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Spatially uniform cross-correlated sine-Wiener (CCSW) noises are imposed on each Hodgkin-Huxley (HH) neuron in a two-
dimensional (2D) regular network. Noise-induced spiral wave destruction and order-disorder spatial pattern transition can be
observed by adjusting cross-correlation time or cross-correlation intensity of CCSW noises. The sudden change of the curve of
synchronization factor R and the time series of average membrane voltage F can be used to semiquantitatively assess this spatial
pattern transition and spiral wave destruction induced by CCSW noises, respectively. In addition, moderate cross-correlation time
and strong cross-correlation intensity of CCSW noises are both detrimental to survival of spiral wave. Comparing with non-cross-
correlated sine-Wiener noises, CCSW noises can destroy organized spiral wave with lesser noise amplitude.

1. Introduction

A hot issue in neurosciences is to investigate synchronized
collective behaviors of a group of interacting neurons due
to their potential applications in information processing,
information transmission, and so on. Synchronized collective
behaviors of neurons in a network often manifest spatiotem-
poral pattern. Spiral wave is one of the most important
spatiotemporal patterns and widely observed in various real
systems. For example, spiral wave is observed in the cardiac
tissue and it relates to a kind of heart disease [1-3]. Therefore,
many schemes have been presented to remove and suppress
spiral wave in the cardiac tissue [4-6]. Additionally, spiral
wave in the neocortex may relate to seizure by extending
the duration of evoked activity in pathological conditions
[7, 8]. However, spiral wave in the neocortex can be used
as a spatial framework to coordinate cortical oscillations

over a group of neurons so that it may contribute to signal
communication [7, 8]. In consideration of importance of
spiral wave, it is especially interesting and important to
investigate the dynamics of spiral waves in various different
systems.

Random fluctuations (also known as noises) are
omnipresent in nature [9]. Choosing reasonable model to
mimic these random fluctuations is very important for the
study of the dynamics of nonlinear systems [10]. Gaussian
noise is widely used to model random fluctuations because
of its convenience of analysis. However, considering that
some real physical quantities, such as reaction rates, must be
strictly positive particularly attention must be paid in order
to avoid the fact that some undesired and unrealistic model-
based results may occur due to unboundedness of Gaussian
noise [11]. Unlike unbounded Gaussian noise, bounded noise
takes values in bounded intervals and bounded noise is
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naturally consistent with the boundedness of real physical
quantities in real systems [10, 11]. Furthermore, bounded
noise is a convenient and natural mathematical tool for
modeling either narrow band or broad band random process
by appropriately adjusting corresponding parameters [12].
Hence, bounded stochastic processes are increasingly
employed in various research fields involving electrical
engineering, mechanical and structural engineering, and
biological systems [13]. For example, impacts of bounded
noise on the formation and instability of spiral waves in
regular and small-world networks of Hodgkin-Huxley (HH)
neurons were investigated in our previous works [14, 15]
and the constructive role of bounded noise in facilitating
formation and stability of spiral waves was discovered
(14, 15].

It is noteworthy that the majority of studies about the
impact of bounded noises including our previous works
assume that a unique noise or multiple uncorrelated noises
are perturbing an otherwise deterministic system. However,
there may be correlation between multiple noises if they
share a common origin. A few studies on cross-correlated
bounded noises have been reported recently. For example,
cross-correlated sine-Wiener (CCSW) noises can induce
transitions in tumor-immune system interplay [16], genotype
selection model [17], and the modified FitzHugh-Nagumo
(FHN) neuron model [18]. More interestingly, CCSW noises-
induced transition vanishes if both noises are not correlated
[18]. Moreover, CCSW noises-induced coherence resonance
(CR) phenomenon is discovered in the FHN neuron. Fur-
thermore, CR is sensitive to the amplitudes and correlation
times of CCSW noises [19]. CCSW noises [20] can also greatly
enhance weak signal detection and transmission through
resonance mechanism like periodic force [21-23], time delay
[24, 25], electromagnetic induction [26-31], and sine-Wiener
noise [32]. Although some studies on CCSW noises have
been achieved, to our best knowledge, the effects of CCSW
noises on the spiral wave and pattern dynamics have not
been so far reported. To do this, we firstly construct a two-
dimensional (2D) regular network of HH neurons subjected
to spatially uniform CCSW noises and then investigate spiral
wave destruction and spatial pattern transition induced by
spatially uniform CCSW noises.

