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As an important application in video surveillance, person reidentification enables automatic tracking of a pedestrian through
different disjointed camera views. It essentially focuses on extracting or learning feature representations followed by a matching
model using a distance metric. In fact, person reidentification is a difficult task because, first, no universal feature representation
can perfectly identify the amount of pedestrians in the gallery obtained by a multicamera system. Although different features
can be fused into a composite representation, the fusion still does not fully explore the difference, complementarity, and
importance between different features. Second, a matching model always has a limited amount of training samples to learn a
distance metric for matching probe images against a gallery, which certainly results in an unstable learning process and poor
matching result. In this paper, we address the issues of person reidentification by the ensemble theory, which explores the
importance of different feature representations, and reconcile several matching models on different feature representations to an
optimal one via our proposed weighting scheme. We have carried out the simulation on two well-recognized person
reidentification benchmark datasets: VIPeR and ETHZ. The experimental results demonstrate that our approach achieves state-

of-the-art performance.

1. Introduction

Person reidentification aims to recognize and associate a tar-
get pedestrian at different occasions after having previously
appeared in several cameras with nonoverlapping views.
Rather than manual searching, such a reidentification system
can intelligently identify targets from images or videos taken
from a different camera, and thus has been commonly used
in surveillance, security, forensics, healthcare, robotics, retail,
transportation, and so on. Person reidentification has
become increasingly popular in the community due to its
application and research significance. Therefore, many
researchers have studied this topic from different aspects of
feature level and measurement level, and proposed a variety
of approaches to improve the performance of human identity
systems. However, they still face many challenges in practical
applications: (a) chaotic public scenes, similar pedestrian

characteristics, and obstructed pedestrians and (b) obvious
changes in appearance due to different lighting conditions,
camera parameters, body posture, and so on. In order to
solve the above problems, researchers were committed to
(1) find out the optimal feature representations and (2)
develop robust matching models for promising accuracy.
Feature representation is a fundamental and important
part of the person reidentification system. Low-level features
[1] such as shape, color, and texture are usually easily and reli-
ably used in visual recognition. Such features are normally
encoded into fixed-length format, for example, in the form
of histograms [2], covariances [3, 4], or fisher vectors [5],
which constitute simple but efficient feature representations.
Color histograms have been studied in association with vari-
ous color spaces [6], and such feature representation is nor-
mally robust to the changes of photometric settings of
cameras and lighting condition. However, color-based
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feature representations alone do not have enough discrimina-
tive power to deal with a large number of pedestrians with a
similar appearance. Therefore, it also needs to exploit the tar-
get pedestrian images with other more prominent features
such as texture and shape. Shape context constitutes a global
shape feature representation. It uses log-polar coordinates to
obtain the relative distribution of points in the plane relative
to each point on a detected edge or contour. On the other
hand, the histogram of oriented gradients (HOG) captures
the local details of shapes by constructing histograms of the
gradient directions on densely and uniformly spaced cells.
Normal shape-based feature representations are sensitive to
the changes of poses and variations of viewpoints, hence a
local photometric normalization is always applied to the his-
tograms for improved accuracy. On the other hand, some tex-
ture filters and descriptors are also used in person
reidentification [7], such as the Gabor filter [8, 9] and other
linear filter banks [2], color SIFT [10, 11], LBP [12], and
region covariance [12, 13]. Some works [14-18] have also
studied how to obtain low-level features with high discrimi-
nation directly from data. Moreover, deep learning
approaches [19-22] have been applied to person reidentifica-
tion. Although a number of feature representations have been
proposed from different perspectives, the results of the study
show that no single feature representation can perfectly
describe miscellaneous pedestrian images under different
visual conditions. Therefore, it is more likely that the afore-
mentioned low-level features need to be concatenated into a
composite representation with high dimensionality [23],
and consequently, many dimension reduction techniques
[24, 25] have to be employed to retain the most effective fea-
ture representations for subsequent matching. LFDA [26] is
one of the best dimensionality reduction algorithms in many
metric learning methods, which can automatically find a suit-
able distance transformation matrix to capture different clas-
ses of data. Different from LFDA, marginal Fisher analysis
(MFA) [27] is proposed as a new supervised dimensionality
reduction algorithm by designing two graphs that represent
the intraclass compactness and interclass separability.

