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Abstract 

We investigate the possibility that the amplitude of quantum wave can have a deeper 

physical meaning other than the probabilistic interpretation base on Born’s postulate.  We 

find that the probabilistic nature of a quantum system can be explained if matter has 

fluctuations in space and time.  The basic properties of a zero spin bosonic field (e.g., 

Schrödinger’s equation, Klein-Gordon equation, probability density, second quantization) 

are derived.  In addition, the properties of this system with fluctuations in space and time 

can be applied to explain the wave packet collapse in quantum measurements.   
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1.  Introduction 

 

The ontological and epistemological implications of quantum mechanics have been 

the central debates of the theory since its inception. For example, in the Copenhagen 

interpretation, a quantum system can exhibit contradictory properties.  It can appear to be 

continuously distributed in some cases and localized in others: wave-particle duality [1].  

A phenomenon can be observed one way or another, but never simultaneously.  This 

wave-particle complementarity principle is deeply embedded in the fundamental concepts 

of quantum mechanics.   

In the formulation of quantum mechanics, the Schrödinger equation is a partial 

differential wave equation that describes the (deterministic) evolution of the wave 

function.  All the information of a quantum system is believed to be encoded in this 

function, and its propagation gives rise to the wave-like behavior of a particle.  According 

to Born’s postulate [2], the amplitude of the wave function has no physical meaning other 

than its probabilistic interpretation. The statistical nature of quantum mechanics 

originates from this assumption but there is no explanation on how and why these 

probabilities are generated.   

The particle-like nature of matter wave is evident when the location of a particle is 

measured; the effect is always localized.  After the measurement, the wave function 

undergoes a random collapse to a more localized state. Different results can be yielded 

upon measuring superposition states that are created from identical copies of a system.  

Although time evolution of the superposed quantum states is determined by a unitary 

operator, only a definite state can be measured.   
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The collapse of wave is a key problem in understanding quantum measurement.  

There is nothing in the Schrödinger equation that allows such transition.  Von Neumann 

added this dynamically discontinuous collapse in his formulation [3] as one of the two 

processes by which quantum systems evolve over time.  However, the theory does not 

specify a dynamical mechanism how this collapse takes place.  The lack of precise 

division when the different evolutions shall occur has created a constellation of puzzles.  

This ambiguity often leads to the discomforting assertion that reality does not exist unless 

observations are made with privileged status given to an observer. 

There are in general two groups of approaches proposed as solutions for the problem.  

One type of approaches search answers within the framework of existing quantum 

mechanics, e.g. decoherence [4,5,6], many world interpretation [7,8], consistent history 

[9,10].  Rather than being an epiphenomenon of some other process, the second type of 

approaches try to look for solutions by adding new features to the theory, e.g. Bohmian 

mechanics [11,12,13], spontaneous collapse models [14,15,16], and other deterministic 

models [17].  A brief summary and difficulties for the different approaches can be found 

in Ref. [16]. As of today, the ad hoc assumption for wave collapse still has no fully 

satisfactory explanation. 

To explore the probabilistic origin of quantum theory, we investigate the possibility 

that the amplitude of wave can have a deeper physical meaning other than the 

probabilistic interpretation base on Born’s postulate.  We find that the properties of a 

non-interacting spin-zero matter wave (e.g., Schrödinger’s equation, Klein-Gordon 

equation, probability density, second quantization etc.) can be reconciled from a system 

with fluctuations in space and time; an explanation of how and why probabilities are 

generated can be provided.  By studying the properties of its Hamiltonian equation, we 

show that matter inside the wave can only be observed as quantized oscillators which can 

be treated as point particles.  In addition, only a probability can be assigned at a location 

for the particle to materialize which is generated from the “quantization potentials” in the 

field.  These potentials and the quantized particles are real and physically present as parts 

of the matter wave.  The probabilistic nature of a quantum field can be explained if 

matter has fluctuations in time and space. 

The quantization potential has its unique properties.  It carries information about the 

probabilities for a particle to materialize but does not have real energy.  Sudden transfer 

of quantization potentials between distant locations does not require superluminal 

transportation of energy; instantaneous collapse of wave will not violate the principles of 

relativity.  These unique properties allow us to explain the mechanism that is required to 

trigger a non-local wave collapse by measurement.  Unlike in the standard interpretations 

of quantum mechanics, collapse is induced by interaction in a measuring process.  

Information of the system to be measured can be obtained from results of the interactions 

if one desires to make an observation.  There is no prestigious status for the observer.  

However, not all interactions can induce collapse. The reasons why collapse cannot be 

induced by interactions that do not provide effective information for measurements, e.g. 

deflection by biprism, magnet, capacitor etc., are discussed. 

Apart from the collapse by measurements, we have also investigated a different type 

of mechanism that may trigger collapse.  Recent proposal by Xiong has suggested the 

possibility that wave collapse can be induced when part of the quantum wave is trapped 

in a closed box – topological disconnectivity [18].  Several experiments have been 
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proposed.  This concept can be understood within the framework of quantum mechanics 

which can also be explained in terms of the quantization potentials.  Although this idea is 

still subject to experimental validation and we cannot eliminate the possibility that 

topological disconnectvity alone may not be sufficient to trigger a collapse, the 

verification of this concept can provide support for the collapse process we have 

proposed with measurements. 