2. Model and Simulation

As reported previously, CCSW noises of #; (t) and 7, (t) are
described by following formulas [16, 18, 33]:

m () =0, Sin(\/iwl (t)>,
T

1, () = 0, sin ( \jng (t)> .
T

Here 0, and o, are amplitudes of #, (t) and 7,(¢), while 7, and
T, are self-correlation times of #; (t) and #,(t), respectively.
Unless other specified, 0, and o, are set to 15 throughout this
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work. w; and w, are two cross-correlated standard Wiener
processes with cross-correlation functions defined as

<w1 (1) w, (t')) = <w1 (t')w2 (t)> = A - min (t, t'). (2)

Here A denotes correlation intensity. The symbol of ()
represents an ensemble average and min(t, t') means smaller
value between t and t'. For the same correlation times (7, =
T, = T), the cross-correlation function of #, (t) and #,(¢) can
be expressed as follows [16]:

<’71 ()1, (t,)> = <’71 (t’) P (t)>

! !
=A'mexp<—t_t )[1-exp(-4—t>], 3)
2 T T

t>t

with

v (_2(1 Y t') 1-exp (- (4A/7)t')
- <P T 1-exp(-(4/n)t")

Here ' (0 < A’ < 1) and 7 denote cross-correlation intensity
and cross-correlation time of #,(¢) and #,(t), respectively.
It is very difficult to directly treat CCSW noises due to the
presence of coupling between noises. As reported previously,
an existing decoupling procedure is used to equivalently
transform (1) into the following formulas [16]:

&) =0 sin<\/gwa (f)) >
T

& () = UzAI sin ( \/gw(x (t)> (5)
+0,\1-A"sin < \j%wﬁ (t)) .

Herein w,, and wg denote two independent standard Wiener
processes [34]. They can be numerically simulated by the
Euler-Maruyama algorithm in conjunction with the Box-
Muller algorithm to generate normally distributed variables
(16, 35]:

w, (t) = w, (t = At) + \|-2At In x; cos (27x,)
wg (t) = wg (t = At) + \|=2At In y; cos (27y,) -

Here y;, X»» X3>and y, are four independent random numbers
uniformly distributed between 0 and 1.

(6)



Complexity

The mathematical model for a 2D regular network of HH
neurons subjected to CCSW noises is given by the following
coupled differential equations [36, 37]:

dv;;
mdt
= gKn?j (VK - Vij) + gNam?jhij (VNa - Vi')
T 9L (VL - Vij) @)
+D (Vi—l,j + Vi + Vi + Vi - 4Vz‘j) +&;
+&,,
dyy

a Y (Vij) (1- J’z‘j) - B, (Vij)yij) y=mh,n, (8)

) 0.1(V;; +40)
" 1-exp (- (V; +40)/10)

B =4exp<—w>, (9b)

(9a)

18
oy, = 0.07 exp (—W) , (9¢)
5, - 1
" v exp (- (v +35)/10) (0d)
. 0.01 (V;; +55) ’ 00
1—exp (- (V; +55)/10)
B, = 0.125exp (—W) . (9f)

Here Vj; denotes the voltage of the cellular membrane of the
neuron at the node (i, j), while myj, n;;, and h;; stand for
gate channel parameters of the neuron at the node (4, j). All
parameter values used throughout this paper are listed in
Table 1.

As reported previously, to measure spatial synchroniza-
tion, a synchronization factor R is introduced as follows
[14, 15, 38]:

lNN
F==52 2V

=1 i=1

(10a)

() - a7
R = 2\ "
N2 Y 3 ((v2) - (v))

Here (-) represents averaging over time. The value of R indi-
cates the degree of synchronization. Larger R denotes better
synchronization. In particular, that R is close to 0 means no
synchronization, while that R is close to 1 indicates perfect
synchronization. As reported previously, the sudden change

(10b)

TABLE 1: Employed parameters and their values. Unless otherwise
specified, these parameters remain unchanged throughout this

paper.

