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Abstract

This paper considers a natural dynamic auction mechanism in the context of private provision of

a discrete public good under incomplete information. There are two bidders with private valuations,

and the cost of the public good is common knowledge. No bidder is willing to provide the good on

his own. We show that a natural application of open ascending auctions in such environments fails

dramatically: The probability of provision is zero in any equilibrium. The mechanism e¤ectively

auctions o¤ the �right�to be the last one to contribute, but intuition suggests that neither player

wishes to be the last one to contribute. Since the player who contributes �rst has the advantage of

being able to free ride on the contribution of the other player, no player wants to win the auction. In

the light of this intuition, we consider an alternative mechanism in which the �right�to contribute

�rst is sold in the �rst stage, and in the second stage players are playing a sequential contribution

game with the order determined in the �rst stage. We show that under weak conditions, this

mechanism weakly outperforms the sequential contribution mechanism with exogenous order, in

terms of the probability of provision.
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1 Introduction

Auction mechanisms have proven to be very useful for allocating private goods under asymmetric

information. They are also very simple and familiar. Thus it seems natural to consider auction

mechanisms as a way of modeling private provision of public goods. In this paper, we study several

plausible auction mechanisms for public goods and analyze their e¢ ciency properties.

Of course, the mechanisms considered here cannot improve on the optimal mechanism for the

provision of a public good. However, as Ledyard and Palfrey (1999) observe, optimal mechanisms

in this setting involve complicated transfer schemes. Hence these mechanisms seem implausible as

a description of private provision of public goods. One can respond to this problem by identifying

simple and plausibly private mechanisms which achieve the outcome of the optimal mechanism on at

least some restricted domain, an approach followed by Barbieri and Malueg (2008).1 Alternatively,

one can consider simple and plausibly private mechanisms which perform well globally. We adopt the

latter approach and consider the use of auctions as a mechanism for private provision of public goods

under incomplete information.

We focus on discrete public goods where the provision decision is only whether or not to produce

the good. A street light, public radio fund-raising to �nance a certain program, a toll-free bridge are

typical examples of a discrete public good. The cost of providing the good is publicly known and each

agent has a privately known valuation for the good. We show that there is no provision in a natural

adaptation of open ascending auctions where drop out prices are the contributions. In the light of this

result, we propose an alternative mechanism in which the �right�to contribute �rst is auctioned o¤

before the contributors play a sequential contribution game and show that under weak conditions, this

mechanism performs better than the well-known sequential contribution mechanism with exogenous

order.2

In the open ascending auction mechanism we consider, each bidder, observing the ascending price

and whether the other bidder has dropped out or not, drops out at his preferred price. A bidder�s

contribution is his drop out price; that is, we have an all-pay feature. Otherwise, there is no hope for

1They show that, restricting attention to piecewise-linear equilibrium, the subscription game, a contribution game
with full refunds when there is no provision, achieves the outcome of the optimal mechanism.

2The contributions towards a discrete public good or a project of common interest are often collected according to a
given order. The donors are contacted following an order to collect their contributions to charities during fundraising.
In 1995, the Governor of Wisconsin o¤ered $27 million to �nance a new $72 million basketball arena for the University
of Wisconsin, on the condition that the rest of the money be raised by private donations. That is, the Governor was the
�rst mover and the private donations were the second.
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provision simply because no bidder is willing to provide the good on his own. If the contributions add

up to a level at least as big as the cost of the public good, then the good is provided. Otherwise there

is no provision and no payments are made.3 The reason for the probability of provision being zero in

any equilibrium in this open ascending auction mechanism is the following. Because of the sequential

nature of the contributions, each bidder is eager to be the �rst one to contribute in order to free ride

on the contribution of the other bidder. By committing to a low level of contribution, a bidder can

force the other to contribute the rest of the cost. Therefore no bidder is willing to win the auction;

that is, no bidder wants to be the last one to drop out. Hence the bids are too low and as a result

there is no provision. This is particularly striking, because although the �rst bidder to drop out is

able to free ride on the other bidder, he also faces the risk that the other bidder may not value the

public good enough for it to be provided.