Our concept in this paper is formulated in the standard model energy scale.  In fact, it 

has been suggested in emergent quantum mechanics [19,20,21,22,23,24,25,26] that 

determinism and reality can be returned at the high energy level.  This is based on the 

idea that a physical system is deterministic at the Planck scale but the quantum 

mechanical nature of our world is due to information loss/dissipation [27,28,29,30,31] at 

larger scales.  The question whether the field with fluctuations in space and time can have 

a deeper reality as proposed in Ref. [32] is not part of this discussion.   

This paper is organized in the following manner:  Section 2 outlines the dynamic 

properties of the wave with displacements in time and space.  The displacement in proper 

time is defined as the difference between the time within the wave and the time of an 

inertial frame.  The fluctuations can be described by a scalar field.  Section 3 investigates 

the general properties of the quantization potentials that generate the probabilistic nature 

of the quantum wave.  Section 4 derives the basic equations for a non-interacting spin-

zero particle field (e.g., Schrödinger’s equation, the Klein-Gordon equation, probability 

density, second quantization).  Section 5 discusses two possible properties of the 

quantization potential field that are not necessarily restricted by relativity.  Section 6 

studies the collapse by topological disconnectivity.  A modified experiment using single 

source electron is suggested for validating this proposal.  Section 7 and 8 extend the 

collapse theory to more general measurement processes. The last section is reserved for 

discussing further implications of the theory.   

 
2.  Plane waves with fluctuations in space and time 

 

In quantum mechanics, the squared amplitude of a matter wave is the probability 

density of locating a particle base on Born’s postulate.  Unlike classical waves, this 

amplitude has no other physical interpretation.  To find an explanation for quantum 

statistics, we will first identify a possible alternate meaning for this amplitude.   

Consider the following example: unlike general relativity, quantum theory does not 

establish a direct relationship between energy and space-time.  Since we know that matter 

can affect the geometry of space-time, however, is it possible that the amplitude of matter 

wave can have a physical interpretation relates to the principle of relativity?   

In the theory of relativity, there are four basic physical quantities: energy ( E ), 

momentum ( p


), time ( t ), and distance ( x


).  All matter particles have energy, 

momentum, and a location in space-time whether or not they have mass or any of the 

various charges. These four physical quantities are sufficient to describe the propagation 

of a free particle.  It is worth stressing that while any free particle has energy and 

momentum, it needs not have charge.  It is therefore reasonable to assume that the 

physical amplitude of a free particle wave cannot be defined by a force field. 



- 4 – 

   

Among these four basic quantities, space-time and energy-momentum are 4-vectors.  

It is therefore possible to write down the amplitude of a physically vibrating plane wave 

as a 4-vector displacement ),( 


.  This 4-displacement is in effect space-time interval 

that can be seen as a Lorentz transformation of some proper time displacement )( 0 . 

),()0,0,0,( 0 


,           (1) 

where  
2

2

0

2 


.            (2) 

Therefore, matter inside this plane wave will have fluctuations in time and space with 

amplitudes   and 


 respectively. We will investigate how this wave with fluctuations in 

space and time can be related to quantum theory. 

Consider the background coordinates ),( 00 xt


 for the flat space-time as observed in an 

inertial frame '' 0O  . Assume that in this frame, a plane wave exists with fluctuations in 

time only, i.e. no fluctuation in space.  We will use the background coordinates ),( 00 xt


as 

references for measuring the fluctuations that take place inside the wave.   

In classical mechanics, the amplitude of a flexible string under tension is the 

maximum displacement of a segment of the string from its equilibrium coordinate in 

space.  Using a similar concept, we can define the wave’s displacement amplitude )( 0  

as the maximum difference between the time observed inside the wave )'( 0t  and the time 

)( 0t  observed outside the wave within an inertial frame.  We may then write 

                
)Re(' 000 ttt  ,           (3a) 

where   

        
00

00

ti

t ei
 

 .           (3b) 

Thus, the plane wave will have this temporal fluctuation when observed with respect to 

an inertial frame outside.  In addition, time inside the wave passes at the rate 

)cos(1 0000 t   relative to time in the outside inertial frame.  This ratio has an average 

value of 1.  Matter will therefore still appear to travel along a time-like geodesic when 

observed over many cycles.   

We will consider t0  to be a field that generates fluctuations in proper time.  Since 

matter inside this plane wave has no fluctuation in space, the spatial coordinates in the 

wave frame )'( 0x


 are the same as those in the inertial frame )( 0x


. 

   00 ' xx


 .             (4) 

We now study how this plane wave will appear in another frame of reference.  By an 

appropriate Lorentz transformation, the background coordinates ),( 00 xt


of inertial frame 

'' 0O  can be related to the background coordinates ),( xt


 for the flat space-time observed 

in another frame ''O .  We assume that frame '' 0O  travels with velocity v


 relative to 

frame ''O .  Similarly, the coordinates of the fluctuation )','( 00 xt


 can be Lorentz 

transformed to the coordinates of fluctuation )','( xt


 as observed in frame ''O .  We can 

thus relate the fluctuation coordinates )','( xt


  to the background coordinates ),( xt


: 
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)Re(' ttt  ,              (5a) 

)Re(' xxx 


 ,         (5b) 

where   
)( txki

t ei  


,  )( txki

x ei  


.       (5c) 

The fields t  and x


 thus generate fluctuations in time and space respectively.  The 

amplitude   00/  k


 is the maximum displacement of the wave from its equilibrium 

coordinate x


, and   00/    is its maximum displacement from the time t .  In 

frame ''O , matter in the plane wave experiences fluctuations in both space and time. 

