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Abstract We extend Barbanera and Berardi’s symmetric lambda calcu-
lus [2] to second order classical propositional logic and prove its strong
normalization.

1 Introduction

In late 1980’s, T. Griffin’s observation [5] on relation between the law of
excluded middle and control operators in programming languages stimu-
lates general interest in reduction rules for classical logic. In such studies,
one often encounters non-determinacy, in the sense that the same deduction
has different normal forms. The most well known example arises when we
consider cut-elimination of sequent calculi. Another example occurs in a
λµ-calculus with symmetric structural reduction rules, which Parigot sug-
gests in order to ensure that normal forms of the natural number type are
Church numerals [6].

In spite of these examples, non-deterministic reduction for classical
logic do not seem well studied except some systems for propositional or
first order logic [1], [2], [3]. One of the reasons of this situation is that, to
the author’s knowledge, strong normalization of such calculi for higher or-
der logic is not known. In this paper, we prove strong normalization of an
extension of Barbanera and Berardi’s symmetric lambda calculus to second
order classical propositional logic.

Our method of proving strong normalization is, as one may expect, Tait-
Girard’s method of reducibility candidates. Parigot has already used such a
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method in his proof of strong normalization for a second orderλµ-calculus
[7]. Girard also gives a proof of strong normalization of classical linear
logic using an adaptation of Tait-Girard’s method to Tait calculi [4]. Unfor-
tunately, their methods, which one could consider a negative translation, do
not seem to work on a non-deterministic calculus like a symmetric lambda
calculus. Barbanera and Berardi discover a suitable definition of reducibil-
ity for such a calculus. But since their notion of reducibility of a formulaA
mutually depends on the notion of reducibility of its negationA⊥, charac-
terization of reducibility candidates is not obvious. We will overcome this
difficulty by extending Barbanera and Berardi’s construction of reducibility
candidates to infinitary logical connectives and defining reducibility candi-
dates as the smallest set closed under such construction.

The organization of this paper is the following. In Section 2, we in-
troduceλ2

sym, an extension of Barbanera and Berardi’s symmetric lambda
calculus. Section 3 is devoted to prove its strong normalization.

2 Description ofλ2
sym

In this section, we presentλ2
sym, a symmetric lambda calculus for second

order classical propositional logic.

Definition 1 (Proper types) Type variablesare symbolsX1, X2, · · ·. We
useX,Y, · · · as metasymbols of them.Proper types(denotedA,B,Ai, · · ·)
are defined inductively as follows.

1. IfX is type variable,X andX⊥ are proper types.
2. IfA1 andA2 are proper types,A1 ∧A2 andA2 ∨A2 are proper types.
3. If A is a proper type andX is a type variable,∀XA and ∃XA are

proper types. These constructs bindX in A.

NegationA⊥ for each proper typeA is defined by De Morgan’s law and
double negation elimination. ThesubstitutionA[B/X] is defined as the
usual manner.

Definition 2 (Types) Types(denotedC,D,Ci, · · ·) are proper types and
the symbol⊥.

Definition 3 (Terms) Variables of a proper typeA are symbolsxA1 , x
A
2 , · · ·.

We usex, y, · · · as metasymbols.Terms of typeC (denotedt, u, ti, ui · · ·)
is defined inductively as follow.

1. If x is a variable of a proper typeA, x is a term of typeA.
2. If ti is a term of a proper typeAi for i = 1 and2, 〈t1, t2〉 is a term of

typeA1 ∧A2
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3. If t is a term of a proper typeAi for i = 1 or 2, σi(t) is a term of type
A1 ∨A2.

4. If t is a term of a proper typeA and does not contain a free variable
whose type hasX as a free type variable,ΠX.t is a term of type∀XA.
This construct bindsX in t.

5. If t is a term of a proper typeA[B/X], (B)t is a term of type∃XA.
6. If t1 is a term of a proper typeA andt2 is ofA⊥, t1 ∗ t2 is a term of type
⊥.