Parameter names Parameter values

Membrane capacitance (uF/cm?®) C,=1
Conductance constant for sodium (m$S/cm?) Ina = 120
Conductance constant for potassium (mS/cm?) gx = 36
Conductance constant for leakage current _
(mS/cm?) 91 =03
Reversal potential for sodium (mV) Via = 50
Reversal potential for potassium (mV) Vi =-77
Reversal potential for leakage current (mV) Vp =-544
Coupling intensity between different neurons D =05
Neurons number in the network (N x N) N =100

of R can be used to indicate synchronization transition [14,
39]. In the presence of CCSW noises, a sufficiently large
time window of 500 time units is used in the calculation of
synchronization factor R.

According to Euler forward difference algorithm, equa-
tions of (7) and (8) are solved with the no-flux boundary con-
dition and time step At = 0.001 in our numerical simulations.
A wedge-shaped initial value method of V(41:43, 1:50) =
—40.2, V(44:46,1:50) =0, V(47:49,1:50) =40.0, m(41:43,
1:50) = 0.1203, m(44:46,1:50) = 0.5203, m(47:49,1:50) =
0.98203, h(41:43,1:50)=0.9, h(44:46,1:50) = 0.7, h(47:49,
1:50) = 0.5, n(41:43, 1:50) = 0.9, n(44:46, 1:50) = 0.7,
and n(47:49,1:50) = 0.5 is used to induce a spiral seed, while
the initial values for other neurons are selected with V' (i, j) =
—-61.19389, m(i, j) = 0.08203, h(i, j) = 0.46012, and n(i, j) =
0.37726. In the absence of CCSW noises, a sufficiently large
time window of 500 time units is used in order to ensure
obtaining a perfect spiral wave. CCSW noises are introduced
into deterministic system at a given time instant of ¢ = 500
time units, and then CCSW noises are persistently imposed
on each HH neuron in the system.

3. Main Results

This study focuses primarily on spiral wave destruction and
spatial pattern transition induced by spatially uniform CCSW
noises. Therefore, the effect of cross-correlation time 7 of
CCSW noises is firstly investigated. As shown in Figure 1, for
small cross-correlation time 7 (such aslog, ,(t) = —0.5,0,and
0.5), spiral wave can survive under the disturbance of CCSW
noises (Figures 1(a) and 1(b)). However, with the increase of
cross-correlation time 7, spiral wave starts to be destroyed
(Figure 1(c)). If cross-correlation time is large enough, CCSW
noises can completely destroy spiral wave and result in the
occurrence of irregular pattern (Figures 1(d)-1(e)). Interest-
ingly, if cross-correlation time 7 of CCSW noises is further
increased, spiral wave actually keeps its alive (Figures 1(h)-
1(i)). Therefore, moderate cross-correlation time of CCSW
noises is detrimental to survival of spiral wave. Moreover,
CCSW noises-induced order-disorder spatial pattern transi-
tions from spiral wave to irregular pattern can be obtained by
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FIGURE 1: Noises-induced pattern transition obtained by adjusting cross-correlation time of CCSW noises. A’ = 0.5. log,,(z) = —0.5 (a), 0

(b), 0.5 (c), 1 (d), 1.5 (e), 2 (f), 2.5 (g), 3 (h), and 3.5 (i).

adjusting cross-correlation time 7 of CCSW noises. Besides
qualitative observation from snapshots of spatial pattern, this
transition process can be semiquantitatively assessed by the
sudden change of the curve of R. As displayed in Figure 2, that
Rsharply increases at first and then decreases rapidly as cross-
correlation time 7 increases results in an obvious peak in the
curve of R-log, (1), which suggests spatial pattern transition
from spiral wave to irregular pattern (Figure 2).

