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The spatial evolution of land use in Jinzhou area was simulated using fuzzy cellular automata to determine all factors influencing
urban land use change. For this purpose, land use data of multiple sources and remote sensing images from 2003 to 2015 were
analyzed. The following results were obtained: (1) real land use data and simulation data for 2015 were tested using four indices.
Under the 5m× 5m scale, the model shows good performance for simulation of areas with various land use types. (2) Among
simulations under four scenarios, the effect of traffic guidance on the development of construction land was more distinct
under the economic development mode, which clearly showed the phenomenon of “agglomeration” along major traffic lines.
(3) Jinshitan Street is adjacent to the sea, and land use changes are significant under the 4th scenario, and thus related
departments should pay more attention. (4) Shortcomings of conventional cellular automata model in processing complex
systems could be mitigated through the integration of fuzzy sets.

1. Introduction

Cities are open and large complex systems with complex
characteristics such as uncertainty, nonlinearity, and self-
organization. The interaction between the internal local
behavior and the global order leads to complexities in the
variation process of urban land use [1–8]. In order to reveal
the evolution of urban land use, scholars have proposed
many models. At present, mature models include the
CLUE-S model [9], SD (system dynamics) model [10],
CA (cellular automata) model [11–13], and geocellular
automata model [14–17]. Among them, the CA model
follows a bottom-up approach, which is very consistent
with human understanding of the dynamic variation pro-
cess of urban land use. Therefore, it has become an ideal
mathematical model for effectively studying complex urban
systems [18, 19].

CA is characterized by the simulation of complex
phenomena using the interaction between cells and their

surrounding neighborhood cells in the space domain
[20, 21]. In the time domain, the state of a cell at a later time
is determined by the state of the cell at a previous time and
the conversion rules. Finally, the global complex state is
evolved from simple local rules (micro level) [22–25]. Apply-
ing logistic regression, Markov, and CA, city expansions in
the suburbs of Tehran, Iran, and around Poyang Lake, China,
were simulated by Vaz and Arsanjani, Liu et al., Bidlo, and
Arsanjani et al., respectively, which verified the simulation
capabilities of CA in complex systems [26–29]. However,
when the CA model is applied to urban systems with nonlin-
ear, unbalanced, self-similar complexity, exact and complete
information is lacing on many factors that affect land use
change and these factors have the characteristics of fuzziness,
thus making the CA simulation process more complicated
and affecting the simulation accuracy of CA [30–32].
Therefore, uncertainty processing is necessary for factors
with incomplete information and ambiguity. Zadeh et al.,
He and Zhang, Abbasi-Ghalehtaki et al., Tencer et al.,
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Rajak et al., and Jafelice et al. proposed the concept of fuzzy
set in 1965, which provided a method to solve fuzzy problems
[33–38]. Since then, many scholars have extensively studied
the combination of fuzzy sets and GIS (geographic informa-
tion system), which provides a quantitative description
method for handling complex systems [39–41]. Therefore,
fuzzy sets can be combined with CA to solve fuzzy problems
in simulation processes [28, 42–45].

The variation process of urban land use is influenced not
only by micro level effects but also by macro level effects
[46, 47]. For example, Xia et al. used the Markov method
at the macro level and simulated dynamic spatiotemporal
changes in tourists [48]. Li and Liu et al. simulated the spatial
growth of a city by integrating landscape index and CA and
adding a top-down global control factor of cell transition,
through which the shortcomings of the bottom-up CA
approach could be mitigated [49, 50]. Nevertheless, changes
in urban land use occur because of the demand for land with
the development of the population and economy, and
therefore global control factors can be added on the basis of
population and economic data. Hagenauer and Helbich
developed the RegioClust model for the prediction and anal-
ysis of population and economy for the special geographical
and demographic characteristics of Germany [51]; Nguyen
et al. combined Markov and CA with logistic regression to
simulate the impact of population growth on land use change
in the Giao Thuy region of Nam Dinh Province, Vietnam
[52]. Mirbagheri and Alimohammadi used global logistic
regression (LR) to simulate the growth of the city of Islam-
shahr in southwestern Tehran, Iran, and conducted a
comparative analysis with geographically weighted logistic
regression (GWLR) [53]. Among these methods, logistic
regression is widely used because of its good universality
[54]. Therefore, in this study, logistic regression analysis
was performed to obtain the global control factor. In addi-
tion, the policy factor is an important factor affecting land
use variation. Based on the previous research experience,
constrained cellular automata (constrained CA) can flexibly
implement the quantification and spatialization of policy
factors and couple the integration results into CA conversion
rules [55, 56]. Therefore, this study quantified policy factors
in the process of scenario simulation through the idea of
constrained CA.