7. If t is a term of type⊥ andx is a variable of a proper typeA, λx.t is a
term of typeA⊥. This construct bindsx in t.

Thesubstitutiont[B1/X1, · · · , u1/x1, · · ·] are defined as a term obtained
from t by replacing each free occurrence ofXi andxi byBi andui.

Definition 4 (Reduction rules)Thebasic reduction rules ofλ2
sym are the

following.

(β) (λx.t) ∗ u⇒ t[u/x] t ∗ (λx.u)⇒ u[t/x]
(π) 〈t1, t2〉 ∗ σi(u)⇒ ti ∗ u σi(t) ∗ 〈u1, u2〉 ⇒ t ∗ ui
(Π) ΠX.t ∗ (A)u⇒ t[A/X] ∗ u (A)t ∗ΠX.u⇒ t ∗ u[A/X]
(η) λx.t ∗ x⇒ t λx.x ∗ t⇒ t
(Triv) E[t]⇒ t

where inη-rules,x is not a free variable oft and inTriv -rules, the types
of t, E[−] are⊥ andE[−] does not bind any free variables oft .

Theone-step reduction relation(denoted⇒1) is defined as the compati-
ble closure of the basic reduction rules. Thereduction relation(denoted⇒)
is defined as the reflexive and transitive closure of the one-step reduction
relation.

3 Strong normalization ofλ2
sym

Definition 5 (Reduction sequence, strong normalizability)For a termt,
a reduction sequence oft is defined as a sequence of termst1, t2, · · · where
t1 = t and ti ⇒1 ti+1 for all i = 1, 2, · · ·. If all reduction sequences oft
are finite,t is strongly normalizable.

Theorem 1All terms ofλ2
sym are strongly normalizable.

The rest of the paper is devoted to prove Theorem 1. In Subsection 3.1,
we define operators on sets of terms which correspond logical connectives.
The set of reducibility candidates is defined as the smallest set closed under
these operators in Subsection 3.2. Finally, we prove Theorem 1 in Subsec-
tion 3.3.
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3.1 Interpretations of logical connectives

VA, TA,NA are defined as the sets of variables, terms, strongly normal-
izable terms of typeA respectively.T ,N are the unions of allTA,NA. I
denotes non-empty sets of indices. If a termt is strongly normalizable,w(t)
is the maximal length of reduction sequences oft.

Definition 6 1. Forβ ⊂ TA, β⊥ is the set{t ∈ TA⊥ |∀u ∈ β, t ∗ u ∈ N}.
2. Forβ ⊂ TA, L(β) is the set{λx.t|x ∈ VA,∀u ∈ β, t[u/x] ∈ N}.
3. NegA(β) for β ⊂ TA⊥ denotes the setVA ∪ β⊥ ∪ L(β)
4. Pair(β1, β2) denotes the set{〈t1, t2〉|t1 ∈ β1, t2 ∈ β2}.
5. Let(Bi)i∈I be a family of proper types and(βi)i∈I be a family ofβi ⊂
TA[Bi/X]. We define as follows.

∏
i∈I

βi := {ΠX.t ∈ T∀XA|∀i ∈ I, t[Bi/X] ∈ βi}

Definition 7 Let βi ⊂ TAi for i = 1, 2 and Negβ1∧β2
(β) be VA1∧A2 ∪

Pair(β1, β2) ∪ L(β) for β ⊂ TA1
⊥∨A2

⊥ . β1 ∧ β2 andβ1 ∨ β2 are defined
as follows.