The matching model is another important part of person
reidentification. Given a suitable representation obtained
from pedestrian images, the matching model aims to match
the probe images against a gallery of pedestrian images by
measuring the similarity between different images (e.g.,
Euclidean or Bhattacharyya), or using some model-based
matching procedure [28, 29]. Matching models are generally
categorized into unsupervised [5, 15, 30-32] and supervised
methods [2, 28, 33-35]. The main purpose of the unsuper-
vised method is to design and extract more robust visual fea-
tures. This method has its special advantages in that it can be
extended to different camera fields without any training pro-
cess. However, it ignores the role of guidance information. In
contrast, a method is considered as a supervised approach if
it uses labeled samples to adjust parameters of the model
and finds relationships between data and corresponding cat-
egories. Common works include KISS [36], LMNN [34],
ITML [35], LDML [37], PCCA [38], RankSVM [2], and so
on. In general, supervised approaches have better perfor-
mance due to the effective use of prior knowledge. However,
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in practical applications, the available labeled training set is
still quite limited and expensive, which significantly affects
its learning quality. Besides, RVM [2], multiple instance
learning [39, 40], and partial least squares (PLS) have also
been applied to person reidentification, with the same idea
of improving the performance of the matching model.

A robust feature representation should be discriminative
for miscellaneous pedestrian images under lighting and view-
point [2, 3, 41], while effective machine learning techniques
are essential for the matching model of the reidentification
system [10]. There have been many algorithms that have
made efforts in the above two directions. Actually, few of
the studies have been proposed to reconcile different features
and combine the multiple matching results into an optimal
solution simultaneously. In this paper, we therefore propose
an effective solution by exploiting the difference, comple-
mentarity, and importance between different features via
the proposed weighting scheme, and the matching model
using the RS-KISS distance metric is individually learned
on each of selected feature representations. Finally, multiple
matching results obtained from different features are
combined into an optimal one via the weighted ensemble
learning approach.

The main innovations and contributions of this paper are
as follows: First, we develop a robust reidentification method
to overcome the deficiencies of a single feature representation
or composite representation of concatenating multiple fea-
tures by merging multiple feature representations via an
ensemble framework. Second, a novel weighting scheme is
proposed to optimally reconcile multiple matching results
into an optimal consensus solution, where the weights evalu-
ate the importance of each feature, and take full advantage of
the complementarity between different features via the train-
ing process. Formal analysis of deriving the weights has also
been carried out. Finally, for evaluating the effectiveness
and efficiency of our algorithm, we conducted experiments
on person reidentification benchmark datasets, and experi-
mental results show that our approach achieves state-of-
the-art performance.

The rest of this paper is organized as follows: Section 2
describes the details of our proposed model and its modules.
Section 3 reports the testing and simulation results on VIPeR
and ETHZ benchmarks. Section 4 discusses the reported
experimental results and the issues related to our approach.
Finally, the conclusion is drawn in Section 5.

2. Our Approach

In this section, we systematically describe the weighted
ensemble model on different feature representations for
person reidentification, which includes multiple feature
representations, RS-KISS distance metric learning [42],
and weighted ensemble learning approach.

2.1. Model Description. The method proposed in this paper
is mainly composed of three important parts, including
feature representation, parameter learning, and weighted
ensemble of matching modules. In our approach, the
identification procedure on the size of the target dataset
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FIGURE 1: Person reidentification model by weighted ensemble learning with multiple feature representations.

as n incurs the computational complexity of O(n*). As
shown in Figure 1, the main functions of each model will
be described as follows:

(1) The feature representation module plays an impor-
tant role as the basis of the entire model. In this part,
different features are extracted from the original
pedestrian image and constitute a complementary
set of feature representations. This will provide the
necessary support for the subsequent ensemble
learning module, the different features. The features
used in this module are described in Section 2.2.

(2) In the parameter learning module, the RS-KISS met-
ric is initially learned by estimating its covariance
matrix on the training set as described in Section
2.3, then a novel weighting scheme is proposed to
access the importance of different feature represen-
tations according to its discriminative power, which
is correspondingly defined as a normalized ratio
between interperson distance and intraperson dis-
tance on the training set. Intuitively larger weights
should be assigned to the matching models on the
better feature representations.

