
Research Article
Adaptive Feedback Control for Synchronization of Chaotic Neural
Systems with Parameter Mismatches

Qian Ye ,1 Zhengxian Jiang ,2 and Tiane Chen1

1Wuxi Institute of Technology, Wuxi 214121, China
2School of Science, Jiangnan University, Wuxi 214122, China

Correspondence should be addressed to Qian Ye; qqianye@126.com

Received 2 April 2018; Accepted 5 July 2018; Published 9 September 2018

Academic Editor: Shyam Kamal

Copyright © 2018 Qian Ye et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This work pertains to the study of the synchronization problem of a class of coupled chaotic neural systems with parameter
mismatches. By means of an invariance principle, a rigorous adaptive feedback method is explored for synchronization of a class
of coupled chaotic delayed neural systems in the presence of parameter mismatches. Finally, the performance is illustrated with
simulations in a two-order neural systems.

1. Introduction

Pecora and Carroll firstly addressed the chaotic synchroniza-
tion in systems and used the drive-response conception in
[1]. The idea is to control the response signal by using the
output signal of drive system such that the two kinds of
signals synchronize. The problems of synchronization in
chaotic dynamical systems have received increasing attention
in the control areas [2–6]. Different approaches including
adaptive design control [2], intermittent control [3],
adaptive-impulsive control [4], and sliding mode control
[6] have been proposed. In particular, Liu et al. [3] obtained
novel synchronization criteria for exponential synchroniza-
tion of chaotic systems with time delays via periodically
intermittent control. By an adaptive feedback control tech-
nique, the synchronization of a class of chaotic systems
with unknown parameters is achieved via mimicking
model reference adaptive control-like structure in [2].
Tam et al. [5] addressed adaptive synchronization of com-
plicated chaotic systems with unknown parameters via a
set of fuzzy modeling-based adaptive strategy. Chen et al.
[6] designed a sliding mode control scheme for adaptive
synchronization of multiple response systems under the
effects of external disturbances.

Recently, there has sprung up hot research topics in the
synchronization of chaotic neural systems (CNSs) due to
possible chaotic behaviors in such systems [7–13]. For
instance, synchronization of coupled delayed CNSs and
applications to memristive CNSs in [12] have resulted in a
theoretical condition under an irreducible assumption on
coupling matrix. Cao and Lu [13] proposed a simple adaptive
method for the synchronization of uncertain CNSs with or
without variable delay via invariant principles. In particular,
some efforts have been devoted to adaptive synchronization
of CNSs [10–12, 14]. However, most existing works were
applicable only for the CNSs with parameter matching.
While in practical implementation of synchronized CNSs, it
is well known that parameter mismatch in systems is gener-
ally inevitable [15–17], which will result in poor performance
or loss of synchronization [17, 18]. For example, Zhang et al.
[18] discussed asymptotic synchronization for delayed CNSs
with fully unknown parameters based on the Lyapunov
method and the inverse optimal method. Therefore, it is of
importance to explore the effects of parameter mismatch in
synchronization of CNSs.

In this paper, we present theoretical analysis and
numerical simulations of the parameter mismatch effect on
synchronization for a class of coupled CNSs. By using
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adaptive control approaches [13, 19, 20] instead of traditional
linear coupling scheme, and combining the invariance
principle, we show that adaptive synchronization of such
CNSs with parameter mismatches under loose conditions
can be rapidly achieved. In addition, by adjusting the update
gain of coupling strength introduced in this work, one can
control the synchronization speed.

The organization of this work is as follows. In Section 2,
we present needed formulation of synchronization of CNSs.
Section 3 presents an adaptive control scheme in CNSs and
provides two criteria for synchronization for CNSs. In
Section 4, numerical simulations on a two-order CNS are
provided to show the effectiveness of the proposed results.
Section 5 concludes the paper.

Notation 1. Throughout the paper, we denote AT and A−1

the transpose and the inverse of any square matrix A
A > 0 A < 0 denotes a positive- (negative-) definite matrix
A; and I is used to denote the n × n identity matrix. A
denotes the spectral norm of matrix A Let R denote the set
of real numbers, Rn denotes the n-dimensional Euclidean
space, and Rn×m denotes the set of all n ×m real matrices.
λmax · or λmin · denotes the largest or smallest eigenvalue
of a matrix, respectively.