We can unify these ideas by defining a scalar field   for the fluctuations in the plane 

wave: 

)(

0

0 txkie 


 




.            (6) 

The fields t  and x


 given in Eq. (5c) for the fluctuations in time and space can be 

obtained from   as follows: 

         

)( txki

t ei
t


 








,         (7a) 

                             

)( txki

x ei  


.        (7b) 

The wave fluctuations can thus be described by a single scalar function.   

 

3.  Quantization of wave fluctuations 

 

Consider the scalar field   and its complex conjugate * . Both functions satisfy the 

wave equation: 

02

0  u

u ,         (8a) 

0** 2

0  u

u .         (8b) 

Eqs. (8a) and (8b) are similar to the Klein-Gordon equation, except that we have yet to 

understand how the scalar field   can be related to the zero spin particle field in 

quantum theory.  The corresponding Lagrangian density for the equations of motion is 

]*)*)([( 2

0   u

uKL , and the Hamiltonian density is 

       ]***[ 2

000  


KH ,         (9) 

where K  is a constant for the matter field and invariant under Lorentz transformation.  

Let us examine the properties of this Hamiltonian density equation.  Substitute 
ti

e 0)/( 00

 
  into Eq. (9), the Hamiltonian density of a plane wave with fluctuations in 

proper time only is: 

                     
2

00 2  KH .         (10) 

This result is similar to the Hamiltonian density of a harmonic oscillating system in 

classical mechanics, except the fluctuations are in time and not in space.  In analogous to 

its classical counterpart, we can write constant K  in terms of the angular frequency 0  
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and a mass constant 
0m per unit volume 0V , i.e. )2/( 0

2

00 VmK  .  As we will 

demonstrate in the next few paragraphs, our choice for the constant K  is not arbitrary. 

 Under Lorentz transformation, the plane wave will have fluctuations in space and 

time.  From Eqs. (5b) and (7b), the fluctuations in space for matter in the plane wave are 

)Re( 


.  The Hamiltonian density per Eq. (9) corresponding to these fluctuations in 

space is given by the term     )2/(* 0

2
2

00 VmK 


 .  This is the expected result 

for a classical system with mass 0m  and angular frequency 0
 
at the non-relativistic 

level. 

Substitute K  into Eq. (10), the Hamiltonian density of a plane wave with fluctuations 

in proper time becomes 0

2

0

2

000 /Vm  H .  The energy generated inside a unit volume is 

2

0

2

00  mE  of a harmonic oscillator in proper time.  As shown in Eq. (4), matters in this 

plane wave are stationary in space.  If Eq. (10) is the total Hamiltonian density of a 

matter wave, energy E  shall correspond to the total internal energy of matter with mass 

0m  at rest.  This internal energy varies with amplitude 0 .   

As we have learnt from relativity, matter with mass 0m  must have internal energy 

0mE   when observed.  This is equivalent to the energy generated by a proper time 

harmonic oscillator with amplitude 00 /1   which satisfies the condition 

2

0

2

000  mmE .  The energy-mass equivalence in relativity imposes a constraint on 

the energy of a proper time oscillator that can be observed.  Thus, only an oscillator with 

quantized amplitude 00 /1 
 
can materialize which can be treated as a point particle

1
. 

The system with fluctuations in space and time shall be a quantized particle field. 

From Eq. (10), the proper time plane wave with amplitude 00 /1   has sufficient 

energy for one quantized oscillator per unit volume.  However, the appearance of an 

oscillator is random.  We can only assign a probability for quantization at a particular 

location.  In fact, these probabilities shall depend on the Hamiltonian density from Eq. 

(9), i.e. 0Pr / mH  in the non-relativistic limit.  A region with higher Hamiltonian 

density shall have more chance for an oscillator to materialize.  The Hamiltonian from 

Eq. (9) is a potential for quantization.  

In the system with fluctuations in space and time, only the quantized oscillator has 

energy.  Other regions without the particle are “vacuum” but have the potentials for 

quantization.  These “quantization potentials” do not possess real energy.  The only 

information they carry are their ability to materialize into particles.  We know of the their 

presence only by repeated measurements of the quantized energy appearing in a unit 

volume.  Thus, the quantization potential can be the generator of the probability wave in 

quantum mechanics; its relation with the wave function in quantum mechanics will be 

discussed in the next section.  The quantized oscillator and quantization potentials are 

intrinsic part of the matter field that has fluctuations in space and time. 