(3) In the weighted ensemble of the matching module,
we integrated the matching results on different fea-
tures via the ensemble learning schema so that the
result fully takes into account the difference and

complementarity of different features, and finally
combines them into the optimal solution. This is
described in detail in Section 2.4.

2.2. Feature Representations. In general, low-level features
such as color and texture features are commonly used in per-
son reidentification due to the fact that these features have
good generalization capability to different camera views. In
our simulation, we thus exploit three color models of
red-green-blue (RGB), hue-saturation-value (HSV), luma-
blue difference chroma-red difference chroma (YCbCr),
and one texture descriptor of local binary pattern (LBP)
to obtain four feature representations in the form of a
histogram. A histogram represents the distribution of
differently binned pixels in an image. The number of bins
in a histogram relates to the number of bits in each pixel
of an image.

2.2.1. RGB Color Model. The RGB color model [43, 44] is
defined by three chromaticities of the red, green, and blue
additive primaries, which can be combined to produce any
chromaticity. Thus, the RGB histogram is a combination
of three histograms based on the red, green, and blue
channels of the RGB color space, which indicates the
frequency of occurrence of the corresponding color in
the image. The RGB histogram represents a discriminative
global feature of the image because each image has a
unique RGB histogram. It is robust to the changes in



rotation, translation, and scaling. But it sometimes does
not provide the correct color information due to the prob-
lem of luminance effects.

2.2.2. YCbCr Color Model. The YCbCr color model [45, 46]
is defined by three components including a luminosity Y,
blue-difference chrominance Cb and red-difference chro-
minance Cr. In fact, the conversions between different
color spaces can be made via translation of the representa-
tion of a color from one basis to another. YCbCr intends
to construct the image into a luminosity component and
chrominance components independently; therefore, color
and intensity information can be easily separated by using
such a color model, which results in a significant discrim-
inative power for recognizing the complex color images
with uneven illumination.

2.2.3. HSV Color Model. The HSV color model is commonly
employed to describe the color perceived by a human being.
In this color model, color information is carried by H (hue or
color depth) referring to red, blue, and yellow in the range of
0 to 360° and S (saturation or color purity) taking value from
0 to 1, while the intensity component is represented by V
(value or color brightness) in the range of 0 to 1. Although
the HSV color model is commonly used for color-based
detection and color analysis, the transformation from RGB
to HSV is quite time consuming, and if there is a dramatic
change in the value of the color information (hue and satura-
tion), pixels with small and large intensities are not consid-
ered in such color space.

2.2.4. LBP Descriptor. The LBP descriptor stands for local
binary pattern. It is an effective operator for representing
the local texture feature that is centered on a pixel as
well as local information near the pixel and then results
in a binary number. The local binary pattern is a feature
description that has received a lot of attention from
both the research community and industry due to its
two important properties: (1) LBP operator is robust to
monotonic gray-scale changes caused by illumination
variations and (2) it is possible to analyze images in
challenging real-time settings because of its computa-
tional simplicity.

In our simulation, the RGB histogram, YCbCr histo-
gram, and HSV histogram are extracted from overlap-

iiz(l—y)2i+y(xi1=®i diag | (1 -y)A; +ya; ...

where «; = (1/d)tr(X;), and parameter 0 <y < 1 controls the
shrinkage degree of X, toward the identity matrix. It practi-
cally improves the prediction performance [48, 49] due to
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ping blocks with a size of 8x16 and a stride of 8x8
on each image, which encoded the different color distri-
bution information in different color spaces, respectively.
On other hand, LBP descriptors are used to extract
texture features.

2.3. RS-KISS Distance Metric Learning. RS-KISS is a modified
version of the KISS metric [36] by introducing both a
smoothing technique [47] and a regularization technique
[48], where a robust estimation of covariance matrices can
be obtained on a limited amount of training set by averaging
the small eigenvalues of a covariance matrix and regulating
large eigenvalues of the covariance matrix simultaneously.
In such distance metric, with the difference of the feature vec-
tor pair x;; =x; — x;, the distance between x; and x; can be
measured in (1):

8 (aey) = x5 (24" 2", ®
1 1
2= iR Z xij% =N Z (xi = %)) (x; _XJ)T’ (2)
0y,=0 0y,=0
Z = - D Xk = - > (%) (- %) (3)
N, yii=1 ' N, yi=1