In addition, cell neighborhood, as an important part of
CA, is an important factor affecting the accuracy of CA
simulation. Shafizadeh-Moghadam et al. and Zheng et al.
evaluated the effect of cell neighborhood size on the accuracy
of CA simulation by selecting two cities in Iran, Tehran and
Isfahan, as the research areas. Through PA (product accu-
racy), OA (overall accuracy), and FoM (the figure of
merit), the accuracy of the simulation under the scales of
3m× 3m, 5m× 5m, 7m× 7m, and 9m× 9m was verified,
and the results showed that the best simulation was
achieved under the scale of 7m× 7m [57, 58]. Therefore,
in order to determine the reliability of CA, the selection
of cell neighborhood size must be verified.

In summary, based on previous methods and experiences
of simulating land use variations, from the neighborhood
scale, conversion rules, and simulation mechanisms that

affect CA simulation accuracy, Jinzhou District of Dalian
was selected as the research area in this study. The spatial
distribution characteristics of future land use were simulated
using data from multiple sources such as 1 : 10000 land use
images of Jinzhou District from 2003–2015 and remote
sensing images, with four cellular neighborhood scales
(3m× 3m, 5m× 5m, 7m× 7m, and 9m× 9m), and integra-
tion of the fuzzy set algorithm, logistic regression model,
scenario analysis (SA), and constrained CA. Various factors
(location, ecological, economic, etc.) under four scenarios
(natural growth, farmland protection, ecological protection,
and economic development) and the existing state (existing
land use, future population and economic forecasting objec-
tives, and different development planning policies) were
considered in the simulations. The kappa, PA, OA, and
FoM parameters were used to verify the simulation accuracy
of the model. Through the simulations, the spatial distribu-
tion of land that may occur in the future under the existing
development policy was revealed. This provides a reference
for land use planning and urban planning staffing.

2. Study Area and Methods

2.1. Overview of the Study Area. Jinzhou District is located in
Dalian City, Liaoning Province. It lies south of Liaodong
Peninsula, 39°4′–39°23′ N and 121°26′–122°19′ E, and bor-
ders the Yellow Sea, Bohai Sea, and the Dalian Economic
and Technological Development Zone. Jinzhou District
has four functional areas, its development foundation is
strong, and traffic is high (Figure 1). In 2003, the construc-
tion land area was 338.21 km2, and by 2015, it reached
458.36 km2, which will further increase to 120.15 km2 in
12 years with an annual growth rate of 3.5%. In the district,
land use variation is significant. As such, the study of
dynamic changes in land use in Jinzhou District is of great
practical significance.

2.2. Global Control Factors Based on Logistic Regression. In
addition to a series of spatial variables, the process of
dynamic change of land use is closely related to population
growth and economic development [59]. At present, research
on land use change mainly establishes the relationship
between population growth factor, economic development
factor, and land use area through principal component
analysis, simple correlation analysis, and typical correlation
analysis to obtain the global control factor of cell conversion,
improve cell conversion rules, and improve simulation
accuracy [60]. In this study, through comparisons and
significance tests considering various models, the most
appropriate model was selected.

2.3. Influence Factor Based on Fuzzy Set Algorithm. The term
“fuzzy” does not imply messy or chaotic thinking. Instead,
fuzzy logic provides a means of handling imprecise problems.
The fuzzy set serves as a very effective decision-making
method for handling numerous influencing factors and
provides a quantitative description method for managing
complex geospatial systems [61, 62]. It is a type of the “soft-
decision” approach in computing. The fuzzy set describes
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the relationship between an element and a set by the
membership function [63, 64]. In the classical set theory,
the relationship between the elements and the set has only
two possibilities of “yes” or “no” (that element x ⊂U or
element x⊄U exists in two cases). However, in the fuzzy set
theory, the relationship between the element and the set has
some or more subordinate relationships [65–70]. In order
to accurately describe the difference between the classical
set theory and the fuzzy set theory, we define the symbol
space: the domain U , the fuzzy set A, and the element
x x ⊂U ; the relationship between the element and the
fuzzy set can be described as

A = x, μ x , μA x ∈ 0, 1 , x ∈ X, 1

where μA represents the membership function of A and μA
x represents the degree of subordination of element x to
set A, that is, membership [71, 72].