β1 ∧ β2 := the least fixed point of Negβ1∧β2
◦NegA1

⊥∨A2
⊥

β2 ∨ β2 := NegA1∨A2
(β1
⊥ ∧ β2

⊥)

Remark.Since Negβ1∧β2
and NegA1

⊥∨A2
⊥ are decreasing operators

on countable sets,Negβ1∧β2
◦NegA1

⊥∨A2
⊥ is the increasing operator on

countable sets. Let

Xν := Negβ1∧β2
◦NegA1

⊥∨A2
⊥(
⋃
µ<ν

Xµ)

for an ordinalν. ThenXω1 is the least fixed point of the operator, whereω1

is the first uncountable ordinal.

Definition 8 Let(Bi)i∈I be a family of proper types and(βi)i∈I be a family
of βi ⊂ TA[Bi/X]. Neg∧βi

(β) is defined asV∀XA ∪
∏
i∈I βi ∪ L(β) for

β ⊂ T∃XA⊥ . Then
∧
i∈I βi and

∨
i∈I βi are defined as follows.∧

i∈I
βi := the least fixed point of Neg∧βi

◦Neg∃XA⊥∨
i∈I

βi := Neg∃XA(
∧
i∈I βi

⊥)
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Remark.Similarly to the above remark,Xω1 is the least fixed point of
Neg∧βi

◦Neg∃XA⊥ if we define

Xν := Neg∧βi
◦Neg∃XA⊥(

⋃
µ<ν

Xµ)

for an ordinalν.

Lemma 1 The following hold.

1. Let∅ 6= βi ⊂ NAi for i = 1, 2. Supposeβ1, β2 are closed under the
reduction relation. Then ift ∈ βi⊥ for somei ∈ I, σi(t) ∈ (β1 ∧ β2)⊥.

2. Let (Bi)i∈I be a family of types and(βi)i∈I be a family of∅ 6= βi ⊂
NA[Bi/X]. Supposeβi is closed under the reduction relation for each

i ∈ I. Then ift ∈ βi⊥ for somei ∈ I, (Bi)t ∈ (
∧
i∈I βi)

⊥.

Proof We only prove 2. We prove(Bi)t ∈ Xω1
⊥ by induction onω1. (Xν

is defined as in Remark of Definition 8.) It suffices to prove that for each
u ∈ Xν , (Bi)t ∗ u ∈ N . Let us examine the different possibilities foru.
Note thatu ∈ N from the factβi ⊂ N .

First, we consider the case whereu ∈ V∀XA. The thesis holds because
t ∈ N .

The case whereu ∈
∏
i∈I βi. Then we haveu ≡ ΠX.u1 and∀i ∈ I,

u1[Bi/X] ∈ βi. We examine the different possibilities for one-step reduc-
tion of (Bi)t ∗ u.

1. The case where(Bi)t ∗ u⇒1 (Bi)t′ ∗ u′ for t⇒ t′ andu⇒ u′. Since
t′ ∈ βi⊥ andu′ ∈

∏
i∈I βi, we have the thesis by induction hypothesis

onw(t) + w(u).
2. The case where(Bi)t ∗ u ⇒1 t ∗ u1[Bi/X]. Sinceu1[Bi/X] ∈ βi,
t ∗ u1[Bi/X] ∈ N .

3. (Bi)t ∗ u ⇒1 s ands is a subterm oft or u. Sincet andu are strongly
normalizable, their subterms is also strongly normalizable.

The case whereu ∈ L(Neg∃XA⊥(
⋃
µ<ν Xµ)). Let u ≡ λx.u1. We

examine the different possibilities for one-step reduction of(Bi)t ∗ u.

1. The case where(Bi)t ∗ λx.u1 ⇒1 (Bi)t′ ∗ λx.u′1. Sincet′ ∈ βi
⊥

andλx.u′1 ∈ L(Neg∃XA⊥(
⋃
µ<ν Xµ)) hold, the thesis follows from

induction hypothesis onw(t) + w(u1).
2. The case where(Bi)t ∗ u ⇒1 u1[(Bi)t/x] by (β) or (η). By induction

hypothesis,

(Bi)t ∈
⋂
µ<ν

Xµ
⊥ ⊂ Neg∃XA⊥(

⋃
µ<ν

Xµ).