In (1), the covariance matrices are defined in (2) and (3),
where y,; is the label of x;; : y;; =1 as x; and x; represent the

identical person, otherwise y;; = 0. Ny is the number of simi-

lar feature vector pairs, and N, is the number of dissimilar
feature vector pairs. The above covariance matrix X; can be
further derived as follows:

%= 0N/, (4)
where 1;; is an eigenvalue of X;, A; =diag [A;;, Ay, ... s Aigls
and ¢;; is an eigenvector of X;, @; = [$;, § ..., §4)-

In RS-KISS, the smoothing technique replaces the first
d — k smallest eigenvalues of the estimated covariance matrix
X, by their average value f8;=1/d - kY4 A - A, = diag |
Aits o> Ajs Bjs - » B;], while the regularization technique
interpolates the covariance matrix X; by an identity matrix

I. Consequently, it redefines the estimated covariance matrix
Y, shown in (4) as follows:

yes (L=p)B;+ye; | 2@, (5)
d-k

the fact that a certain degree of shrinkage resulted in the
covariance matrix significantly reduces the effect of its large
eigenvalues.



Complexity

By substituting (5) to (1), we then obtain the RS-KISS
distance measure as follows:
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Eventually, matching or retrieval can be achieved by
ranking the individual image x; from the target gallery based

on the above RS-KISS dlstance 8(x;;) between a probe image
x; and gallery image x;. As a result a gallery image with a
smaller value of &(x;;) w111 be ranked near the top.

2.4. Weighted Ensemble of Matching Models. We have devel-
oped several ensemble approaches [50-55] for unsupervised
learning tasks. These attempt to improve the robustness of
the learning process by combining multiple base learners into
a solution, which normally is generally obtained with respect
to the average performance of a given individual base learner,
leading an effective enabling technique for the joint use of
different representations in many pattern recognition sys-
tems [56-58]. Although these studies have made significant
progress, how to measure the importance of multiple match-
ing results without any a priori information and how to har-
monize them together is still a challenging task. To this end,
we have introduced a novel weighting scheme that makes the
integration process smart and efficient.

2.4.1. Formulation of Weighted Ensemble Approach. Similar
to the theoretical framework of the weighted clustering
ensemble approach [52], a specific matching result R,
obtained by matching specified probe images or tracks
against a target gallery, can be theoretically interpreted
as a noisy version of the ground-truth R, with the same
matching task. In other words, the entire solution space
can be theoretically constructed from all possible match-
ing results R={R;} with normal distribution, and the
ground-truth R. should be the “mean” of all possible
matching results:

Ro =arg rr}leinZi:Pr(Ri =R.)d(R;R), 7)

where Pr (R; = R,) is the probability that R, is randomly dis-
torted to be R = {R;}, and its value is proportional to the sim-
ilarity between R; and R_. d( -, ) is a distance metric.

However, the subset {R,, }m |, SR of all possible match-
ing results is normally available in practical situations. The
ensemble approach intends to determine an optimal solution
by finding the weighted “mean” of M matching results closed
to the ground-truth R_, which was formulized by minimizing
the following cost function:

M

JR)= Y w,d(R,,R), (8)
m=1

where w,, oc Pr (R,, =R ) and Y™ w, = 1. By giving (6), the

matching result can be represented as a RS-KISS distance

vector R=[8(x,,),8(x,,),...,0(x,,)], where x, represents

the query target, and x,, represents the reference images in

the gallery. Thus (8) can be rewritten as

M
2
= Z wm”Rm -R
m=1
M

= 2, Wall(Ry,

M

Z w,, | (R

+ ZmeR ~R)|

m=1

—R)+ (R - R)|*

._‘

w = RO +2 Y w, (R, ~R*)(R* - R)]|

m=1

Z w,||(R,, = R")||”

| —R><%wmﬂm—w>u
+ 2 wnll(R Zwmu R

m=1

Z w,[|(R" = R)||"

._.

)

Let R* = X2 w, R,,, thus 252w, |(R,, — R)(R" ~ R} =
0 is applied in the evolution of (9), and the actual cost of
the weighted ensemble is now decomposed into two terms
in the last step.