It is also interesting and important to observe dynamic
process of CCSW noises-induced spiral wave destruction.
The snapshots in Figure 3 show the breakup of spiral wave
under the disturbance of CCSW noises. Without CCSW
noises (Figure 3(a)), a perfect spiral wave can be observed
in the network (Figure 3(a)). In the presence of CCSW
noises, spiral wave starts to be destroyed by CCSW noises
(Figure 3). Finally, spiral wave is almost completely destroyed
and irregular spatial pattern appears in the network under the
persistent disturbance of CCSW noises (Figure 3). Similarly,
in addition to qualitative observation from snapshots of
spatial pattern, spiral wave destruction can be identified
by analyzing the time series of average membrane voltage
F. Before CCSW noises are applied to deterministic FHN
model, stable spiral wave (indicated by stable periodical
oscillation) can be observed in the network over a period
of about 200 time units from running (Figure 4). After
CCSW noises are imposed on each neuron, spatial pattern

i Irregular pattern e
0.0008 gular p — /* \*
*

0.0006 -

. Spiral wave

\ pattern
0.0004 - s /

Spiral wave pattern =~ m
0.0002 - \‘
|
I—l—l—l—l—l—l~-—/ \\._.—l”'
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log,,(7)

FIGURE 2: The synchronization factor R as a function of cross-
correlation time log,,(t) of CCSW noises. A = 0.5. The regular
spiral wave pattern is indicated by the square symbol, while the
irregular pattern is denoted by star symbol. The square and star
symbols in the rectangular area surrounded by dashed gray line
correspond to the spatial patterns in Figure 1.

is under disturbance of CCSW noises and spiral wave may
be destroyed to some extent. For small cross-correlation time
of CCSW noises, time series of F presents quasi-periodical
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FIGURE 3: Evolution of spatial pattern within a time window of 500 time units after CCSW noises are imposed on each neuron. A’ = 0.5, and
log,, (1) = 1.5. t = 500 (a), 600 (b), 700 (c), 800 (d), 900 (e), and 1000 (f) time units. CCSW noises are persistently imposed on each neuron

after t = 500 time units.
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FIGURE 4: Sampled time series of order parameter F for different
cross-correlation time log, (1) of CCSW noises. A =05.

oscillation, which indicates that spiral wave can survive
(Figure 4). For large enough cross-correlation of CCSW
noises, time series of F become arbitrary, which denotes
CCSW noises-induced spiral wave destruction (Figure 4).

Besides cross-correlation time, cross-correlation intensity
A" of CCSW noises is a key factor to significantly influence
spatial pattern. Therefore, it is also interesting and important
to investigate the effect of cross-correlation intensity of
CCSW noises. For weak cross-correlation intensity A" of
CCSW noises, spiral wave can keep it alive under noise dis-
turbance (Figures 5(a) and 5(b)). With the increase of cross-
correlation intensity A" of CCSW noises, CCSW noises may
destroy regular spiral wave and cause formation of irregular
pattern (Figure 5(c)). Interestingly, further increasing cross-
correlation intensity A’ of CCSW noises does not always
destroy spiral wave. For some certain moderate A', spiral wave
can survive under the noise disturbance (Figures 5(d) and
5(e)). Of course, spiral wave can be completely destroyed
for a strong enough cross-correlation intensity A" (Figures
5(f)-5(i)). In other words, strong cross-correlation intensity
of CCSW noises is detrimental to survival of spiral wave. In
brief, the results illustrated in Figure 5 show noise-induced
spiral wave destruction and pattern transition from regular
spiral wave to irregular pattern due to the increase of cross-
correlation intensity A" of CCSW noises. As described above,
synchronization factor R can be used to semiquantification-
ally assess noise-induced spatial pattern transition. As shown
in Figure 6, small R denotes the survival of spiral wave in the
condition of weak cross-correlation intensity A', while large
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FIGURE 5: Noises-induced pattern transition obtained by adjusting cross-correlation intensity A" of CCSW noises. log,,(t) = 1.5.
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FIGURE 6: The synchronization factor R as a function of cross-

correlation intensity A’ of CCSW noises. log,,(t) = 1.5. The open
circles correspond to the spatial patterns in Figure 5.

