 to σj and obtain σj+1

which has the same conclusions to σ except 〈ui, ρ〉 ↓ wi, i = 1, . . . , j + 1, which is

replaced to 〈si, ρ〉 ↓ w′i where w′i E wi and nodes(σj) ≤ nodes(σ)+n+
∑j+1
i=1 size(χi).

Finally, we obtain a computation σn that has the same conclusions to σ, except
〈ui, ρ〉 ↓ wi, i = 1, . . . , n, which is replaced to 〈si, ρ〉 ↓ w′i, where w′i E wi and
nodes(σj) ≤ nodes(σ) + n +

∑n
i=1 size(χi). Let ρ′ = ρ[y1 7→ w1, . . . , yn 7→ wn].

Because σn has the conclusion 〈f(u1, . . . , un), ρ〉 ↓ v, by Lemma 20 we obtain
a computation τ1 of 〈f(y1, . . . , yn), ρ′〉 ↓ v. τ1 contains computation judgements
〈s1, ρ〉 ↓ w′1, . . . , 〈sn, ρ〉 ↓ w′n and satisfies nodes(τ1) ≤ nodes(σn)+size(f(ε, . . . , ε)).
By Lemma 21, we obtain a computation τ of 〈f(s1, . . . , sn), ρ〉 ↓ v.

nodes(τ)(136)

≤ nodes(σ) + n+

n∑
i=1

size(χi) + 2size(f(ε, . . . , ε))(137)

≤ nodes(σ) +

n∑
i=1

size(χi) + size(f(u1, . . . , un) = f(s1, . . . , sn))(138)

≤ nodes(σ) + size(χ).(139)

Therefore, the claim holds.
Finally, we consider the substitution rule.

(140)

.... χ1

r0(x) = s0(x)

r0(q) = s0(q)

Let σ be a computation of 〈r0(q), ρ〉 ↓ v that satisfies the conditions of the propo-
sition. Let w = v(q, ρ, σ) and ρ′ = ρ[x 7→ w]. L(ρ′) ≤ L(ρ) + 1 ≤ U − size(χ) + 1 ≤

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 25

U − size(χ1).

B(ρ′) ≤ max(B(ρ),nodes(w))(141)

≤ max(B(ρ),max(B(σ),M(σ)) + nodes(σ))(142)

≤ max(b1
2

(U − size(χ))2c, U − size(χ)) + U − size(χ)(143)

≤ b1
2

(U − size(χ1))2c(144)

By increasing nodes(σ) by 1, we can assume that σ contains 〈q, ρ〉 ↓ w as a con-
clusion. By Lemma 20, there is a computation σ1 that derives 〈r0(x), ρ′〉 ↓ v such
that nodes(σ1) ≤ nodes(σ) + 1 + size(r0(ε)). It is easy to see that σ1 satisfies
assumptions of induction hypothesis for χ1. Therefore, there is a computation
τ1 of 〈s0(x), ρ′〉 ↓ v′ such that v′ E v and nodes(τ1) ≤ nodes(σ1) + size(χ1).
Finally, because the conclusion 〈q, ρ〉 ↓ w is preserved by all operations above,
v(q, ρ, τ1) E w holds. By Lemma 21, there is a computation τ of 〈s0(q), ρ〉 ↓ v′ such
that nodes(τ) ≤ nodes(τ1) + size(s0(ε)) and v′ E v.

nodes(τ) ≤ nodes(τ1) + size(s0(ε))(145)

≤ nodes(σ1) + size(χ1) + size(s0(ε))(146)

≤ nodes(σ) + 1 + size(r0(ε)) + size(χ1) + size(s0(ε))(147)

≤ nodes(σ) + size(χ)(148)

Therefore, the claim holds. �

Theorem 1. S2
2 proves PV− 6` 0ε = 1ε

Proof. Assume that there is a proof π of 0ε = 1ε in PV−. Let σ be a computation
of 〈0ε, []〉 ↓ 0ε. By Proposition 1, there is a computation τ of 〈1ε, []〉 ↓ 0ε, which
contradicts Lemma 15. �

8. Discussion

8.1. Relation to original PV. Cook and Urquhart’s original PV [6] has some
differences from our PV.

Their PV uses lambda abstraction to create new function symbols from terms.
Because Cook and Urquhart’s PV uses only lambda abstraction for first-order vari-
ables, the functions that are defined by lambda abstraction can be defined by
compositions, projections, and constant functions.