2.4.2. Weighting Scheme. In (9), the first term corresponds to
the quality of multiple matching results, for example, how
close they are to the optimal solution, solely determined by
the discriminative power of selected feature representations
regardless of the ensemble approach. In fact, a feature repre-
sentation with more discriminative power can determine a
better matching result, and theoretically result in a smaller
value of (R, —R*)||*. Intuitively, the weights could be
determined by minimizing the cost of the first term, where
larger weights should be assigned to the better matching
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FIGURE 3: Image examples of the ETHZ dataset.

result obtained on the feature representation of more dis-
criminative power. In our approach, we define the discrimi-
native power of a feature representation as the level of
“High cohesion and low coupling”, which can be quantified
by a normalized ratio between interperson distance and
intraperson distance on the training set:

Wy, = (Zy”:oam () + Z>/(Zyu:18m (%) + Z) .
Y ((Zyij:oém (%)) + Z)/(Zyi,-zlam (x,) + Z))
(10)

Here, RS-KISS distance is measured with either a pos-
itive or negative value, which causes the difficulty in cal-
culating such a ratio. Therefore, we further normalize
both interdistance and intradistance into a range of nonneg-
ative values by adding the minimum intradistance Z=
|min (8,,(x;;)) |yij: , on them, and then the ratio can be calcu-
lated in a nonnegative value that appropriately corresponds
to the weights of the feature representation.

Once the input matching results {R,}" — are
obtained for the target dataset, the first term is fixed,
and hence the performance of the ensemble approach
is primarily controlled by the second term referring to
how close the ensemble solution is to the weighted
“mean” of the input matching results {R,}"_,. Thus,
the optimal solution to minimizing the second term of
(9) is obtained as follows:

M M
R =arg min > w,d(R,,R)= Y w,R,. (11)
m=1 m=1

3. Simulation

In this section, we conducted several experiments to verify
the efficiency of our algorithm on the VIPeR [41] dataset
and ETHZ [59] dataset, which have been widely used in per-
son reidentification validation. Four feature representations
described in Section 2.2 have been used to represent each
normalized image in each dataset. The proposed method is
also compared with several similar approaches. Given the
ground truth, the performance reported in our simulation
is significantly better than others.

3.1. Person Reidentification Datasets. The proposed approach
has been experimentally validated on two person reidentifi-
cation datasets (namely the VIPeR and ETHZ datasets).
Although it is quite challenging to conduct person reidentifi-
cation on these datasets since many visual variations includ-
ing pose changes, viewpoint and lighting variations, and
occlusions have to be considered, they has been widely recog-
nized as a benchmark of testing person reidentification
approaches. Moreover, it is recognizable to compare our
approach with other state-of-the-art techniques on these
datasets. In our early work [42], we also conducted the exper-
iment on the iLIDS dataset, but we abstained from using it in
this study for fairness. This is because such dataset has many
versions available that arbitrarily crops patches from the inte-
grated iLIDS dataset, resulting in various matching results.
The image examples of the two selected datasets are shown
in Figures 2 and 3, respectively. The details of datasets are
given in Sections 3.1.1 and 3.1.2.

3.1.1. VIPeR. VIPeR was established by Gray et al. [41]. It
contains 632 pairs of images of persons taken from two
different camera views under various conditions. As
shown in Figure 2, each intrapersonal image pair is pre-
sented in one column, and appearance variation of the
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same person is mainly caused by a viewpoint change of a
certain degrees. Other variations including light condi-
tions, shooting locations, and the image qualities are also
considered accordingly.

3.1.2. ETHZ. ETHZ was collected by Ess et al. [59], and was
originally proposed for pedestrian detection. Later it was
modified for benchmarking person reidentification tasks
[60]. The ETHZ dataset has 8580 images collected from 146
subjects. Some example images are shown in Figure 3. Unlike
the VIPeR dataset, the ETHZ dataset collects more sample
images from each subject as shown in one row of Figure 3.
In fact, it consists of three video sequences. The first one
has 4857 images of 83 pedestrians, the second one has 1961
images of 35 pedestrians, and third one has 1762 images of
28 pedestrians. It is quite challenging to perform person rei-
dentification tasks on such a dataset due to the illumination
changes, scale variations, and occlusions resulting from
images of these video sequences.