We also consider a natural variation of the open ascending auction described above and check if

our result still holds. In this variation, the auction stops once the �rst bidder drops out and the other

bidder simply decides whether to pay the rest of the cost or not. The di¤erence between the two

auctions is that in the original format the second bidder to drop out has to pledge an amount at least

as big as the drop out price of the �rst bidder. In the variation, the second bidder is not constrained

by the bid of the other bidder from below and hence can pledge any amount he wants. The reason

we consider this variation is the following. In the original mechanism, bidders are reluctant to wait

until the price reaches a high level, because if there is provision, the second bidder to drop out has to

pay his drop out price which might be larger than his value. However, such a possibility of a negative

payo¤ is not present in the variation described. A bidder can always choose not to contribute the

rest if he is not the �rst to drop out, thus avoiding the possibility of a negative payo¤. Therefore, the

bidders may wait longer to drop out in this variation than they would wait in the original mechanism.

However, we show that our result still holds; that is, there is no provision of the public good in this

variation.

The alternative mechanism we propose in the light of this strong ine¢ ciency of the open ascending

auction works as follows. First, the right to contribute �rst is auctioned o¤ through a second price

sealed-bid auction. The winner pays the loser�s bid and earns the right to contribute �rst. Then,

bidders play a sequential contribution game with the order determined in the auction. The idea

3With a full refund feature, contributors are not worried about potential negative payo¤s. Hence they tend to
contribute more relative to the no refund case.
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behind this mechanism is the following. We have seen that the bidders value being the �rst one to

contribute and hence to get a chance to free ride on the other bidder�s contribution. Since what is

being auctioned o¤ should be valuable to the bidders, we auction o¤ the right to contribute �rst. This

way the winner pays a price in order to free ride on the other bidder�s contribution. We show that

our mechanism under weak conditions, weakly outperforms the sequential contribution mechanism

with exogenous order, the benchmark mechanism, in terms of the probability of provision. That is,

the benchmark mechanism never generates a probability of provision that is strictly higher than the

probability of provision in our mechanism. This is because in our mechanism, if there is no payment and

no information revelation, the bidders play the sequential contribution game with the same strategies

as in the benchmark mechanism. If some information is revealed to the winner, then the probability

of provision can only weakly increase. We also provide an example where our mechanism generates a

strictly higher probability of provision than the benchmark does.

This paper is related to a number of other papers in the literature. Varian (1994) considers

a sequential contribution game under complete information and argues that the ability of the �rst

mover to credibly commit to a certain level of contribution aggravates the free rider problem. Bag

and Roy (2008), on the other hand, show that under incomplete information about individual private

valuations for the public good, a sequential contribution mechanism may perform better than the

simultaneous contribution game, in terms of total expected contributions. Both papers work with

continuous public goods. Alboth, Lerner, and Shalev (2001) and Menezes, Monteiro and Temimi

(2001) use tools familiar from auction theory and study continuous equilibria in the private provision

game. Barbieri and Malueg (2008) consider a pro�t maximizing seller with a degree of altruism and

restrict analysis to piecewise-linear equilibria. They show that the seller chooses the �subscription

game,�a simultaneous contribution game with full refunds as the optimal provision mechanism within

the restricted domain. Deb and Razzolini (1999) use auction-like mechanisms to allocate excludable

public goods.

2 The Model

There are two bidders, A and B: Each bidder i assigns a value xi; the realization of a random variable

Xi 2 [0; 1]; to the public good. Each Xi is independently and identically distributed on [0; 1] according

to the cumulative distribution function F (�) which has full support. The associated density function is
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f(�). Bidders are risk neutral. Bidder i knows only the realization xi 2 Xi and that the other bidder�s

value is independently distributed according to F (�): The cost of providing the public good is given

by a constant c such that 1 < c < 2: Note that no bidder is willing to provide the public good on his

own. Also note that there are some combinations of valuations for which it is e¢ cient to provide the

good as well as other combinations for which it is not e¢ cient to do so. All of the above is common

knowledge to both bidders.