Another difference is that the intended domain of Cook and Urquhart’s PV is
the set of natural numbers. Natural numbers are represented by the constant 0
and binary successors s0, s1 of which the intended meaning is 2 · x and 2 · x + 1,
respectively. On the other hand, our formalism uses the set of binary strings as
the intended domain. Our system can interpret natural numbers by using a binary
number system, using little endian (the least significant bit appears at the right
most position). Then, using our system, we can define all polynomial time functions.
However, the schema of limited recursion on notation

R[g, h, k](x, ~y) = Cond(x, g(~y), Cond(t −̇ k(x, ~y), t, k(x, ~y)))(149)

t ≡ h(x, ~y,R[g, h, k](bx
2
c, ~y))

26 YORIYUKI YAMAGATA

which appears in Cook and Urquhart’s PV would not be derived by our system.
This is because to derive (149), it appears that the case analysis on x, which does
not seem to be derived from our system, is required.

8.2. Beckmann’s counter-example. The proof in the previous draft [12] allows
a counter-example, which was pointed out by Arnold Beckmann [2]. Let g(x) be the

function defined by g(ε) = ε, g(0x) =

k︷ ︸︸ ︷
0 · · · 0 g(x), k ≥ 1. h(x) is defined recursively

by h(ε) = ε, h(0x) = ε(x, h(x)). Then, for any numeral n, we have the PV−-proof
of h(g(0n)) = ε, whose length is constant.

h(g(0n)) = h(

k︷ ︸︸ ︷
0 · · · 0 g(n))(150)

= ε2(

k−1︷ ︸︸ ︷
0 · · · 0 g(n), h(

k−1︷ ︸︸ ︷
0 · · · 0 g(n)))(151)

= ε(152)

However, the computation of h(g(0n)), which is defined in [12], becomes

(153)

. . . 〈g(0n), ρ〉 ↓ v0
〈h(g(0n)), ρ〉 ↓ v

and the length of the computation of g(0n) rapidly increases depending on n. Be-
cause ε can be computed by a computation with a constant length, this contradicts
Proposition 1 of [12].

This indicates that there is a gap in the proof of [12]. Indeed, the computation
of ε(0 · · · 0g(n), h(0 · · · 0g(n))) does not have a form such as (92) in the proof of
Lemma 14 in [12], because it contains computations neither for 0 · · · 0g(n) nor for
h(0 · · · 0g(n)).

In this paper, we reformulate the computation rules such that their forms have
greater uniformity. Therefore, to compute ε(0 · · · 0g(n), h(0 · · · 0g(n))), we need to
compute 0 · · · 0g(n) and h(0 · · · 0g(n)). Thus, Proposition 1 holds for the equality
(151). However, to ensure that Proposition 1 holds for the equality (152), we
introduce approximate computations, in which the value can be approximated by
∗. By evaluating 0 · · · 0g(n) and h(0 · · · 0g(n)) to ∗, the number of steps of the
computation of ε(0 · · · 0g(n), h(0 · · · 0g(n))) can be bounded by a constant. Then,
instead of (153), we use the computation that has a constant size.
(154)

〈x, [x, y 7→ ∗]〉 ↓ ∗ 〈h(y), [x, y 7→ ∗]〉 ↓ ∗
〈ε2(x, h(y)), [x, y 7→ ∗]〉 ↓ ε

〈0 · · · 0x, [x 7→ ∗]〉 ↓ 0∗ 〈g(n), ρ〉 ↓ ∗
〈g(0n), ρ〉 ↓ 0∗

〈h(g(0n)), ρ〉 ↓ ε

where [x, y 7→ ∗] denotes the environment that assigns ∗ to x and y. [x 7→ ∗] has a
similar meaning. Thus, Proposition 1 holds for (152).

8.3. Meta-theories. In this paper, we strengthen the meta-theory from S1
2 , which

is claimed to be sufficient in the previous draft [12], to S2
2 . This is because the proof

of Lemma 20, 21 and Proposition 1 requires Πb
2 − PIND. The reason for Lemma

20 and 21 is that the conclusions of a computation used for induction step change
and their number increases. The reasons for Proposition 1 are the transitivity

CONSISTENCY PROOF OF A FRAGMENT OF PV WITH SUBSTITUTION 27

and substitution rules. To interpret the transitivity rule, the induction hypothe-
sis must hold for all computations with certain conditions. Similarly, to interpret
substitution, the induction hypothesis must hold for all environments with certain
conditions. Therefore, the induction hypothesis has universal quantifiers in the
outmost position. Further, the induction hypothesis claims that for each computa-
tion of the term in the left-hand side of the conclusion, there is a computation of
the term in the right-hand side of the conclusion. Therefore, induction hypothesis
becomes Πb

2.

8.4. Relation to result of Buss and Ignjatović. This paper presents proof that
Buss’s S2

2 is capable of proving the consistency of purely equational PV−, which is
obtained by removing induction from PV of Cook and Urquhart but retaining the
substitution rule. Because Buss and Ignjatović stated that this is impossible in S1

2 ,
at first glance, it implies that S1

2 (S2
2 . However, this is not the case.