3.2. Data Preprocessing with Selected Feature Representations.
Following the method [36], all of the images are initially nor-
malized to a standard size of 128 x 64 by dividing the original
images into overlapping blocks with a size of 8 x 16 and a
stride of 8x8. Then, HSV, RGB, Ycbcr histograms, and
LBP descriptors are extracted from the resized images. As
color feature representations, HSV, RGB, and Ycber histo-
grams with 24 bins per channel represent the different color
distribution information in the HSV, RGB, and Ycbcr color
spaces, respectively. As a texture feature representation, the
LBP descriptor is used to represent the local information of
target images in a binary format. Finally, principal compo-
nent analysis (PCA) is applied to further reduce the dimen-
sionality of the extracted features in order to accelerate the
learning process and remove signal noise.

3.3. Experimental Setups and Evaluations. The extensive
experiments are designed to include two phases: (1) The first
phase examines the performance on different feature repre-
sentations on the two datasets, which includes HSV, RGB,
Ycber, LBP, and a composite representation of concatenating
the four feature representations mentioned above, to see if
the use of each feature representation or composite feature
representation is enough to achieve a satisfactory perfor-
mance. (2) Following that, further experiments are carried
out to facilitate comparative testing with the state-of-the-art
reidentification approaches including feature-based methods
and metric learning-based methods on the two datasets.
These approaches including LFDA [26], MFA [27], RS-
KISS [42], RDC [61], Adaboost [62], Bhat [61], PLS [60],
and Xing’s [63] have also been reported in [42, 61].

Given the fact that the average cumulative match charac-
teristic (CMC) [41] is commonly adopted by many existing
reidentification approaches in the published literature, we
also evaluate the performance of all the compared
approaches using this criterion. Indeed, it treats person rei-
dentification as a ranking problem. By providing a set of
query images, the images in the target gallery are ranked
according to their similarities to the query image. CMC

curves measures the probability of a correct match. As the
gallery size increases, it normally becomes more difficult to
find the correct match and CMC curves become lower.

3.4. Experiment Results. Initially, we carried out the simula-
tion tests on the VIPeR dataset. Such dataset is normally con-
sidered as the standard benchmark for a single-shot
reidentification task. First, the images of P subjects are
selected as the training set, while the rest are used as the test-
ing set. In this experiment, we set P=100 and P =316,
respectively, for training, where similar pairs are obtained
from intraperson images of P subjects, and dissimilar pairs
are obtained by randomly selecting interperson images from
P subjects. Then, both similar pairs and dissimilar pairs are
used to learn the RS-KISS metric on different feature spaces.
Once the RS-KISS metric is learned, we are able to estimate
weights of different feature representations by (10). Finally,
the testing set is separated into the probe set and gallery set.
The probe set consists of several single images from different
subjects, while other single images of the same subjects are
included in the gallery set. For the matching process, we
select a single image from the probe set, and match it with
all images from the gallery set based on the RS-KISS metric.
This process is repeated for all images of the probe set. Fol-
lowing the same experimental protocol reported in [42], the
average performance in the form of CMC curves over 10 dif-
ferent constructions of the probe set and gallery set is pre-
sented in Figure 4. To further investigate the effectiveness
of the proposed approach, we further compared our
approach with other popular person reidentification
approaches. The results in terms of rank score are shown in
the Table 1.

As shown in Figure 4, P = 100 samples are selected as the
training data in Figure 4(a). While in Figure 4(b)P =316
samples are selected as the training data. In each subfigure,
the x-axis represents the rank score and y-axis represents
the matching rate. The top 150 matching results are dis-
played in the figure. It is observed from Figure 4 that there
is no single feature that can always achieve the best perfor-
mance on the target dataset. Although composite representa-
tion is relatively better than single representation, its
performance could not be guaranteed. In contrast, via
weighted ensemble learning, our approach of combining four
matching results obtained from four different feature repre-
sentations always outperforms others.