                                                 

1
 This quantized oscillator will appear to travel along a time-like geodesic when averaged over many cycles 

as discussed in Section 2. 
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A particle can disappear and reappear at a distant location.  Multiple particles can also 

be created/annihilated simultaneously.  Unlike standard quantum theory, the world line of 

a particle in this model describes what might actually happen. The particle is real with a 

well defined location.  The quantization potential field defines the probability that a 

particle will jump, where to jump and how it will move between jumps, such as in a Bell 

type quantum field theory [33,34].  Taking mass 0m  as the de Broglie mass-energy, we 

have the final form for the constant K  of the system, 

0

3

0

2V
K


 .          (11) 

These comments may remind us of the virtual states that exist only for a limited time, 

e.g. particles can be created out of vacuum.  However, virtual particles do not have a 

permanent existence; they arise from fluctuations of vacuum energy, and can be 

understood as a manifestation of time-energy uncertainty principle. On the other hand, a 

normalized matter wave always has sufficient energy for one particle to appear.  The 

appearance of a particle at a particular location in the potential field is temporary but the 

existence of the particle in the system is real.  This is due to insufficient internal energy in 

a region that cannot materialize fully as restricted by the energy-mass equivalence. Even 

in a region with insufficient energy to quantize into an oscillator, there is a potential for 

the creation of a particle.   

Under Lorentz transformation, a particle in the plane wave with angular frequency   

and wave vector k


 will travel at a velocity /kv


 .  It also has fluctuations in time and 

space with amplitudes 2

0/  and 
2

0/k


  from the Lorentz transform of 

amplitude 00 /1  .  We can calculate the quantized fluctuation amplitudes of a 

particle.  For example, we can estimate the spatial fluctuation amplitude of an electron 

( sradx /.106.7 20

0  ): 

cm106.899999.0 9 xv


, 

 
cm109.3001.0 14 xv


.  

 

4.  Quantum properties of the quantization potential field 

 

In the non-relativistic limit, the wave functions of quantum mechanics can be derived 

directly from the quantization potential field.  As discussed, the location for a particle to 

materialize is random.  A region with higher potentials shall have more chance to locate a 

particle.  We can define a probability density Pr  base on the Hamiltonian density, i.e., 

0Pr / H .  By taking the approximations )(*)(*2

0  


 and 

 *)*)(( 2

000   in the non-relativistic limit, the Hamiltonian density H  from Eq. 

(9) becomes: 

  




 **2
0

5

02

0
V

K H .         (12) 
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Thus, the probability density Pr  of finding a particle within a region with Hamiltonian 

density H  is: 





 *

0

4

0

0

Pr
V


H

.         (13) 

Base on this probability density, we can establish a relationship between the potential 

field   from Eq. (6) and the quantum mechanical wave function   for a plane wave 

within a cube of volume V : 

)~()(

0

2

0 0  


 















 txkiti

e
V

a
e

V



,       (14) 

where   

0

00
V

V
a   ,         (15) 

00 )2/(~   kk


,         (16) 

and ie  is a phase factor.  Eq. (13) can then be written as: 

 *Pr  .          (17) 

Using the superposition principle and taking the volume V  approaches infinity, we can 

write 

kdeka
txki

 





)~(

2
3

)(
)2(

1 


 .        (18) 

By substituting   with   in Eq. (8a) and taking the non-relativistic limit, we obtain the 

Schrödinger equation for a free particle in quantum mechanics.   

As we can see, the phase factor ie  in Eqs. (14) and (18) does not change the 

probability density.  In fact, as demonstrated in quantum mechanics, the theory developed 

with wave functions   is invariant under global phase transformation but the relative 

phase factors are physical.  Here the wave function   serves as a mathematical tool for 

describing the quantization of the potential density.  A system with wave function   

from the superposed plane waves can have a global phase shift   without changing the 

results in quantum theory.  As a result,   is not required to have the same phase as the 

potential field  .  Despite what is commonly believed, matter waves can have a physical 

interpretation even though their overall phase for the wave function   is unobservable. 

The above analysis is based on a single particle system in the non-relativistic limit 

where approximations are taken to obtain the Schrödinger equation.  As it is well known 

in quantum theory, when the Klein-Gordon equation is treated as a single particle 

equation in a relativistic theory, one will encounter the difficulties of negative energy 

solutions.  Since the quantization potential field   satisfies an equation similar to the 

Klein-Gordon equation, we expect the system with fluctuations in space and time shall 

have the same properties of a bosonic field in quantum theory.   

The fluctuations in space and time are real physical quantities.  As shown in Eqs. (5a) 

and (5b), only the real component of   is relevant for obtaining these physical 
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quantities.  We retained the complex component of   in previous analysis to simplify the 

derivation of the complex wave function.  Here, the quantization potential plane wave 

from Eq. (6) can be combined with its complex conjugate
2
.  However, in the following 

analysis, we will switch to the use of a field   for describing the potential field
3
 i.e.,   

3

0

0




V
 .          (19) 

A real scalar field for a system within a cube of volume V  can be expressed as:  

 ikxikx eaae
V

 



2

1
,         (20) 

where a  is defined in Eq. (15) but with an added phase factor.  By using the principle of 

superposition and treating the volume V  approaches infinity, we find that 

 ikxikx ekaeka
kd

x )()(
2)2(

)(
3

3 
  


 .        (21) 

Substitute Eq. (19) into Eq. (9) and taking   as a real scalar field, the Hamiltonian 

density equation becomes 

])()[(
2

1 22

0

22

0  


H .        (22) 

As in quantum field theory, the transition to a quantum field can be done via 

canonical quantization.  Therefore, )(ka


 shall be taken as the annihilation operator and 

its hermitian conjugate
 

)(ka



 as the creation operator in the emergent field.  Comparing 

Eqs. (20), (21) and (22) with the results from quantum field theory, the quantization 

potential field has the same properties of a bosonic field. 