From the hypothesis ofu, we have the thesis.
3. (Bi)t ∗ u ⇒1 s ands is a subterm oft or u. Sincet andu are strongly

normalizable, their subterms is also strongly normalizable.
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3.2 Reducibility candidates

Definition 9 For a proper typeA, we defineαA ⊂ TA andαA ⊂ TA⊥ as
follows.

αA := the least fixed point of NegA ◦NegA⊥
αA := NegA⊥(αA)

Remark.We have the factαA = NegA(αA) andαA = NegA⊥(αA)
from the definition above.

Definition 10 For each proper typeA, the setRA of reducibility candidates
is defined by mutual induction as follows.R denotes the union of allRA.

1.αA ∈ RA andαA ∈ RA⊥ .
2. If βi ∈ RAi for i = 1, 2, β1 ∧ β2 ∈ RA1∧A2 andβ1 ∨ β2 ∈ RA1∨A2 .
3. Let(Bi)i∈I be a family of proper types. Ifβi ∈ RA[Bi/X] for eachi ∈ I,∧

i∈I βi ∈ R∀XA and
∨
i∈I βi ∈ R∃XA.

Proposition 1 If β ∈ RA, thenVA ⊂ β ⊂ NA.

Proof β can be writtenNeg1(Neg2(γ)) where fori = 1, 2, Negi is one
of NegB, Negβ1∧β2

, Negβ1∨β2
, Neg∧βi

, Neg∨βi
. the factVA ⊂ β and

Neg2(γ) 6= ∅ follow. From induction hypothesis on the construction of
β and the fact thatNeg2(γ) is non-empty,VA, Neg2(γ)⊥, L(Neg2(γ)),
Pair(β1, β2) in the case ofβ = β1 ∧β2 andΠβi in the case ofβ =

∧
i I βi

are subsets ofN . We haveNeg1(Neg2(γ)) ⊂ N . ut

Proposition 2 For β ∈ RA, the following hold.

1. β is closed under the reduction relation.
2. β⊥ ∈ RA⊥ andβ⊥⊥ = β.

The proof of Proposition 2 is induction on the construction ofβ. On
each induction step, first we establish the clause 1 of Proposition 2 and
next prove the clause 2 of the proposition. Our proof is divided to Lemmata
2, 3, 4.

Lemma 2αA andαA satisfy the clauses 1, 2 of Proposition 2.

Proof We have the equation

αA = NegA(αA) = VA ∪ αA⊥ ∪ L(αA).

VA, αA⊥ are closed under the reduction relation. Moreover, ift ∈ L(αA)
and t ⇒1 t′, thent ∈ αA

⊥ in the case where aη-rule is applied to the
outermostλ of t, or t ∈ L(αA). The first clause of Proposition 2 forαA
follows.
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Next, we proveαA⊥ ∈ RA⊥ . Eventually, we prove thatαA⊥ is equal to
αA. SinceαA = NegA⊥(αA), αA⊥ ⊂ αA immediately follows. We prove
the converse.

Let t ∈ αA, u ∈ αA. We prove thatt∗u ∈ N . We consider the different
possibilities fort.

The case wheret ∈ VA⊥ . Sinceu ∈ N , we havet ∗ u ∈ N .
The case wheret ∈ αA⊥. This implies the thesis sinceu ∈ αA.
The case wheret ∈ L(αA). Let t ≡ λx.t1. We consider the possibilities

for one-step reduction oft ∗ u.

1. t ∗ u ⇒1 t
′ ∗ u′. By the similar discussion of the proof of the clause 1,

t′ ∈ L(αA) or t′ ∈ αA⊥ andu′ ∈ αA. From induction hypothesis on
w(t) + w(u), the thesis follows.