The points in Figure 2(b) represent different ele-
ments, and the distance between the point and the set
represents the membership degree of the element to the set.
Figure 2(c) shows that, for a value of 170 cm, the low,
medium, and high membership degrees to the set were 0.0,
0.3, and 0.7, respectively; that is, the low, medium, and high
membership degrees (or probability) of 170 cm belong to
the set. In the combination of fuzzy sets and CA, Burrough,
Schmucker, and Zimmermann proposed that the influence

factor should be fuzzified by J-type functions, serving as an
example for applying fuzzy sets to CA [73–75]. The J-type
function can be expressed as

μ = 1
1 + x − p2 / p2 − p1

2 , 2

where p1 = point1 and p2 = point2. When x ≥ point2, u = 1.
When x < point2, u = 0. When using the J membership
function to process the factors, the influence of the limiting
factor cannot reach zero. Therefore, the S-type membership
function was added for processing the factors:

u x = cos2α, 3

where

α = x − point c
point d − point c ∗

pi
2 , when x < point c, u = 1,

α = 1 − x − point a
point b − point a ∗

pi
2 , when x > point b, u = 1

4

pi is the circular constant and point a, point b, point c,
and point d represent the values of the inflection point of
different membership functions.
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Figure 1: The location of the study area.
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2.4. Determination of Simulation Scenarios. SA is a method
dedicated to exploring the impact of incidental and deci-
sion factors in the future. It is employed to determine
incidental factors and decision factors that affect the
development of things [76, 77] and to reflect the possible
occurrence of future situations under the action of various
factors and present conditions. Compared with the tradi-
tional forecasting method, SA can reflect multiple possibili-
ties and dynamic characteristics of the development of
things, such that the simulation results have more reference
value. This study determined simulation scenarios based on
the previous research experience and planning requirements
of Jinzhou District.

2.5. Constrained CA Ideas. In the practice of land use plan-
ning in China, land use planning determines the use of land.
For example, planning policies on basic farmland protection
and land for construction planning largely determine the
state of conversion of the cells at the next moment. Therefore,
in the process of land use simulation, it is very important to
improve the simulation accuracy of the model by quantifying
and spatializing the constraints of basic farmland protection
policies and planning policies for land use planning. Con-
straint cellular automaton is an effective tool to simulate
complex geospatial space and is widely used in the simulation
of urban spatial morphological changes and land use changes
[78]. It can flexibly integrate the integration results of land
use planning and policy constraints in urban planning CA
conversion rules.

2.6. Modeling of Fuzzy CA Model. As shown in Figure 3, in
this study, the fuzzy set algorithm, logistic regression model,
SA method, and constrained CA approach were integrated,
and the SA method was used to simulate land use under four
scenarios of land use development including natural growth,
basic farmland protection, ecological protection, and eco-
nomic development [79, 80]. However, prior to the applica-
tion of fuzzy CA, we assumed that no major policy changes
occurred in built-up areas in the next five years during the
simulation process, and there was no process of converting
construction land into construction land and other types of
land. First of all, through data processing software such as

ArcGIS and ERDAS, the original data were processed by
Molder Builder modeling, data classification, data fusion,
image classification and resampling preprocessing, unified
data coordinate system, and database. Then, to determine
the rules of cell transformation under the CA bottom-up
simulation mechanism, the fuzzy set algorithm is used to
fuzzify the location factors and ecological factors that affect
the conversion of cells. The constrained CA idea determines
the policy in the rules of cell conversion factors (such as
farmland protection and forest protection and other restric-
tions). In addition, in order to compensate for the shortcom-
ings of CA bottom-up research ideas, regression analysis of
population and economic data in the study area was per-
formed by principal component analysis, regression analysis,
and weight analysis, and an accuracy test was performed (for
the results, see Section 3.3 and Table 1). The regression
analysis method with the highest accuracy was selected to
determine the top-down cell transition area (i.e., the global
control factor) in the cell iteration process. Then, the CA
bottom-up conversion rules were applied to employ top-
down and random factors in the CA model for iterative
computing within 3m× 3m, 5m× 5m, 7m× 7m, and
9m× 9m scales. The accuracy of the kappa, PA, OA, and
FoM indices was tested using real land use data and the
simulated land use data in 2015 on the cell scale of the cell
to determine the reliability of the CA. At last, four scenarios
of natural growth, basic farmland protection, ecological
protection, and economic growth were determined using
the scenario analysis method (based on the trend of land
use change), the simulation results were analyzed, and
predictions were made.