Although they stated that S1
2 cannot prove the consistency of purely equational

PV−, what they actually prove is that S1
2 cannot prove the consistency of PV−,

which is extended by propositional logic and BASICe axioms. According to them,
we can obtain the same unprovability for purely equational PV− by translating
propositional connectives into numerical functions. For example, t = u is translated
into Eq(t, u), where the function Eq is defined as

(155) Eq(t, u) =

{
0 if t = u

1 otherwise,

and p ∨ q into p · q, etc. Then, every proposition p is translated to a numerical
term tp. Then, they assume that whenever a proposition p is proved by PV−,
which is extended with propositional logic and BASICe, tp = 0 can be proved in

purely equational PV−. However, although such translation is possible in PV [5],
it depends on the existence of induction. For example, the reflexive law x = x is
translated into Eq(x, x) = 0. It is impossible to derive the latter from the former
without using induction. Therefore, we cannot conclude that the consistency of
PV− with propositional logic and BASICe axioms from the consistency of purely
equational PV− in S1

2 . Thus, our result does not appear to imply that S1
2 (S2

2 .
One possible way to prove that S1

2 (S2 would be to prove the consistency
of PV− with propositional logic and BASICe axioms in S2, which is the system
considered by Buss and Ignjatović. However, because our method relies on the fact
that PV− is formulated as an equational theory, our method cannot be extended
to PV− with propositional logic and BASICe axioms. Thus, as a long-term goal,
it would be interesting to develop a technique to prove the consistency of such a
system in bounded arithmetic.

Acknowledgment. The author is grateful to Arnold Beckmann for pointing out a
counter-example in the previous draft. The author is also grateful to Toshiyasu
Arai, Satoru Kuroda, Jun Inoue, Izumi Takeuti, and Kazushige Terui for insightful
discussions and comments. The comments of an anonymous referee in response to
the previous submission were also very helpful in improving the paper. We would
like to thank Editage (www.editage.jp) for English-language editing. This work was
partially supported by the Research Institute for Mathematical Sciences, a Joint
Usage/Research Center located in Kyoto University.

28 YORIYUKI YAMAGATA

References

[1] A. Beckmann, Proving consistency of equational theories in bounded arithmetic, Journal of
Symbolic Logic 67 (2002), no. 1, 279–296.

[2] , Personal Communication, 2015.

[3] S. R. Buss, Bounded Arithmetic, Bibliopolis, Naples, 1986.
[4] S. R. Buss and A. Ignjatović, Unprovability of consistency statements in fragments of bounded

arithmetic, Annals of pure and applied Logic 74 (1995), 221–244.

[5] S. Cook and A. Urquhart, Functional interpretations of feasibly constructive arithmetic,
Annals of Pure and Applied Logic 63 (1993), no. 2, 103–200.

[6] Stephen A Cook, Feasibly constructive proofs and the propositional calculus (preliminary
version), Proceedings of seventh annual ACM symposium on theory of computing, 1975,

pp. 83–97.

[7] G. Kahn, Natural semantics, Annual symposium on theoretical aspects of computer science,
1987, pp. 22–39.

[8] G. D. Plotkin, A structural approach to operational semantics, Computer Science Depart-

ment, Aarhus University Denmark, 1981.
[9] P. Pudlák, A note on bounded arithmetic, Fundamenta mathematicae 136 (1990), 85–89.

[10] G. Takeuti, Some relations among systems for bounded arithmetic, Mathematical logic, 1990,

pp. 139–154.
[11] A. Wilkie and J. Paris, On the scheme of induction for bounded arithmetic formulas, Annals

of pure and applied Logic 35 (1987), 261–302.

[12] Y. Yamagata, Consistency proof of a feasible arithmetic inside a bounded arithmetic, 2014.
arXiv:1411.7087v2.

National Institute of Advanced Science and Technology (AIST), 1-8-31 Midorigaoka,

Ikeda, Osaka 563-8577 Japan
URL: https://staff.aist.go.jp/yoriyuki.yamagata/en/

E-mail address: yoriyuki.yamagata@aist.go.jp

	1. Introduction
	2. Preliminary
	3. PV and related systems
	3.1. Defining axioms
	3.2. Equality axioms
	3.3. Induction

	4. Approximate computation
	5. Estimating the size of a computation
	6. Basic properties of computations
	7. Consistency proof
	8. Discussion
	8.1. Relation to original PV
	8.2. Beckmann's counter-example
	8.3. Meta-theories
	8.4. Relation to result of Buss and Ignjatovic

	References