We will �rst consider an open ascending auction in which bidders pay their drop-out prices and

these payments are contributed towards the provision of the public good. This is a natural way to

think about dynamic auctions in the public good setting. Then, using the insights from the auction

mechanism mentioned above, we will propose another mechanism in which the right to contribute �rst

is auctioned o¤. The winner pays the other bidder�s bid and gets to contribute �rst in the sequential

contribution game following the auction. In both mechanisms, the payments are fully refunded if the

public good is not provided, that is, if the total contribution is less than the cost of the public good.

3 All-pay open ascending auction

The rules of the auction are as follows. The auctioneer sets the price at zero and continuously raises

it. Each bidder observes the ascending price and drops out at his preferred price. Bidders may drop

out at any price, but once they do so, they cannot reenter the auction. The auction ends when there

is no active bidder; that is, when both bidders have dropped out. When the auction is over, if the sum

of the prices at which the bidders have dropped out is at least as big as the cost, c; the public good is

provided and each bidder pays his own drop out price. If the sum of the drop out prices is more than

c; the excess contribution is kept by the auctioneer. If the sum of the drop out prices is less than c;

then the public good is not provided and no payments are made. If the bidders drop out at the same

price, the auctioneer selects one of the bidders to be the �rst one to drop out by a fair coin toss.4 ;5 If

the public good is provided, bidder i gets a payo¤ xi � b where b is his drop out price. If the good is

not provided, each bidder receives zero:

Note that every bidder pays his own bid. If we let the bidder who drops out �rst pay nothing,

then there is no hope for provision of the public good simply because no bidder provides the good on

4Since we will allow bidding functions that are constant over some range, we need a tie-breaking rule.
5A natural alternative assumption would be that if both bidders drop out at the same price, then the auction ends.

We conjecture that our result carries over to this case.
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his own. Hence a natural adaptation of open ascending auctions to the context of a discrete public

good provision has to have an all-pay element: we have to make the bidder who drops out �rst pay

some amount, and a natural amount is his own bid.

A strategy for bidder i is a pair denoted (�i1; �i2); where �i1 : [0; 1]! R+; and �i2 : [0; 1]�R+ !

R+: �i1(x) is bidder i�s drop out price given that the other bidder has not dropped out yet. �i2(x; b1)

is his drop out price given that the other bidder has already dropped out at price b1. So we require

�i2(x; b1) � b1:

Our equilibrium concept is Perfect Bayesian Equilibrium, equilibrium henceforth. An equilibrium

is a strategy pro�le ((�A1; �A2); (�B1; �B2)) and beliefs f(�jb1) such that at any stage of the game,

strategies are optimal given the beliefs, and the beliefs are obtained from equilibrium strategies and

observed actions using Bayes�rule whenever possible.

The bidder who drops out second, essentially chooses between staying active until the price reaches

a level which is enough to cover the rest of the cost or dropping out before the price reaches that level.

Therefore, in any equilibrium, �i2(�; �) takes the following form

�i2(xi; b1) =

8>>>><>>>>:
c� b1 if b1 < c=2 and xi � (c� b1) � 0

b 2 [b1; c� b1) if b1 < c=2 and xi � (c� b1) < 0

b1 if b1 � c=2

Note that no payments are made in case the public good is not provided. So, if the �rst bidder�s bid is

not enough for the second bidder to be willing to cover the rest of the cost, the second bidder can drop

out at any price b less than c� b1; so that the public good is not provided. If the the �rst bidder drops

out at a price b1 equal to or higher than c=2; then there is provision regardless of the second bidder�s

drop out price. Thus, the second bidder drops out immediately at b1 to minimize his payment:

Since the equilibrium bidding function, �i2(xi; b1); for i = A;B; is already given above, we only

need to focus on �i1(xi). So whenever we talk about an equilibrium, we will specify only �i1(xi);

i = A;B; omitting �i2(xi; b1) to save space. For ease of notation, we will drop the subscript 1 and

write �i(�): If i = A(B); then �i will denote bidder B(A): Also, instead of xi and x�i; we will use x

and y; respectively, to avoid the subscripts: We will let ��1i denote �i�s inverse. In what follows, we

will use the terms drop out price and bid interchangeably, as well as the terms contributor and bidder.