 
5.  Effects not limited by relativity 

 

In non-relativistic limit, the quantization potential wave propagates base on the 

Schrodinger’s equation which is deterministic.  It can spread over a far apart spatial 

distance but its evolution is continuous and restricted by relativity.  On the other hand, 

what happens inside the wave is random.  As discussed briefly in Section 3, a particle can 

disappear at one location and reappear at a distant location.  The probability for a particle 

to materialize is depending on the quantization potentials. A particle can appear to travel 

a long distance instantaneously without violating relativity. The presence of quantization 

potentials everywhere in the wave gives an impression that a particle can be in different 

                                                 

2
 As shown in this paper, the use of a classical real or complex scalar field can both describe the system.  

However, we must treat the emergent quantum scalar field as real since we are dealing with non-charged 

particles.  As we have learnt from quantum field theory, a complex quantum scalar field describes a field 

with charge. 
3
 The conversion is straightforward and will facilitate our demonstration using the convention in quantum 

field theory.  
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places at the same time.  The quantization potentials and particles are integral parts of the 

matter field.  However, only the particles have energies that are detectable. 

Take for example two normalized wave packets of the quantization potential fields 

a  and b  which are highly localized in space and their centers are far apart.  We will 

consider the one particle coherent superposition state ba    with packets 

a  and b .  The two highly localized packets are superposed and remain connected even 

when they are spatially far apart.  As discussed before, a particle can appear randomly in 

either packet as long as there is no restriction imposed on the particle or quantization 

potentials.  This jump does not require superluminal transportation of energy. A particle 

can appear at one packet, disappear, and reappear in another packet instantaneously.  This 

special property of the quantization potential field does not violate the principles of 

relativity. 

The next effect not restricted by relativity involves collapse of wave.  In non-

relativistic limit, the probability of locating a particle in a normalized wave is: 

.   133

0

  xdxd
m

pr
H

,       (23) 

The total quantization potentials  xd 3
H  are just sufficient to allow one particle with 

mass/energy 0m  to materialize. This condition is conserved in a one particle system.  

Any excessive or deficient quantization potentials in a one particle system will require 

redistribution as constrained by Eq. (23).  This redistribution can be induced under the 

following conditions: 

Condition I - When part of the quantization potential field in a region 1  is 

disconnected from the particle such that the disconnected potentials no 

longer contribute to the total potentials of the one particle system, there 

will be deficient potentials in the isolated one particle system.  The 

disconnected potentials in 1  shall dissipate allowing the one particle 

system to restore the balance in Eq. (23).  

Condition II – When a particle is disconnected from part of the quantization potential 

field such that the disconnected particle loses its ability to materialize in a 

region 2 , there will be excessive potentials in this isolated region which 

cannot have any particle.  The potentials in 2  shall dissipate while the 

one particle system restore the balance in Eq. (23). 

The implications of Conditions I and II will be clarified in Sections 6 and 7. 

  As we shall recall, quantization potentials do not carry energy.  Although they are 

physically present, the only information they carry is the probability for a particle to 

materialize.  Subtraction and addition of quantization potentials in a region do not require 

transfer of energy.  The energy in a one particle system is at the quantized oscillator.  

However, how fast these quantization potentials can transfer is not known but not 

necessarily limited by relativity.  The theory has no restriction even if the 

redistribution/collapse described is instantaneous. Sudden collapse of the quantization 

potentials between distant locations will not violate relativity.  Its effect can be non-local. 
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We will apply the above concepts to the trapping of potentials in a closed box in the 

next section.  It has been suggested that topological disconnectivity can induce possible 

wave packet collapse [18].  This idea is based on the wave-particle complementarity 

principle which can be tested with several suggested experiments.  Here, we will take a 

different approach by investigating this proposal with the quantization potential field. 

 
6.  Topological disconnectivity 

 

Let us assume one of the two highly localized packets in the above described one 

particle wave has entered a box through an opening as shown in Fig. 1.  The box and its 

opening are large such that direct contact between the wave and the box can be omitted.  

After the wave packet has entered the box, the shutter is closed.  Direct contact between 

the particle and shutter can also be omitted if the two highly localized packets are far 

from the shutter when it is closed. 

  
 

Fig. 1  The shutter is closed after one of the wave packets enters the box creating a completely closed environment. 

 

Before the shutter is closed, the wave is in a coherent superposition state 

ba   .  After closure, wave packet a  is trapped inside the box.  However, 

there are two possible outcomes: 

Scenario 1- A classical wave does not undergo sudden collapse if part of it becomes 

trapped in a closed environment.  In analogous to the classical wave, the 

closure of the shutter can have no effect to the coherent superposition state 

ba   .  As we shall recall, the propagation of quantization 

potential wave is governed by Schrödinger equation which is a wave 

equation with no provision for collapse.  Direct contact with the box and 

shutter are omitted that shall have no influence on the particle.  Therefore, 

the two wave packets shall remain undisturbed after the shutter is closed; 

their total quantization potentials are conserved in Eq. (23).  The trapping of 

a wave packet in a closed box will not induce wave collapse. 