2. t ∗ u⇒1 t1[u/x]. From hypothesis ont.
3. u ≡ λx.u1 andt ∗ u ⇒1 u1[t/x]. Sinceu ∈ αA⊥ or u ∈ L(αA), we

haveu1[t/x] ∈ N .
4. t ∗ u ⇒1 s ands is a subterm oft or u. Sincet andu are strongly

normalizable, their subterms is also strongly normalizable.

ForαA, the proof is similar. ut

Lemma 3 If β ⊂ TA is equal to one ofβ1 ∧ β2, β1 ∨ β2,
∧
βi,
∨
βi andβi

satisfies clauses 1, 2 of Proposition 2, thenβ is closed under the reduction
relation.

Proof First, we consider the case whereβ is equal toβ1 ∨ β2 or
∨
βi.

For someγ ∈ R, β = NegA(γ). SinceVA andγ⊥ are closed under the
reduction relation, we consider only the case wheret ∈ L(γ). Let t ≡
λx.t1. We examine the different possibilities for one-step reduction oft.

1. λx.t1 ⇒1 λx.t
′
1 andt1 ⇒1 t

′
1. Thenλx.t′1 ∈ L(γ).

2. t ≡ λx.u ∗ x andt ⇒1 u. Sincet ∈ L(γ), u ∈ γ⊥. Hence,t′ ∈ γ⊥ ⊂
NegA(γ) = β.

Next, we consider the case whereβ =
∧
βi. SinceVA andβi are closed

under the reduction relation, and from a discussion onL(NegA⊥(β)) sim-
ilar to the above, it suffices to prove that ifλx.t ∗ x ∈ L(NegA⊥(β)) and
λx.t ∗ x ⇒1 t by (η), we havet ∈ β. Note thatλx.t ∗ x ∈ L(NegA⊥(β))
impliest ∈ NegA⊥(β)⊥. Sincet has a typeA whose outermost connective
is universal, we have the following possibilities.

1. t ∈ VA. By Proposition 1,t ∈ β.
2. t ≡ ΠX.t1. We provet1[Bi/X] ∈ βi. Letu ∈ βi⊥. From Lemma 1, we

have(Bi)u ∈ (
∧
βi)
⊥ ⊂ NegA⊥(β). By hypothesis ont , t ∗ (Bi)u ∈

N . Hence,t1[Bi/X] ∗ u ∈ N . This meanst1[Bi/X] ∈ β⊥⊥i . β⊥⊥i is
equal toβi from hypothesis onβi.
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3. t ≡ λx.t1. This impliest ∈ L(NegA⊥(β)).

The case whereβ = β1 ∧ β2 is treated similarly. ut

Lemma 4 Letβk ∈ RAk for k = 1, 2, (Bi)i∈I be a family of proper types
andβi ∈ RA[Bi/X] for i ∈ I. Assume thatβk, βi satisfy the clauses 1,2 of
Proposition 2. Then we have the following equations.

(β1 ∧ β2)⊥ = β1
⊥ ∨ β2

⊥ (1)

(β1 ∨ β2)⊥ = β1
⊥ ∧ β2

⊥ (2)

(
∧
i∈I

βi)
⊥

=
∨
i∈I βi

⊥ (3)

(
∨
i∈I

βi)
⊥

=
∧
i∈I βi

⊥ (4)

Proof We will prove (3) and (4). The proofs of (1) and (2) are similar.
The proof of (3). Since

∨
βi
⊥ = Neg∃XA⊥(

∧
β⊥⊥i ) andβ⊥⊥i = βi,

(
∧
βi)
⊥ ⊂

∨
βi
⊥. Hence, it suffices to prove that ift ∈

∨
βi
⊥ then for all

u ∈
∧
βi, t ∗ u ∈ N . We consider only the case wheret ∈ L(

∧
βi). Let

t ≡ λx.t1. Note that ifβ ∈ R satisfies the clauses of Proposition 2, the
same hold forβ⊥.