2. Formulation of Synchronization in
Neural Networks

Consider the following CNS in a general form:

x t = −C1x t + A1 f x t + B1 f x t − τ t + J , 1

where x t = x1 t ,… , xn t T ∈ Rn denotes the state vector;
C1 represents a diagonal matrix with c1i > 0, i = 1, 2,… , n;
A1 = a1ij n×n denotes the weight matrix; B1 = b1ij n×n
denotes the delayed weight matrix; J = J1,… , Jn

T ∈ Rn is
the input vector function; τ t represents the transmission
variable delay; and f x t = f1 x1 t ,… , f n xn t T

represents the activation function.
Throughout the paper, we have the following two

assumptions:
A1 Each f j:R→ R satisfies the Lipschitz condition,

that is, there exist positive scalars kj > 0 such that

f j x − f j y ≤ kj x − y , j = 1, 2,… , n, 2

for any x, y ∈ R
A2 τ t ≥ 0 is a function satisfying τ∗ =maxt τ t and

0 ≤ τ t ≤ σ < 1, for all t
xi t = ϕi t ∈C −τ∗, 0 , R denotes initial conditions of

(1), where C −τ∗, 0 , R represents the set of continuous
functions from −τ∗, 0 to R

To synchronize the drive (or master) system (1), the
controlled response (or slave) system is given by

y t = −C2y t + A2 f y t + B2 f y t − τ t + J + u t ,
3

where u t is the driving signal, y t = y1 t ,… , yn t T ∈
Rn. C2, A2, and B2 are generally different from C1, A1, and
B1, respectively. Namely, parameter mismatches exist
between the drive system and the response system. The initial
conditions of system (3) denote yi t = ψi t ∈C −τ∗, 0 ,R
i = 1, 2,… , n Denote the mismatch errors by ΔC = C2 −
C1, ΔA = A2 − A1, and ΔB = B2 − B1.

We aim to design an appropriate controller u t in order
to make the coupled CNSs remain synchronized in the
presence of even large parameter mismatches. First, consider
the feedback controller u t = ϵ ∘ y t − x t , where ϵ =
ϵ1,… , ϵn

T ∈ Rn is the coupling strength, and the symbol
∘ is defined as

ϵ ∘ y t − x t ≜ ϵ1 y1 t − x1 t ,… , ϵn yn t − xn t T

4

Define the synchronization error as e t = y t − x t ,
which leads to the following synchronization error system:

e t = −C2e t + A2g e t + B2g e t − τ t

− C2 − C1 x t + A2 − A1 f x t

+ B2 − B1 f x t − τ t + ϵ ∘ e t ,
5

or

e t = −C2e t + A2g e t + B2g e t − τ t − ΔCx t

+ ΔAf x t + ΔBf x t − τ t + ϵ ∘ e t ,
6

where

e t = e1 t ,… , en t T,

g e t = g e1 t ,… , g en t T,
7

with gi ei t = f i ei t + xi t − f i xi t , i = 1, 2,… , n
Obviously, using the assumption A1 , gi · has the

following properties:

gi ei ≤ ki ei 8

3. Adaptive Control Scheme

In this section, based on Lyapunov function and an
invariance principle by combining an adaptive control
approach, we consider the adaptive synchronization for two
CNSs with time-varying delay and parameter mismatches.
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Theorem 1. Suppose that χ = x ∈ Rn ∣ x ≤ α1 and the
parameter mismatches satisfy ΔC + ΔA + 1/1 − σ ΔB
K2 ≤ α2, where K =max1≤i≤n ki Under the assumptions
A1 and A2 , let α = α1 · α2 and the controller u t = ϵ
∘ y t − x t = ϵ ∘ e t with the following update law:

ϵi = −δi e2i +
α

ϵi + l
x2i t , 9

where δi > 0 i = 1, 2,… , n are arbitrary constants, and
l > 0 is a constant to be determined. Then, the controlled
uncertain response system (3) will globally synchronize
with the drive system (1).

Proof 1. Consider the following Lyapunov function for the
error dynamical system:

V t = eT t e t + 〠
n

i=1

1
δi

ϵi + l 2 +
1

1 − σ

t

t−τ t
gT e s g e s ds

+
1

1 − σ

t

t−τ t
f T x s ΔBTΔBf x s ds

10

Calculating the derivative of (10) along the trajectories
of (6), we have

V t = 2eT t e t − 2〠
n

i=1
ϵi + l e2i +

α

ϵi + l
x2i t

+
1

1 − σ
gT e t g e t +

1
1 − σ

f T x t ΔBTΔBf x t

−
1 − τ t
1 − σ

gT e t − τ t g e t − τ t

−
1 − τ t
1 − σ

f T x t − τ t ΔBTΔBf x t − τ t

≤ 2eT t −C2e t + A2g e t + B2g e t − τ t

− 2eT t ΔCx t + 2eT t ΔAf x t

+ 2eT t ΔBf x t − τ t + 2eT t ϵe t

− 2〠
n

i=1
ϵi + l e2i +

α

ϵi + l
x2i t +

1
1 − σ

gT e t g e t

+
1

1 − σ
f T x t ΔBTΔBf x t

− gT e t − τ t g e t − τ t

− f T x t − τ t ΔBTΔBf x t − τ t

≤ 2eT t −C2e t + A2g e t + B2g e t − τ t

− 2eT t ΔCx t + 2eT t ΔAf x t

+ 2eT t ΔBf x t − τ t − 2α〠
n

i=1
x2i t − leT t e t

+
1

1 − σ
gT e t g e t +

1
1 − σ

f T x t ΔBTΔBf x t

− gT e t − τ t g e t − τ t

− f T x t − τ t ΔBTΔBf x t − τ t

11

Using (8) and the Lemma 2 in [21], one can obtain

2eT t A2g e t ≤ eT t A2A
T
2 e t + gT e t g e t , 12

2eT t B2g e t − τ t ≤ eT t B2B
T
2 e t

+ gT e t − τ t g e t − τ t ,
13

−2eT t ΔCx t ≤ e t + ΔC x t , 14

2eT t ΔAf x t ≤ e t + ΔA K2 x t , 15

2eT t ΔBf x t − τ t ≤ e t + f T x t − τ t ΔBTΔBf
x t − τ t ,

16

1
1 − σ

f T x t ΔBTΔBf x t ≤
1

1 − σ
ΔB K2 x t

17

Substituting (12), (13), (14), (15), (16), and (17) into
(11) and combining

ΔC + ΔA +
1

1 − σ
ΔB K2 x t ≤ 2α 18

yield

V t ≤ eT t −2C2 + A2A
T
2 + B2B

T
2 + 3 − l I e t

+ gT e t g e t + 1
1 − σ

gT e t g e t

≤ eT t 2λmax −C2 + λmax A2A
T
2 + λmax B2B

T
2

+ K2 +
1

1 − σ
K2 + 3 − l e t

19

We properly choose the constant l as

l = 2λmax −C2 + λmax A2A
T
2 + λmax B2B

T
2

+ K2 +
1

1 − σ
K2 + 4,

20

then we have V ≤ −eT t e t
It is obvious that V = 0 if and only if ei = 0, i = 1, 2,… , n

It implies that the set E = e t , ϵ T ∈ R2n e t = 0, ϵ =
ϵ0 ∈ Rn is the largest invariant set included in M = V = 0
for system (6). Then, using the well-known Lyapunov-
LaSalle-type theorem, the error converges asymptotically to
E, that is, e t → 0 and ϵ→ ϵ0 as t→∞ Therefore, the
synchronization of the CNSs (1) and (3) is achieved under
the coupling (9). The proof is completed.

For the coupled CNSs without time-varying delay (i.e.,
B1 = 0 in (1) and B2 in (3)), one can easily derive the
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following corollary for two CNSs without delay (drive system
and response system, resp.):

x t = −C1x t + A1 f x t + J , 21

and

y t = −C2y t + A2 f y t + J + ϵ ∘ y t − x t 22

Corollary 1. Suppose that χ = x ∈ Rn ∣ x ≤ α1 and the
parameter mismatches satisfy ΔC + ΔA K2 ≤ α2, where
K =max1≤i≤n ki Under the assumptions A1 and A2 ,
set α = α1 · α2 and the controller u t = ϵ ∘ y t − x t = ϵ ∘
e t with the following update law:

ϵi = −δi e2i +
α

ϵi + l
x2i t , 23

where δi > 0 i = 1, 2,… , n are arbitrary constants; l is
chosen as

l = 2λmax −C2 + λmax A2A
T
2 + K2 +

1
1 − σ

K2 + 3

24

Then, the controlled uncertain response system (3) will
globally synchronize with the drive system (1).

Remark 1. It is noted from Theorem 1 that one can choose
the constant δi properly to adjust the synchronization
speed. Large adaptive gain δi will lead to fast synchroniza-
tion, while small adaptive gain δi will result in slow synchro-
nization. In addition, such a way is robust against the
effect of noise. An extension effort that extends the results
for systems with hybrid characteristics as in [7, 22–24] is
possible, which remains an open problem.

Remark 2. In [9, 11, 13], the derived results are applicable
for CNSs with parameter matches. While the results here
are suitable for parameter mismatches. Therefore, our
results have more expansive application foreground. In
addition, using adaptive feedback method, the criterion
obtained here improves and extends the results reported
in [9, 11, 13].

4. Numerical Simulations

In this section, a numerical example is employed to illustrate
our results. Simulation results show that the proposed
adaptive synchronization scheme is valid.