Scenario 2- The closure of shutter can block communication between the two highly 

localized packets. The wave packet inside the box is, therefore, disconnected 

from the outside.  If the particle is in wave packet a  when the shutter is 

closed, the quantization potentials outside the box cannot contribute to the 

isolated one particle system within.  In order to restore the balance in Eq. 
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(23), the potentials outside the box must dissipate according to Condition I of 

the previous section: 

afi   . 

The coherent superposition state i  shall collapse to the final state 
f  as 

a result of topological disconnectivity.  Likewise, if the particle is outside the 

box in wave packet b  when the shutter is closed, the quantization potentials 

inside the box cannot contribute to the disconnected one particle system 

outside.  The balance in Eq. (23) must again be restored under Condition I 

leading to wave collapse: 

    bfi   . 

Supporting arguments for Scenario 2 base on the wave-particle duality principle can 

be found in [18] which will be explained in terms of the quantization potentials in here. 

For example, the two wave packets will remain undisturbed after closure of shutter under 

Scenario 1.  If we switch on a detector inside the box and find a particle, wave packet b  

shall collapse according to quantum mechanics.  However, there is no means to induce 

such collapse if communication between the wave packets is blocked.  This will result in 

excessive quantization potentials outside the box and thus a possibility to detect more 

than one particle in a single particle system.  To resolve such dilemma, the reasonable 

choice is that the assumption in Scenario 1 is invalid.  The wave packets shall be 

collapsed by topological disconnectivity as in Scenario 2. The detection inside the box is 

just a subsequent measurement to confirm the collapse that has already happened.  

Therefore, communication with the region outside the box is not necessary.  However, we 

cannot eliminate the possibility that connection can still be maintained between the wave 

packets despite one of them is in a closed box.   

As illustrated in quantum mechanics, a quantum wave can tunnel through physical 

barriers.  In addition, we have shown that the quantization potentials have no energy and 

their properties are not necessarily restricted by relativity.  This unique feature may allow 

continuous connection between the wave packets by tunneling through barriers. The 

balance in Eq. (23) will therefore be maintained even after the shutter is closed which can 

avoid a wave collapse as predicted in Scenario 1. In order to determine which scenario is 

valid, we will have to rely on experiments.   

Several experiments have been proposed in [18] for testing the induced collapse by 

topological disconnectivity.  However, there are a few technical difficulties, e.g. lack of 

efficient shutters.  This can be challenging for fast moving photons in a double slit 

experiment.  The use of atom interferometer has been suggested.  Here, we demonstrate a 

similar thought experiment with the use of a single electron source
4
 as shown in Fig. 2.   

 

                                                 

4
 Although the theory is developed for a zero spin particle field, the quantization potentials obey the 

Schrodinger equation and have similar formulations for an electron field in the non-relativistic limit.  The 

properties of spin can be neglected in this experiment. 
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Fig. 2   Schematic diagram for a double slit thought experiment using single electron source.  When the wave packet is 

inside Trap a, Shutters 1 and 2 are closed to create the condition of a trapped box.   

 

Shutters 1, 2 and 3 are initially closed in this double slit experiment which may be 

realized using an electron biprism.  Electrons are emitted one by one from the source.  

The sequence of operations is as follow: 

1. Shutters 1 and 3 are opened to allow one electron to pass through.  

2. Shutter 1 is then closed to create a trapped box condition in Trap a .   

3. Shutter 3 is closed simultaneously with Shutter 1 to allow only one electron to 

pass through.   

4. Shutter 2 is opened before the possible single electron reaches the end of Trap a .  

5. After the electron is detected on the screen, Shutter 2 is closed ready for the next 

cycle. 

6. Steps 1 through 5 are repeated until sufficient data are collected. 

The synchronization and efficiency of the shutters are the major challenges in the 

experiment.  Assuming the wave packets shall be at mid-point of Trap a  when Shutter 1 

is closed allowing disconnectivity to take full effect.  An electron speed of 10
4
 m/s and 

trap length of cm2L will require the shutters to be able to open (or close) in less than 

one microsecond. 

Under Scenario 1, the one particle system will remain as coherent superposition state 

2/)( ba    after trapped.  The density matrix 1  and density distribution 1n  

on the screen are: 

 1 , 

]Re(2/2/[
22

1 rrrrNn baba


  , 

where N is the overall electron number.   

In Scenario 2, Trap a  is topologically disconnected resulting in wave collapse.  The 

density matrix 2  and density distribution 2n  on the screen are: 
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    2/2/2 bbaa   , 

 ]2/2/[
22

2 ba rrNn 


 . 

The difference between the two scenarios is the additional interference term in 1n  . 

Interference effect will be observed if there is no wave collapse induced by topological 

disconnectivity. 

The results from these new experiments may provide new interesting physics. If 

Scenario 1 is confirmed, this will mean that the connections between parts of a quantum 

system can be maintained even if they are separated by physical barriers.  On the other 

hand, verification of Scenario 2 will introduce a new kind of wave collapse which is not 

triggered by an ordinary measurement.  This will provide support for another kind of 

wave collapse that we will discuss in the next section. 