1. t ∗ u ⇒1 λx.t
′
1 ∗ u′ andt1 ⇒ t′1, u ⇒ u′. From Lemma 3, we have

λx.t′1 ∈
∨
βi
⊥ andu ∈

∧
βi. By induction hypothesis onw(t) +w(u).

2. t ∗ u⇒1 t1[u/x]. From hypothesis ont.
3. u ≡ λy.u1 andt ∗ u⇒1 u1[t/x]. From the factu ∈ L(

∨
βi
⊥).

4. t ∗ u ⇒1 s ands is a subterm oft or u. Sincet andu are strongly
normalizable, their subterms is also strongly normalizable.

The proof of (4). First we prove
∧
βi
⊥ ⊂ (

∨
βi)
⊥. For this purpose,

it suffices to prove that ift ∈
∧
βi
⊥ andu ∈

∨
βi then t ∗ u ∈ N . We

consider only the case whereu ∈ L(
∧
βi
⊥). Letu ≡ λx.u1. We prove that

if t ∗ u⇒1 v, v ∈ N as follows.

1. v ≡ λx.u′1 ∗ t′ andu1 ⇒ u′1, t⇒ t′. By Lemma 3, we havet′ ∈
∧
βi
⊥.

From induction hypothesis onw(u) + w(t).
2. v ≡ u1[t/x]. From hypothesis ofu.
3. t ≡ λy.t1 andv ≡ t1[u/y]. We have

∧
βi
⊥ = Neg∧βi

⊥(
∨
βi), since∧

βi
⊥ = Neg∧βi

⊥ ◦Neg∃XA⊥(
∧
βi
⊥) and

∨
βi = Neg∃XA⊥(

∧
βi
⊥).

From the shape oft, t ∈ L(
∨
βi). Hence we havet1[u/y] ∈ N .

4. The case wherev is a subterm oft or u. From the factt, u ∈ N .

Next, we prove(
∨
βi)
⊥ ⊂

∧
βi
⊥. Let t ∈ (

∨
βi)
⊥. We will prove

t ∈
∧
βi
⊥ by consideration of the different possibilities for the shape oft.
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1. t ∈ V∀XA⊥ . SinceV∀XA⊥ ⊂
∧
βi
⊥, t ∈

∧
βi
⊥.

2. t ≡ ΠX.t1. Assumeu ∈ βi. From Lemma 1,(Bi)u ∈ (
∧
βi
⊥)⊥.

We havet ∗ (Bi)u ∈ N from the fact(
∧
βi
⊥)⊥ ⊂

∨
βi. Sincet ∗

(Bi)u⇒ t1[Bi/X] ∗ u, we havet1[Bi/X] ∗ u ∈ N . Hence we can see
t1[Bi/X] ∈ βi⊥ and therefore,t ∈ Πβi⊥.

3. t ≡ λx.t1. This impliest ∈ L(
∨
βi). SinceL(

∨
βi) ⊂

∧
βi
⊥, we have

t ∈
∧
βi
⊥. ut

Proof (Proof of Proposition 2)By induction on the construction ofβ, using
Lemmata 2, 3, 4. ut
Lemma 5 Letβ ∈ RA andt ∈ L(β). Thent ∈ β⊥.

Proof Sinceβ⊥ ∈ R can be writtenNeg∗(β), whereNeg∗ is one ofNegA,
Negβ1∧β2

, Neg∧βi
, we have the thesis.ut

3.3 Proof of Theorem 1

Definition 11 An interpretationξ is a map from the set of type variables to
R. We defineξ[β/X] as an interpretation which satisfiesξ[β/X](X) = β
andξ[β/X](Y ) = ξ(Y ) for Y 6= X. ξ is extended to arbitrary types using
the following clauses.