Furthermore, we conduct one additional experiment
on the VIPeR dataset to compare our approach with six
other state-of-the-art person reidentification techniques
mentioned in Section 3.3. For this experiment, we also
set P=100 and P =316, respectively, for training, and
report the averaged matching rates of 10 runs correspond-
ing to rank scores=1, 10, 25, and 50. As shown in
Table 1, the results obtained by RS-KISS on composite
representation is generally better than five competitive
approaches including RDC, Adaboost, Bhat, PLS, and
Xing’s. On other hand, our approach further boosts the
RS-KISS-based matching model, and achieves the best
result by introducing the proposed weighted ensemble
learning with multiple feature representations.
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FIGURE 4: Performance on the VIPeR dataset in terms of CMC curves (top 150 ranking positions). P = 100 samples are selected as the training

data in (a). P =316 samples are selected as the training data in (b).

TaBLE 1: Matching rates of different approaches on the VIPER dataset.

Rank P=100 P=316
1 10 25 50 1 10 25 50

Our approach 0.147 0.513 0.701 0.867 0.285 0.763 0.915 0.987
RS-KISS 0.098 0.405 0.608 0.765 0.245 0.666 0.847 0.930
RDC 0.091 0.344 0.535 0.697 0.157 0.539 0.752 0.879
LFDA 0.101 0.388 0.593 0.766 0.202 0.632 0.826 0.928
MFA 0.100 0.391 0.596 0.769 0.201 0.655 0.843 0.938
Adaboost 0.042 0.020 0.350 0.503 0.082 0.366 0.582 0.909
Bhat 0.038 0.124 0.203 0.295 0.047 0.166 0.266 0.402
PLS 0.023 0.082 0.142 0.232 0.27 0.109 0.204 0.329
Xing’s 0.036 0.121 0.203 0.295 0.047 0.166 0.266 0.415

Next, we carry out the experiments on the ETHZ dataset.
Such dataset provides a more realistic scenario of a multishot
person reidentification task. For every target subject, it col-
lects several images taken with a moving camera in different
street scenes. All of the images of one person are obtained by
the same camera with less viewpoint variation. In this part of
the experiment, all sample images of P = 76 and P = 106 sam-
ples are selected as the training data, while the rest is used for
testing. Following the same experimental setup on the VIPeR
dataset, we also generate a set of similar and dissimilar pairs
for the training process where the RS-KISS metric is learned
and weights of different feature representations are esti-
mated. Then, we randomly select one sample from every

subject included in the testing set for the probe set and the
rest for the gallery set. Both the probe and gallery sets are
then used for testing.

The CMC curves of setting P = 76 and P = 106 are shown
at Figures 5(a) and 5(b), respectively. Due to the fact that
there are several images of a person in the gallery set on the
ETHZ dataset, only the top 30 ranking positions are selected
and shown in the figure. As a result, once again our approach
achieves the best result when comparing either single feature
representations or composite representation. Table 2 reports
the averaged matching rates of 10 runs on the top 1, 5, 10,
and 20 ranks for various person reidentification approaches.
Of these, our approach also has the best performance.
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FIGURE 5: Performance on the ETHZ dataset in terms of CMC curves (top 30 ranking positions). P = 76 samples are selected as the training

data in (a). P =106 samples are selected as the training data in (b).

TaBLE 2: Matching rates of different approaches on the ETHZ dataset.

P=76 P=106
Rank 1 5 10 20 1 5 10 20
Our approach 0.852 0.958 0.981 0.994 0.918 0.987 0.997 0.999
RS-KISS 0.770 0.921 0.962 0.985 0.835 0.963 0.984 0.996
RDC 0.690 0.858 0.922 0.969 0.727 0.901 0.956 0.988
LFDA 0.725 0.897 0.949 0.981 0.761 0912 0.965 0.993
MFA 0.672 0.860 0.922 0.970 0.721 0.897 0.951 0.990
Adaboost 0.656 0.840 0.905 0.956 0.692 0.878 0.935 0.980
Bhat 0.555 0.761 0.840 0.906 0.610 0.809 0.878 0.941
PLS 0.483 0.694 0.780 0.868 0.546 0.751 0.833 0.924
Xing’s 0.544 0.752 0.833 0.904 0.608 0.803 0.874 0.936

By close observation on both Figures 4 and 5, we can
further release that our approach achieves much more per-
formance gain on the ETHZ dataset than on the VIPeR
dataset in comparison with second best one. On Tables 1
and 2, we are also able to observe that the performance
gain at the top one rank is also much higher on the ETHZ
dataset than on the VIPeR. Although few papers have
published the matching results on multishot person rei-
dentification, such results strongly indicate that our
approach not only performs well on a single-shot person
reidentification task but also achieve outstanding perfor-
mance on multishot person reidentification.