 

7.  Collapse of Wave in Measurements 

 

In the standard interpretation of quantum mechanics, measurement leads to wave 

collapse.  To detect the presence of a particle, the measurement will require interaction 

with the quantization potential wave.  A particle can be trapped by the interaction during 

this process.  The trap condition shall trigger a wave collapse as discussed in Section 5, 

provided that the region where an interaction can take place is smaller than the spread of 

the particle wave.   We can verify the presence of a particle from the interaction results if 

one makes an observation.  However, observation is not a necessary step.  It is the 

disconnection by interaction that triggers the collapse.  In addition, an interaction that has 

large interaction region will not trigger a wave collapse and cannot effectively provide 

information for measurement which will be further discussed in Section 8. 

Let us consider the same one particle wave with two highly localized packets as 

shown in Fig. 1 but replace the box with a measuring device.  We will first assume the 

particle is within wave packet a .  A measurement will begin with the interaction between 

part of the measuring device and the particle.  During the interaction process, both the 

particle and quantization potentials in wave packet a  are trapped.  This is necessary to 

allow the effect of interaction to be transferred.  No particle can materialize outside the 

interaction; the particle is disconnected from the quantization potentials outside.  Thus, 

wave packet b  will have excessive potentials. The coherent superposition state 

bai    shall collapse to the final state af    by disconnectivity under 

Condition II of Section 5.    

Similar arguments can be made for the collapse process when the particle is in wave 

packet b .  During the interaction, the quantization potentials in wave packet a  are 

trapped and cannot contribute to the total quantization potentials for the one particle 

system outside.  As a result, this deficit in potentials outside the interaction shall collapse 

the coherent superposition state bai    to a final state bf    by 

disconnectivity under Condition I of Section 5.  
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The process described can reproduce the results in quantum mechanics where a 

measurement collapses the initial probability density i  to the final probability density 

f , i.e. 

 

 

However, the collapse process proposed is induced by interactions in a measurement.  

Observation of the results from an interaction is just a subsequent step that confirms the 

presence of a particle.   

We shall recall that the propagation of a quantization potential wave packet is 

determined by the Schrödinger equation.  Although our formulation so far is for free 

particles, we can incorporate the effects of a force field by similar procedures adopted in 

quantum mechanics.  A wave packet, with or without particle, shall obey the same wave 

equation when they interact with the force field; their reactions are identical until 

collapse.  However, the interaction process is different once collapse has taken place.  For 

instance, in the presence of a particle, interaction needs time for energy transfer. This will 

alter the physical state of the measuring device which can trigger a reading for 

measurement. On the other hand, any interaction with the potentials alone does not 

involve transfer of energy.  The collapse can be accomplished immediately after the start 

of interaction without changing the state of the measuring device.  The completion of the 

whole interaction process can be instantaneous. 

The collapse process induced by interaction and topological disconnectivity are alike 

but the mechanism that triggers the collapse is fundamentally different.  As discussed in 

Section 6, collapse by topological disconnectivity is subject to experimental verifications 

and we cannot rule out the possibility that connection can be maintained even with 

physical obstructions.  Trapping in a box may not be sufficient to cause disconnection.  

On the contrary, collapse by measurement is observed daily in the laboratory and is a 

fundamental postulate of quantum mechanics.  Unlike trapping in a box where there can 

be loopholes to avoid disconnection, a particle must remain disconnected with the 

potentials outside during an interaction.  Trapping by interaction can be the mechanics 

that triggers the collapse in measurement.  To better illustrate the concept, we will 

examine a laboratory example.   

In a double slit experiment, an electron wave is split into two localized packets by the 

biprsim.  We can detect which path an electron takes by probing it with another particle, 

e.g. photon.  Deflection of probe particle in one of the path will indicate the presence of 

an electron which is observable.  During the interaction, the probe particle and electron 

waves will suffer an uncontrollable change in momentum which we will assume to have a 

magnitude p .  According to the Heisenberg uncertainty principle, this condition will 

introduce an uncertainty to the position of interaction px  / .  If an electron is 

present at the path detected, the electron and its associated wave packet must stay with 

the interaction to allow full transfer of momentum and are disconnected from the 

quantization potentials outside; the electron is trapped.  Consequently, any potential 

outside the interaction shall dissipate leading to overall collapse under Condition II of 

Section 5 if the uncertainty x  is smaller than the spatial distance between the two 

localized electron wave packets. 

bbaafi  22 



- 16 – 

   

In the same experiment, wave collapse will also take place if the electron is not in the 

path detected.  During an interaction with the probe particle, a wave packet without 

electron will be trapped and cannot contribute to the total quantization potentials of the 

one particle system outside.  As a result, the wave packet shall collapse under Condition I 

of Section 5, provided that the distance between the two localized electron wave packets 

is larger than the uncertainty x .   

We shall note that the interaction between the probe particle and electron’s 

quantization potentials alone does not involve energy transfer.  The whole collapse and 

interaction process can be accomplished instantaneously when an electron is not present. 

The probe particle can pass through the empty electron wave packet as if it is in a 

vacuum space but simultaneously induce a collapse.  These results can explain the 

reasons of why and how a wave collapse is induced if we know which path an electron 

has taken in a double slit experiment.  The concepts can be applied to other measurement 

processes.   