ξ(⊥) = N⊥
ξ(X⊥) = ξ(X)⊥

ξ(A1 ∧A2) = ξ(A1) ∧ ξ(A2)
ξ(A1 ∨A2) = ξ(A1) ∨ ξ(A2)
ξ(∀XA) =

∧
β∈R ξ[β/X](A)

ξ(∃XA) =
∨
β∈R ξ[β/X](A)

Lemma 6 LetA,B be proper types andξ be an interpretation. Then, we
have

ξ[ξ(B)/X](A) = ξ(A[B/X]).

Especially,ξ(B)⊥ = ξ(B⊥).

Proof By induction on the construction ofA. Only the case whereA ≡ X⊥
is non-trivial. In this case, we have the thesis using Lemma 4 repeatedly.
ut
Proposition 3 Let t be a term of typeA, xA1

1 , · · · , xAnn be the free variables
of t,X1, · · · , Xm be the free type variables oft andξ be an interpretation.
Assume that for eachXj , Bj is a proper type which satisfiesξ(Xj) ⊂ TBj
and a termti ∈ ξ(Ai) is given for eachxAii . Then

t[B1/X1, · · · , Bm/Xm, t1/x
A1
1 , · · · , tn/xAnn ] ∈ ξ(A).
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Proof Induction on the construction oft. In the following proof,B̃, ũ de-
noteB[B1/X1, · · ·], u[B1/X1, · · · , t1/xA1

1 , · · ·] for each typeB and term
u.

t is the variablexAii . The thesis follows fromti ∈ ξ(Ai).
A ≡ A′1 ∨ A′2 andt ≡ σi(t′i). By induction hypothesis, we havẽt′i ∈

ξ(A′i). By Lemma 1,σi(t̃′i) ∈ (ξ(A′1)⊥∧ξ(A′2)⊥)⊥. By Lemma 4, we have
σi(t̃′i) ∈ ξ(A′1) ∨ ξ(A′2).

A ≡ A′1 ∧ A′2 andt ≡ 〈t′1, t′2〉. By induction hypothesis, for eacht′i we
havet̃′i ∈ ξ(Ai). The thesis follows from the definition ofξ(A′1) ∧ ξ(A′2).

A ≡ ∃XA′1 andt ≡ (B)t′1. We havet̃′1 ∈ ξ(A′1[B/X]) by induction
hypothesis. By Lemma 6, we havẽt′1 ∈ ξ[ξ(B)/X](A′1). By Lemma 1,

(B̃)t̃′1 ∈ (
∧
β∈R

ξ[β/X](A′1)⊥)⊥.

From Lemma 4,

(B̃)t̃′1 ∈
∨
β∈R

ξ[β/X](A′1).

A ≡ ∀XA′1 andt ≡ ΠX.t′1. We can safely assume thatX is not con-
tained inB1, · · · , Bm andt1, . . . , tn as a free type variable. By induction
hypothesis and the fact thatti ∈ ξ[β/X] for each1 ≤ i ≤ n, we have
t̃′1[B/X] ∈ ξ[β/X](A′1) for each proper typeB andβ ∈ RB. This implies

ΠX.t̃′1 ∈
∧
β∈R

ξ[β/X](A′1).

t ≡ λx.t′1. We can safely assume thatx is not contained int1, · · · , tn as
a free variable. By induction hypothesis,t̃′1[u/x] ∈ N for eachu ∈ ξ(A⊥).
This impliesλx.t̃′1 ∈ L(ξ(A)⊥). By Lemma 5, we havet ∈ ξ(A).

t ≡ t′1 ∗ t′2. By induction hypothesis, we havẽt′1 ∈ ξ(A1) and t̃′2 ∈
ξ(A1

⊥). The thesis follows from the factξ(A1
⊥) = ξ(A1)⊥. ut

Proof (Proof of Theorem 1)In the previous proposition, letξ(X) beαX
for each type variableX andti ≡ xAii for each free variablexAii . Then we
havet ∈ ξ(A). From Proposition 1, it followst ∈ N . ut
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