4. Discussion

As the first and most straightforward visual feature, color
plays an important role for the person reidentification task,
but changes in brightness may lead to instability in such fea-
tures. On the other hand, texture and structure features give
us information on the structural arrangement of surfaces and
objects in the image, and take much more effect when the
appearance contains distinct partial patterns. Conceptually,
different kinds of feature representations obtained from dif-
ferent aspects, for example, color versus texture, and on dif-
ferent scales, for example, local versus global, as well as fine



10

versus coarse, always tend to be complementary in improv-
ing reidentification accuracy. Therefore, it is nontrivial to
fuse various feature representations for robust person reiden-
tification. In this work, we only select four simple feature rep-
resentations for demonstration purposes. It will be an
interesting future research to systematically explore the com-
plementary nature between different feature representations.
Even so, our experiment results still show that the matching
model on the ensemble of four selected feature representa-
tions significantly outperforms the one with a single repre-
sentation; moreover, a single matching model working on a
composite representation formed by concatenating four
selected feature representations together is often inferior to
an ensemble of multiple matching models on different repre-
sentations. Therefore, we strongly believe that the proposed
weighted ensemble learning model is more effective and effi-
cient than a single learning model on the composite repre-
sentation of a much higher dimension.

Ensemble learning provides an underpinning yet
enabling technique of combining multiple matching
obtained from different feature representations for reidentifi-
cation tasks. But a fundamental weakness in ensemble learn-
ing is that different base learners are normally treated equally
during reconciliation. In this work, the equation derived in
(9) reveals that the performance of ensemble learning
depends on both the quality of multiple matching results
and a weighted ensemble scheme. The first term of (9) indi-
cates that the quality of matching results is essentially deter-
mined by the discriminative power of corresponding feature
representations, which are quantified by a set of weights.
Theoretically, the bigger value of the weights should be
assigned to the better matching results with a greater dis-
criminative power of the feature representation, and vice
versa. Then, an optimal result can be finally obtained by com-
bining these matching results via a weighted ensemble
scheme. Our previous works [51, 52] also confirm that the
weighted ensemble scheme normally outperforms the aver-
aged ensemble in terms of both effectiveness and efficiency.
As a wrapper learning technique, ensemble learning has been
widely used in many applications, and aims to boost the per-
formance of a learning-based system by combining multiple
base learners into an optimal consensus solution.

Our experiment results also show that the performances
of the tested approaches are improved by increasing the size
of the training set. In other words, the available amount of
the training image pairs crucially decide whether a distance
metric is sufficiently learned for person reidentification.
However, in practice, it is quite expensive to obtain the
desired amount of training set with label information. There-
fore, the RS-KISS metric is adopted in our approach due to its
outstanding ability of dealing with limited training data. In
fact, RS-KISS intends to improve the original version of KISS
when the size of the training set is small, because the learning
process of the covariance matrix in KISS is always biased on a
small-size training set. Although RS-KISS performs compa-
rably to KISS when the training sample set is large enough,
it normally incurs a higher computational burden due to
the composite representation of a much higher dimension.
In contrast, our approach provides an optimal solution by

Complexity

constructing a weighted ensemble of multiple matching
results obtained on different feature representations, which
significantly improves the performance of reidentification.

5. Conclusions

In this paper, we present a novel person reidentification tech-
nique by proposing weighted ensemble learning with different
feature representations. In our approach, we adopt the RS-
KISS metric in the matching process which keeps its excellence
of dealing with an insufficient training set. Initially, the RS-KISS
metric is correspondingly learned on four selected feature
spaces of the training set. Then, a set of weights are estimated
to access the importance of different feature representations
according to its discriminative power. Finally, the testing stage
is carried out by combining the multiple matching results
obtained from different feature representations into an optimal
one via the weighted ensemble scheme. As a generic framework,
our weighted ensemble module generally allows any feature
representation to be incorporated directly. In our experiments,
results show that our approach is very competitive in compari-
son with several state-of-the-art approaches, and thus provides
a promising technique for person reidentification.
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