3. Model Application and Validation

3.1. Data Sources and Processing. The data including multi-
source data of land use and remote sensing data from 2003
to 2015 are presented in Table 2. Land use was classified
according to the land classification standard (GB/T 21010-
2007) promulgated by the state, which divides it into five
categories: construction land, agricultural land, forestland,
water area, and other land use. The grid unit size is
5m× 5m. The land use classification is shown in Table 3.

(a) (b)

1

0.7

0
30 170 250

Low Medium High

0.3

(c)

Figure 2: (a) Diagram representing the Boolean logic used in the classical set theory; (b) modified Venn diagram of a fuzzy set;
(c) a membership function graph with height as an example.
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Table 1: Forecasted area of land use in 2020 based on the logistical model.

Construction land Forestland Agricultural land Other land use Water area

Area (km2) 508.50 450.00 447.30 81.00 73.80

Land use maps Topography data SPOT 5 Landsat TM Roads ……

ArcGIS, ERDAS, SPSS and so on
Data preprocessing (data input, unified coordinate system, etc.)

CA conversion
roles

Iteration operation

Molder Builder
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Data fusion
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……
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Data resampling MCE weights

Random factor

A: natural growth

B: farmland protection

D: economic
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Data change trend
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Policy factors

Farmland protection
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……

Fuzzy set
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Social, natural factors

Ecological suitability
factors

Data preprocessing CA “top-down”

Principal component
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Regression weights

Regression
analysis

……

Accuracy comparison

Regression 
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Regression 
analysis

CA “bottom-up”
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……
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Figure 3: Cellular automata land use simulation based on the fuzzy set technology roadmap.

Table 2: Data sources and processing.

Data type Data features Data sources Data processing

Land use data 1 : 10000 topography data
Dalian Land Resources and

Housing Bureau
Molder Builder

Administrative divisions data
Including city, street, and other

regional boundaries
Dalian Land Resources and

Housing Bureau
Extract administrative divisions

Roads data 1 : 10000 linear data
Dalian Land Resources and

Housing Bureau
Euclidean distance

Remote sensing image
SPOT5 image (resolution of 2.5m),

TM image
National Marine Environmental

Monitoring Center
Interpret, extraction, and analysis

Statistical Yearbook
Text format Statistical Yearbook of

Jinzhou District
National Bureau of Statistics of

China
Summary and analysis

Land Use Planning in Dalian
(2006–2020)

Text format
Dalian Land Resources and

Housing Bureau
Summary and analysis

Dalian City Master Plan
(2001–2020)

Text format
Dalian Land Resources and

Housing Bureau
Summary and analysis
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3.2. Extraction of Parameters

3.2.1. Global Control Factors. In order to obtain the global
control factor of the cell transformation, GDP data and pop-
ulation growth data from 2003 to 2015 in Jinzhou District
were taken as independent variables and land use type area
as the dependent variable in SPSS for principal component
analysis, weighted regression analysis, and logistic regression
analysis. Regression analysis of a model to verify the effect of
the final choice of the regression model is a logistic regression
analysis and weight regression analysis. The regression coef-
ficients R2 were 0.679, 0.742, 0.727, 0.714, and 0.696, and the
statistics p were 0.042, 0.038, 0.044, 0.030, and 0.045 [81, 82].
From the viewpoint of statistics, each regression equation is
reasonable, and the regression effect is significant. Hence,
it is possible to obtain areas of different land use types in
Jinzhou District in 2020 through the established regression
models and the development planning data for Jinzhou
District in 2020, as shown in Table 1.

Compared with the actual land use data in 2015, the
construction land area is increased in 2020, and the
other types of land use area show a decreasing trend
to a certain extent.

3.2.2. Location Factor. Obvious functional zoning phenom-
ena occur in the land within the city due to the influence of
natural and social attributes, which reflect changes and dif-
ferentiation of land use types. Therefore, in the process of
simulating variations in land use, consideration of natural
and social attributes is necessary to achieve more scientific
and rational simulations [83]. In this study, location factors
of natural factors were classified and fuzzed according to

the relevant research of Shu [84], the land use planning of
Dalian (2006–2020), and the relevant provisions of the
Dalian City Master Plan (2001–2020). The social factor is
based on the “Restrictions on Construction and Mining
along Highways and Railways” (Articles 10, 11, 14, 17, and
18), Regulations of the People’s Republic of China on High-
way Administration, and Geographic Information System
Practice Tutorial [84, 85]. The characteristics of the study
area were constantly adjusted to the values of point a, point
b, point c, and point d for fuzzification, and the values in
Tables 4 and 5 were the final selected values (recorded as
C0). In addition, to further prove the scientific simulation
of the selected point and increase the rigor of the article,
according to the natural breakpoint method [86], two
values were selected at the left and right ends of point
C0 for verification (verification results are shown in the
discussion part of Figure 4).