R indicates the breakup of spiral wave and the formation of
irregular pattern (Figure 6).

Similarly, we also consider evolution process of spiral
wave under the disturbance of CCSW noises. Spiral wave
can be clearly observed in the initial transient process after

CCSW noises are applied to network (Figures 7(a) and 7(b)).
As time goes on, spiral wave pattern is gradually destroyed
and irregular pattern is gradually generated (Figures 7(c) and
7(d)). Finally, spiral wave disappears (Figures 7(e) and 7(f)).
The corresponding plot of F is drawn in Figure 8. Time series
of F presents stable and regular oscillation if without CCSW
noises in system, while time series of F starts to become
arbitrary if with CCSW noises in system, which suggests
spiral wave is being destroyed by CCSW noises (Figure 8).
To get a global view, the contour plot of R in the log,,(7)-
A’ plane is depicted in Figure 9. As indicated by the blue area
with smaller R value, too short or long cross-correlation time
7 of CCSW noises is not fatal for spiral wave. On the whole,
for moderate cross-correlation time 7, R increases gradually
along with the increase of cross-correlation intensity A" of
CCSW noises (Figure 9). However, when A or log, (1) is
fixed, the change of R is not always monotonous, which
indicates the occurrence of CCSW noises-induced spatial
transition (Figure 9). As shown in Figure 9, strong cross-
correlation intensity between noises results in large R, which
suggests strong cross-correlation intensity is detrimental to
the survival of spiral wave. This conclusion can be further
confirmed by comparing CCSW noises with non-cross-
correlated sine-Wiener (UNCCSW) noises. Dependence of
R on increasing noise amplitudes o, and o, is plotted in
Figure 10 for CCSW and UNCCSW noises. o, is assumed
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FIGURE 7: Evolution of spatial pattern within a time window of 500 time units after CCSW noises are imposed on each neuron. A’ = 0.95, and
log,, (1) = 1.5.t = 500 (a), 600 (b), 700 (c), 800 (d), 900 (e), and 1000 (f) time units. CCSW noises are persistently imposed on each neuron

after t = 500 time units.
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FIGURE 8: Sampled time series of order parameter . A" = 0.95, and
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to be equal to o, in Figure 10 for the sake of the convenient
comparison. The value of R for CCSW noises is larger than
that for UNCCSW noises (Figure 10). The dividing line
between regular spiral wave and irregular pattern is near
0.00085. For CCSW noises, the threshold of noise amplitude
o, for destroying the organized spiral wave is distinctly

log,(7)

00 01 02 03 04 05 06 07 08 09 1.0
A

FIGURE 9: Contour plot of synchronization factor R in the log (1) -
A plane.

less than that for UNCCSW noises (Figure 10). That is to
say, cross-correlation between CCSW noises may induce
instability of spiral wave and formation of irregular pattern.
In what follows, we investigate how noise amplitudes of
CCSW noises affect spatial pattern. Synchronization factor
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R is calculated for different noise amplitude o, when o, is
set to 15. When noise amplitude o, is small, the value of R
is smaller, which denotes that spiral wave can survive under
the disturbance of CCSW noises (Figure 11(a)). When noise
amplitude o, is large enough, the value of R is larger, which
indicates that spiral wave can be destroyed by CCSW noises
(Figure 11(a)). However, the change of R with increasing noise
amplitude ¢, is nonmonotonic (Figure 11(a)). Similarly, a
contour plot of R in the 0,-0, plane is drawn to provide
a global view. The blue area with smaller R appears in the
lower left corner of the contour plot of R, which indicates the
survival of spiral wave. The area with larger R in the upper
right corner of the contour plot of R indicates disappearance
of spiral wave and appearance of irregular pattern due to too
large noise disturbance (Figure 11(b)). As a whole, R increases
gradually along with the increase of noise amplitudes o, and
o, of CCSW noises (Figure 11(b)), but the increase of R is
not monotonous with the increase of o, or o, (Figure 11(b)).
Although the two cross-correlated bounded noises are in the
symmetric form as shown in formulas of (1), the contour
plot is not strictly symmetrical along the diagonal, which
can be explained by the asymmetry of amplitudes o, and o,
in the formulas of (5). The asymmetry is introduced when
we indirectly and equivalently deal with CCSW noises by an
existing decoupling method.