Example 1. Consider the following two-order CNSs with
time-varying delay:

x t = −C1x t + A1 f x t + B1 f x t − τ t + J , 25

with

C1 =
1 0

0 1
, A1 =

2 1 −0 12

−5 1 3 2
, B1 =

−1 6 −0 1

−0 2 −2 4
, J =

0

0
,

26

and
τ t = et/ 1 + et , where x t = x1 t , x2 t T, f x t =

tanh x1 t , tanh x2 t T

It is seen that k1 = k2 = 1, and thus K = 1 Moreover,

τ∗ = 1, τ t =
et

1 + et 2 ∈ 0,0 5 , 27

that is, σ = 0 5 Therefore, A1 and A2 hold.

Note that the neural system in this example is chaotic.
Figure 1 shows the phase plot of the CNS, and Figure 2
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Figure 1: Attractor of neural network model [21].

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Frequency (Hz)

Po
w

er
 sp

ec
tr

al

Figure 2: Power spectral plot of neural network model [21].
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illustrates the power spectral with initial values ϕ1 s = −0 5
and ϕ2 s = 0 3, ∀s ∈ −1, 0 It is found in Figure 1 that the
double-scroll attractor is confined within the set.

χ = x = x1, x2 T ∣ −1 ≤ x1 ≤ 1, −5 ≤ x2 ≤ 5 28

In this case, it is verified that α1 ≃ 5 0990
To verify the effectiveness of the proposed method, con-

sider the output signals of drive system in CNS (25). Then,
the controlled response system is given by

y t = −Cy t + Af y t + Bf y t − τ t + J + u t ,
29

where τ t = 1 + 1/2 sin t , y t = y1 t , y2 t T and

C2 =
1 1 0

0 0 8
, A2 =

2 2 −0 1

−5 0 3 1
, B2 =

−1 7 −0 05

−0 3 −2 3
, J =

0

0

30

Therefore, we obtain

ΔC + ΔA +
1

1 − σ
ΔB K2 ≤ α2 = 0 7128, 31

then α = α1 · α2 = 3 6345

By Theorem 1, since

2λmax −C2 + λmax A2A
T
2 + λmax B2B

T
2 + K2 +

1
1 − σ

K2 + 4 = 48 9486,

32

take l = 50 Then, we can design the controller u t = ϵ ∘
y t − x t with the adaptive update laws

ϵ1 = −0 5 y1 t − x1 t 2 +
α

ϵ1 + l
x21 t ,

ϵ2 = −0 5 y2 t − x2 t 2 +
α

ϵ2 + l
x22 t

33

Here, the adaptive gains are taken as δ1 = δ2 = 0 5
Next, suppose the initial conditions are

ϕ1 s , ϕ2 s T = 0 2, 0 5 T, = ψ1 s , ψ2 s T

= −1 3, 2 1 T, s ∈ −1, 0 ,
34

respectively, and ϵ1 0 = ϵ2 0 = 0 The simulation results
are depicted in Figures 3–6. Figure 3 shows the temporal
evolution of states and errors for δ1 = δ2 = 0 5 When
δ1 = δ2 = 0 3, namely, decreasing the update gain of cou-
pling strength, Figure 4 shows the corresponding simula-
tion results and it is revealed that it takes longer to
achieve synchronization. From Figures 3 and 4, we found
that less time is needed to achieve synchronization when
larger δ1 and δ2 are taken. When δ1 = 0 and δ2 = 0 5,
Figure 5 shows the results for the case that only x2 is chosen
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Figure 3: The temporal evolution of each variable and the plot of synchronization errors when the adaptive gains are δ1 = δ2 = 0 5.
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as the drive signal. When δ1 = 0 5 and δ2 = 0, Figure 6 shows
the results for the case that only x1 is chosen as the drive
signal. It can be seen that the coupling between x1 and y1
would drive the two CNSs (25) and (29) synchronized, while
the coupling between x2 and y2 is invalid.

5. Conclusions

This paper has analyzed the adaptive synchronization
between two coupled CNSs with parameter mismatches by
applying an invariance principle and a simple adaptive
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Figure 5: The temporal evolution of each variable and the plot of synchronization errors driven only by the signal x2, and the synchronization
cannot be achieved in Example 1.
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feedback approach. Practical and less restrictive conditions
have been presented for adaptive synchronization of CNSs.
Numerical simulations of two-order-coupled CNSs have also
been provided to verify the usefulness and practicability of
proposed theoretical results.

Data Availability

The main results of our work are proved in detail, which can
be seen in the context. All data related to the simulation part
of our results are given in Section 4. The readers can replicate
the analysis clearly.
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