3.2.3. Ecological Suitability Factor. With the economic devel-
opment and expansion of construction land, the city’s eco-
logical environment has been damaged to varying degrees.
With the high frequency of environmental problems, ecolog-
ical suitability has become an important factor in urban
construction land expansion [87, 88]. Therefore, based on
the research experience of the literature on ecological suit-
ability [84, 89, 90], “CJJ-83-99” (Urban Land Use Planning
Regulations), “Basic Farmland Protection Regulations,”
“Notice of the Ministry of Land and Resources on Imple-
menting the Comprehensive Protection of Permanent Basic
Farmland,”Geographic Information System Practice Tutorial,
and National Outline of Ecological Protection “Thirteenth
Five-Year Plan,” study area characteristics were continuously

Table 3: Land use type classification of Jinzhou District in Dalian.

Number Land use type Meaning

1 Construction land
Refers to the transportation land, place of residence, town-industry land, special land, urban

construction land, rural residents, and so on

2 Forestland Refers to the growth of arbor, bamboo, and shrub land, including woodland, grass, and artificial grass

3 Agricultural land
Refers to the cultivation of crops of land, including paddy fields, irrigated land, dry land, orchards, and

tea garden

4 Other land use Refers to the grassland, naked rock, sand dunes, and other unused land

5 Water area Refers to the river surface, reservoirs, coastal beach, and so on

Table 4: Selection and processing of natural factors.

Number Factor selection Division standards Process result

1 Land use status
(A) Water area, assigned 0
(B) Agricultural land and forestland, assigned 0.5
(C) Construction land and other land use, assigned 1

1
0.5
0
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adjusted to point a, point b, point c, and point d values for
fuzzification, and the values in Table 6 were the final selected
value (the values selected in Table 6 and the values selected in
Tables 4 and 5 are collectively recorded as C0). In addition, to
further prove the scientific simulation of the selected point
and increase the rigor of the article, according to the natural
breakpoint method [86], two values were selected at the left
and right ends of point C0 for verification (verification results
are shown in the discussion part of Figure 4). “CJJ-83-99”

clearly stipulates that it is forbidden to construct buildings
with slopes greater than 25°. Therefore, only two points on
the left were selected during the verification process.

3.2.4. Constrained Policy Factors. Based on previous research
experience, constrained CA ideas, and current situation of
research area, this study quantified and spatialized basic
farmland protection policies and ecological protection
policies in the conversion rules of CA. Therefore, according

Table 5: Selection and processing of social factors.

Number Factor selection Division standards Process result

1
Distance to national highway

and provincial highway

(A) ≤2000m, fuzzy membership degree is 1
(B) 2000–8000m, fuzzy membership degree is f x
(C) ≥8000m, fuzzy membership degree is 0

1
f (x)
0

2
Distance to highway
(including one to four

highways)

(A) ≤1000m, fuzzy membership degree is 1
(B) 1000–6000m, fuzzy membership degree is f x
(C) ≥6000m, fuzzy membership degree is 0

1
f (x)
0

3 Distance to railway
(A) ≤1000m, fuzzy membership degree is 1
(B)1000–8000m, fuzzy membership degree is f x
(C) ≥8000m, fuzzy membership degree is 0

1
f (x)
0

4 Distance to subway
(A) ≤1000m, fuzzy membership degree is 1
(B) 1000–5000m, fuzzy membership degree is f x
(C) ≥5000m, fuzzy membership degree is 0

1
f (x)
0

5 Distance to city center
(A) ≤5000m, fuzzy membership degree is 1
(B) 5000–10000m, fuzzy membership degree is f x
(C) ≥10000m, fuzzy membership degree is 0

1
f (x)
0
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to the general plan for land use in Dalian (2006–2020), the
cell set in the basic farmland protection policy and ecological
protection policy was set to 0; that is, the cell state does not
change in the next iteration calculation in the simulation of
the specific definition of the scene [91–93]. In addition,
when the fuzzy membership degree of location factor and
ecological suitability factor f x is set to 0 and 1, the idea
of constrained CA is also applied.