4. Discussions and Conclusions

In summary, spatially uniform CCSW noises are persistently
imposed on each HH neuron in 2D regular network after
spiral wave is developed in the network by a wedge-shaped
initial value scheme. Then the effects of CCSW noises on
spiral wave destruction and spatial pattern transition are
investigated. The obtained main results are concluded below.
(1) Spatial pattern transitions from spiral wave to irregular
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pattern can be observed by adjusting cross-correlation time
7 or cross-correlation intensity A’ of CCSW noises and
this CCSW noises-induced spatial pattern transition can be
semiquantitatively assessed by the sudden change of the curve
of R. (2) The regular and irregular oscillation of time series
of average membrane voltage F correspond, respectively, to
regular spiral wave and irregular pattern. Therefore, CCSW
noises-induced spiral wave destruction can be indicated
by time series of statistical parameter F. (3) For small or
large cross-correlation time of CCSW noises, spiral wave
may survive. For moderate cross-correlation time of CCSW
noises, spiral wave may be destroyed. (4) Strong cross-
correlation intensity between CCSW noises is detrimental
to the survival of spiral wave. In particular, comparing with
non-cross-correlated sine-Wiener noises, CCSW noises can
destroy spiral wave with lesser noise amplitude.

The network model in this work is a most widely adopted
one. However, some limitations should be pointed out. The
first one is that the coupling between neurons is bidirectional.
In fact, neuronal networks are mainly coupled by chemical
synapses, which is one directional coupling from presynaptic
to postsynaptic neuron. The second one is that temporal delay
is negligible in this study. In reality, time delay is inherent in
realistic neuronal network due to finite propagation velocities
of information. There is a time delay of ~1 ms between the
presynaptic action potential and postsynaptic depolarization.
However, in cardiac tissue the coupling is mainly gap junc-
tions, the coupling is bidirectional, and there is less time delay.
The third one is that topology structure of network is not
considered in our model. Therefore, the network model we
used here is a generalized and idealized mathematical model
for neuronal network. We believe that idealization procedure
of model does not affect the main results we report here. In
the future work we will extend our current research to a more
complex network model that includes more details such as
time delay and complex network topology.

We only considered the temporal correlation between
bounded noises. CCSW noises are assumed to be spatially
uniform in 2D regular network, which implies a strong
unrealistic assumption: the correlation length of the noises
is infinite. It is more realistic and reasonable to introduce
spatiotemporal Gaussian or bounded noises when inves-
tigating dynamics of spatially extended systems subjected
to random disturbance. There have been several landmark
studies about spatiotemporal noises [11, 40-46]. In particular,
spatiotemporal sine-Wiener bounded noise was proposed
and its effect on Ginzburg-Landau model was investigated
[43]. The emergence of noise-induced reentrant transitions
was revealed through numerical simulations [43]. Further-
more, there have been some representative works that apply
spatiotemporal bounded noises to a spatial biological prob-
lem. For instance, cell polarization may be destroyed when
external spatiotemporal bounded noise is introduced into
model [44].

In this work, we used the sudden change of the curve
of R to semiquantitatively assess pattern transition. More
detailed quantitative comparison could be obtained by using
the bivariate Moran index [42, 47]. Note that since R and
F are two statistics, more information could be inferred by
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plotting, at a given time instant and for various values of the
parameters of interest, the histograms of the whole distribu-
tion of the fields as in [42, 43]. The procedure allows better
understanding of how the parameters of a spatiotemporal
noise impact on the whole patterns of the output of the
perturbed system. In future studies we will extend our current
research from CCSW noises to spatiotemporal bounded
noises and adopt more detailed quantitative methods for
better presentation of research findings.
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