 

8.  Interactions without Collapse 

 

Not all interactions can cause wave collapse.  For example, if an electron wave passes 

through a biprism in a double slit experiment, the wave splits into two paths after 

interacting with the electromagnetic field.  Interference effect can be observed after the 

two paths are merged.  There is no collapse as long as we do not know which path the 

electron has taken.  On the other hand, a measuring device is nothing more than the 

interaction of the electron wave with the electromagnetic field of the atoms.  How can 

two processes with similar qualities produce totally different results? 

For simplicity, we will consider a rigid plate made up of n  negatively charged atoms 

bonded together. As one of the two highly localized wave packets from the previous 

examples is approaching the plate, it will be deflected by the electromagnetic field.  

Suppose an interaction can impart a momentum change of p  to the plate which we will 

assume equally shared by all atoms.  The electron wave packet will interact with n  atoms 

each with a momentum change of nppn / .  There are, in fact, n  individual 

interactions instead of one.  The degree of uncertainty for the location of each interaction 

is pnxn  / .  These uncertainties are overlapping and describe the same approximate 

region that an interaction shall take place.  During this interaction, the electron wave 

packet must stay within the uncertainty limit nx  when interact with all n  atoms.  For a 

plate made up of only a few atoms, the uncertainty of the interaction location is small.  

Wave collapse can occur following the same process discussed in the above examples.  

However, as n  for a macroscopic object, the uncertainty x  becomes so large 

that it cannot effectively trap the electron wave. The interacting electron wave packet can 

remain connected with the rest of its system as long as they are within the uncertainty 

limit.  As a result, no collapse of wave will occur.  We can apply the same concepts to the 

deflection in other electromagnetic fields generated by biprism, magnet, capacitor etc. 

This idealized example outlines an approach on how to determine the outcome of an 

interaction.  To distinguish the kind of interactions that can induce wave collapse, we 

need to ask whether such interaction can cause disconnectivity in any part of the quantum 
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system. In general, a large uncertainty in the location of interaction cannot induce 

disconnectivity nor produce meaningful results in measurement.  For example, the 

presence of a particle in one of the path in the double slit experiment cannot be 

determined if the highest accuracy of measurement is the size of the whole experiment set 

up.  On the other hand, we can measure the location of the particle with higher accuracy 

if the interaction has small uncertainty and induce a collapse. This concept can reproduce 

the same interpretation from quantum mechanics that measurements lead to collapses.   

 

9.  Conclusions and Discussions 

 

In this paper, we show that a quantized oscillator with fluctuations in space and time 

can have the same properties of a zero spin boson in quantum theory.  The quantized 

particle is real and its world line is defined.  However, the appearance of a particle is 

random and depends on the quantization potentials of the matter field.  These potentials 

have a unique feature that they do not carry any energy; their properties are not 

necessarily restricted by relativity.  How information is communicated in this 

quantization potential field can be very different from the currently known fundamental 

theories. 

So far, we have demonstrated two possible effects in the quantization potential field 

that are not necessarily restricted by relativity: the apparent ability of the quantized 

oscillator to jump to a distant location instantaneously (Section 5) and the spontaneous 

collapse of wave (Sections 6 and 7).  The system we have considered is a single particle 

wave.  Two highly localized potential wave packets remain connected even if they are 

spatially separated.  Interaction with one potential wave packet can cause collapse to the 

other under Condition I or II of Section 5.  The effect can be non-local.  As in the case for 

topological disconnectivity, the collapse process by interaction can also be explained in 

terms of the probabilistic wave function.  However, the quantization potentials and the 

quantum mechanical wave have fundamental differences.  The former is generated from 

the fluctuations of matter in space and time; it is physically present and co-exists with the 

particle. 

In an EPR experiment, two particles emitted from a source remain connected even if 

they are distant apart.  The quantization potentials of the two particles are entangled.  

Interaction with one particle can collapse not only its own potentials but also the 

entangled superposition states leading to the collapse of potentials for the second particle.  

This is possible with the new model due to the unique property that the quantization 

potentials carry no energy.  The theory has no restriction on how fast the two entangled 

particles can communicate. Instantaneous collapses of the potentials for both particles do 

not require superluminal transfer of energy and will not violate the principles of 

relativity. The quantization potentials can have the non-local properties expected in an 

entangled quantum system.  The unusual properties of the new model may open a new 

avenue on how to approach some of the questions in EPR paradox. 

Apart from these results, two future applications may provide support for this theory: 

 As discussed in Section 3, a particle has quantized fluctuation in proper time; it is 

actually an integral part of the space-time continuum.  The curved space-time 

geometry arising from this vibration can be calculated and compared with the 

gravitational field of a point mass. 
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 When the quantized proper time fluctuation is transformed to another frame of 

reference, the particle will have fluctuations in time and space with amplitudes 
2

0/  and 
2

0/k


  respectively. The examples given in Section 3 provide 

estimates for the spatial fluctuation amplitudes of an electron.  In the non-

relativistic example, the amplitude of the spatial fluctuation is approximately 

equal to the diameter of a nucleus.  However, this fluctuation also has a very short 

time scale ( s2110  for electron). Whether such effects can be observed in the 

laboratory will require our further exploration.   
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