3.2.5. Random Factors. There are often uncertain factors and
random factors in the change of land use type. To improve
the simulation precision, the random factor variable was
added, as shown in the following formula:

Pt
ij i, j = Pt′

ij × 1 + −Inγ λ , 5

where γ is the changing random variable and γ ∈ 0, 1 ;
λ is the parameter to control the amplitude of the
random variable.

3.2.6. Probability of Cell Transformation. In simulations of
land use variation, each variable has different degrees of
impact on land use variation. Therefore, weight processing
must be performed for the variables. w ij m is defined as the
weight of the mth spatial variable that affects the probability
of cell transformation. Then formula (6) is obtained.

P = 〠
n

m

w ij m × Pt
ij i, j , m = 1, 2,… , n 6

According to formula (6), the weight of each factor is
identified and calculated by MCE (multicriteria evaluation)
[94–97]. The results are shown in Table 7.

3.3. Validation of the Model. The land use simulation data of
2015 obtained from the model are shown in Figure 5. To
determine the feasibility of the model, several simulations
of land use in 2015 must be validated. At present, many
scholars use the kappa coefficient to verify the simulation
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Figure 4: Influence of point a, point b, point c, and point d values for the simulation accuracy of S1, S2, S3, and S4 at four cell neighborhoods.
L1, L2, L3, and L4 and L5, L6, L7, and L8 are the verification results of two points at the left end of C0 in different cell neighborhoods: R1, R2,
R3, and R4 and R5, R6, R7, and R8, respectively. Verification results of two points on the right side of C in different cell neighborhoods, where
1 and 5 represent 3m× 3m neighbors; 2 and 6 represent 5m× 5m neighbors; 3 and 7 represent 7m× 7m Cell neighborhood; 4 and 8
represent 9m× 9m cell neighborhoods.
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accuracy of the model and believe that the kappa coefficient
has a good advantage in model verification. However,
Pontius and Millones emphasize that the kappa coefficient
uses randomness as the baseline and neglects the conver-
sion from the observed sample matrix to the estimated
population matrix [98]. Therefore, the study used the kappa,
PA, OA, and FoM indices to verify the accuracy of the
model—reliability of model simulation results at different

neighborhood scales. According to the calculation formula
and operation procedure of Li [49], the real land use data of
Jinzhou District in 2003 and 2015 were taken as reference,
and the simulated land use data of 2015 were used as the
observation data to calculate A, B, C, D, and E. Each error
parameter was substituted into PA, OA, and FoM formulas
to calculate the simulation accuracy of each type of land
use. The test results are shown in Figure 5.

Table 6: Selection and processing of ecological suitability factors.

Number Factor selection Division standards Process result

1 Slope
(A) ≤10°, fuzzy membership degree is 1
(B) 10°–25°, fuzzy membership degree is f x
(C) ≥25°, fuzzy membership degree is 0

1
f (x)
0

2 Distance to water
(A) ≤50m, fuzzy membership degree is 0
(B) 50–100m, fuzzy membership degree is f x
(C) ≥150m, fuzzy membership degree is 1

1
f (x)
0

3
Distance to basic

farmland protection

(A) ≤50m, fuzzy membership degree is 0
(B) 50–100m, fuzzy membership degree is f x
(C) ≥100m, fuzzy membership degree is 1

1
f (x)
0

4
Distance to ecological

protection zone

(A) ≤50m, membership degree is 0
(B) 50–100m, membership degree is f x
(C) ≥100m, membership degree is 1

1
f (x)
0
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Figure 5 shows that when the kappa coefficient reaches
the highest value (such as land for construction in
Figure 5(a), agricultural land (Figure 5(c)), other land
(Figure 5(d)), and water (Figure 5(e))), the best effect under
PA, OA, and FoM indices cannot be achieved, and asyn-
chrony exists. At the same time, construction land, forest-
land, and agricultural land have higher index values at the
5m× 5m neighborhood scale; other land uses have higher
exponent values at the 3m× 3m and 5m× 5m neighbor-
hood scales. The 5m× 5m neighborhood scale has a high
index value, whereas the index value difference of the
7m× 7m scale is not large. According to Shafizadeh-
Moghadam et al.’s introduction and summary of the param-
eters, the simulation effect of other lands and waters in
5m× 5m is within an acceptable range. Therefore, Jinzhou
District in 2020 at the neighborhood scale of 5m× 5m was
considered for further analyses.

4. Analysis under Multiple Scenarios

The four scenarios (natural growth mode, farmland pro-
tection mode, ecological protection mode, and economic
development mode) based on the variation trend and
planning requirements of land use in Jinzhou District are
shown in Table 8.

Simulation parameters were adjusted according to the
four scenarios. Through this, land use data of Jinzhou Dis-
trict in 2020 was obtained (Figure 6).

From the simulation results and the spatial distribution
of land use, differences in the simulation results under the
four scenarios could be observed as follows:

(1) Influenced by economic development, under the
natural growth mode without any other preexisting
conditions, the characteristics of the quantity of
different types of land use are as follows: the area of
construction land increased by 22%, agricultural land
area decreased by 12%, forestland area decreased by
8%, area of the water region decreased by 2%, and
other land area decreased by 0.7%. The spatial distri-
bution characteristics are as follows: the spontaneous
distribution showed a phenomenon of “agglomera-
tion,”which is inconsistent with the existing develop-
ment policy, and is not conducive to meeting the
requirements of sustainable development.

(2) In the basic farmland protection mode, that is, in
the next five years, farmland protection area does

not change. When the development of agricultural
land reaches the predicted level, construction land
increases mainly through the conversion of forest-
land and other land. Forestland in the southwest of
Jinzhou District is significantly reduced. Conse-
quently, the ecological fragility of southwest Jinzhou
District increases, and the probability of occurrence
of urban thermal effect in the study area also
increases. Figure 5 shows that social factors such as
subways and highways have guidance effects for land
use development, but the mode has a certain limit on
economic development through the protection of
agricultural land.

(3) In the ecological protection mode, strict constraints
of ecological protection were added. The develop-
ment of southwest Jinzhou District was limited to a
certain extent. Urban construction land developed
slightly northwest along transportation routes, but
because of the natural attribute, namely, spatial
restrictions due to the slope, this development mode
is bound to increase the cost of development. In addi-
tion, it will present some challenges to the ecological
system in the new development region.

(4) In the economic development mode, that is, meeting
the requirement of increasing construction land,
conditions of farmland protection and ecological
protection were added. The expansion pattern of
construction land showed a trend of growth along
major transportation routes, and changes in the
area of forestland in the southwest are small,
thereby relieving the ecological stress in southwest
Jinzhou District. The water area reaches the global
area restriction (see Table 1), and the spatial distri-
bution becomes more dispersed, with the locations
becoming more consistent with the spatial distribu-
tion of agricultural land. However, compared with
the total area of the water region in 2015, the over-
all area of the water region is decreased. Other
types of land use are also decreased compared with
those in 2015.

5. Discussions and Conclusions

In this study, all the factors influencing land use variation,
including population and economic factors, were taken into

Table 7: Weight settings of each factor.

Land-use type/factors
Location suitability

Ecological suitability
Natural factors Social factors

1 1 2 3 4 5 1 2 3 4

Construction land 0.1473 0.1393 0.1512 0.1604 0.1806 0.2212 0.2942 0.2725 0.2733 0.1600

Forestland 0.1834 0.1846 0.1934 0.1402 0.1675 0.1309 0.2978 0.2459 0.2641 0.1922

Agricultural land 0.1993 0.1952 0.1567 0.1862 0.1409 0.1217 0.2541 0.2983 0.2239 0.2237

Other land use 0.1673 0.1779 0.1662 0.1633 0.1533 0.1720 0.2317 0.2403 0.2391 0.2889

Other land use 0.1527 0.1549 0.1672 0.1748 0.1612 0.1892 0.2614 0.2398 0.2467 0.2521
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account during model construction. The conclusions are
as follows:

(1) The advantages of using the CA model in simulating
the dynamic variation of land use were fully utilized.

The fuzzy CA model was established by integrating
the fuzzy set algorithm, logistic regression algorithm,
and SA method. The simulation accuracy of the
model was tested on the 3m× 3m, 5m× 5m,
7m× 7m, and 9m× 9m neighborhood scales, and
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Figure 5: Comparison of simulation accuracy of land use types under different neighborhood scales under the traditional CA and fuzzy
CA models (CA is the PA, OA, FoM, and Kappa parameter values of the traditional CA model; CF3× 3, CF5× 5, CF7× 7, and CF9× 9
are the fuzzy CA models at 3m× 3m, 5m× 5m, 7m× 7m, and 9m× 9m neighborhood cells with different PA, OA, FoM, and Kappa
parameter values).
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it was determined that the simulated effect of the
model on each land use type can be achieved at the
5m× 5m cell neighbor scale. The simulations met
the requirements and were reasonable, indicating
the high performance of the model in simulating land
use for 2020.

(2) Based on the logistic regression model, the global
control factors of land use variation were added.
The spatial distribution of land use in the future
under different development policies was revealed
under four scenarios. The results show that in the
natural development scenario, construction land
increases by 22%, and the other types of land use
decrease. Agricultural land decreases by 12%, and a
significant amount of high-quality farmland is occu-
pied by construction land. In the farmland protection
mode, woodland in the southwest of Jinzhou is
largely transformed to construction land, increasing
the ecological fragility of the area. In the ecologi-
cal protection mode, urban construction land was
slightly developed towards the northeast along major
traffic roads, but the phenomenon of agglomeration
is not observed. Under the economic development
mode, the expansion of construction land exhibits
agglomeration along the main traffic roads. The
variation of forestland in the southwest is small, thus
alleviating the ecological stress in southwest Jinzhou.
The water region area reaches the global constraint,
and its spatial distribution is simultaneously more
dispersed, becoming more consistent with the distri-
bution of agricultural land. However, compared with
2015, the overall area of the water region showed a
decreasing trend; the size of other land use types also
decreases in comparison with that in 2015.

(3) Jinshitan Street, as a national scenic area, shows
obvious changes in construction land under the four
kinds of simulation scenarios. In addition, in the
rocky beach south of the sea, an increase of construc-
tion land exacerbated the marine environment to
some extent, thus making protection more difficult;
therefore, the relevant planning section should pay
more attention to this phenomenon.

(4) The fuzzy set algorithm can be used to solve the prob-
lem of incomplete information and ambiguity in the

simulation process, thus mitigating the shortcomings
of CA in processing complex systems.

Although PA, OA, FoM, and kappa parameters were
used to verify the simulation accuracy of the traditional
CA and fuzzy CA under the neighborhood of 3m× 3m,
5m× 5m, 7m× 7m, and 9m× 9m cells, it was not given
that different values of point a, point b, point c, and point d
were selected for different simulation scenarios. To enhance
the rigor and logic of the study, this paper conducts
exploratory tests based on the land use data in 2015 and the
condition settings in the scenes S1, S2, S3, and S4. It is the
two points that were selected at the left and right ends of
point C0 according to the natural breakpoint method. The
parameters PA, OA, FoM, and kappa were used to verify
the simulation accuracy at the four neighboring cell scales
and four simulation scenarios. The verification results are
given in Figure 4.

In Figure 4, the two values at the left and right ends of
C0 appear to be slightly higher than those of C0 in terms of
simulation accuracy, but in general, they have higher simu-
lation accuracy under the values of point C0. Therefore, the
selection of C0 points is reliable in the S1, S2, S3, and S4
scenarios and revealed the reliability of simulation results
of land use in 2020.

According to scholars’ opinions and the research on the
simulation process of land use in Jinzhou District, in the
follow-up study, the following aspects should be emphasized:
(1) due to limitations of data acquisition, further in-depth
factors that affect land use variation could not be considered.
For instance, factors such as soil characteristics and culti-
vated land suitability will also affect the land use variation.
(2) It is very important to validate the accuracy of the model.
Although four kinds of parameters were used to verify the
accuracy of the model at four kinds of cell neighborhood
scales, the verification results of each index are different for
each type of land use. Therefore, selecting the representative
parameters to validate the model is also the focus of the next
step. (3) Logistic regression has universal characteristics. The
global factor control factor used in this study, RegioClust
model, was proposed by Arefiev et al. for Germany’s special
population and geographical features [43]. Therefore, tar-
geted models of population and economic factors on the
evolution of land use should be developed to conduct an
accurate study. The follow-up study will further focus on
this issue to improve the results.

Table 8: Definitions of the four scenarios used in the simulations.

Scenario definitions Number Meaning

Natural growth mode S1 According to the city’s existing development model development, without any adjustments

Farmland protection mode S2
Farmland is not converted to any other land use type, and other types are preferentially converted to

agricultural land

Ecological protection mode S3
Tominimize the ecological footprint of land for construction purposes and to increase the protection

limit for areas with more sensitivity

Economic protection mode S4
To ensure that regions with rapid economic growth meet construction land requirements

(see Table 1) while increasing farmland protection restrictions and ecological protection restrictions
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Figure 6: (a) Actual data of land use in 2015; (b) simulated data of land use in 2015; (c–f) land use simulation data under S1, S2, S3, and S4
scenarios, respectively, for Jinzhou District in 2020.
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