Finally we will denote the expected payo¤ of bidder i from bidding b when his value is x and bidder
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�i bids according to ��i(�) by �i(x; b; ��i).

The payo¤ for bidder i with value x when he bids b is given by

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

x� ��i(y) if b � ��i(y) � c=2

(x� (c� ��i(y)))Ix�(c���i(y))�0 if b > ��i(y) and ��i(y) < c=2

x� b if c=2 � b < ��i(y)

x� b if b < ��i(y), y + b > c and b < c=2

0 if b < ��i(y), y + b < c and b < c=2

1=2(x� (c� ��i(y)))Ix�(c���i(y))�0 + 1=2(x� b)Iy+�i(x)�c if b = ��i(y) < c=2

where

IA(x;y) =

8><>: 1 if x; y satisfy condition A(x; y)

0 if otherwise

If bidder i is the last one to drop out and the �rst bidder has dropped out at a price less than c=2,

then his payo¤ is zero if he chooses not to pay the rest of the cost and x� (c� ��i(y)) if he chooses

to pay the rest. If bidder i is the last one to drop out and the �rst bidder has dropped out at a price

higher than c=2, then he drops out immediately at the �rst bidder�s drop out, thus there is provision

and his payo¤ is x� ��i(y): If he is the �rst one to drop out, then he gets a payo¤ x� b if the other

bidder contributes the rest, and zero otherwise.6

Below we introduce a de�nition which simpli�es the analysis.

De�nition 1 Let ��i be the probability measure over f�i(x)jx 2 [c � 1; 1]g: Then de�ne �i = max

supp(��i), where supp(��i) is the support of ��i :

Consider an equilibrium, (�A(�); �B(�)); with �i � c�1 for some i 2 fA;Bg: In such an equilibrium,

there is no provision. To see this, �rst note that if a bidder is bidding above c � 1 when his value is

less than c � 1; then he must be the second to drop out almost everywhere. Otherwise he receives a

negative payo¤ when he is the �rst one to drop out and zero when he is the second to drop out. Thus,

he deviates to a bid below c � 1 and get zero payo¤. Now, if �i � c � 1; then bidder �i; if he is the

second to drop out, will not pay the rest of the cost since valuations are at most 1: If bidder �i is the

�rst one to drop out, then his bid must be less than c� 1: Thus, bidder i will not pay the rest of the
6 If bidder i is the �rst to drop out with a drop out price b less than c=2; then it is irrelevant whether the other bidder

has a value y such that y + b = c: This is because such an event has probability zero. Thus, we omit the case y + b = c:
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cost. Thus, there is no provision of the public good and both bidders get zero payo¤. We call such an

equilibrium a trivial equilibrium as stated in the following de�nition.

De�nition 2 A trivial equilibrium is an equilibrium, (�A(�); �B(�)); such that �i � c � 1 for some

i 2 fA;Bg:

A trivial equilibrium always exists. Any (�A(�); �B(�)); such that �i(x) � c� 1 for all x; for both

i = A;B is a trivial equilibrium. To see this, �rst note that both bidders get zero payo¤ since there

is no provision of the public good. Given that bidder i uses a strategy �i(x) such that �i(x) � c� 1

for all x; bidder �i has no pro�table deviation. This is because the good will never be provided even

if bidder �i drops out at a price higher than c� 1 for some positive measure set of values.

Now we will study the set of equilibria of the auction described above. In particular, we will show

that the probability of provision is zero in any equilibrium, through a series of lemmas. The �rst

lemma says that, given that the other bidder has not dropped out yet, bidder i will drop out before

the price exceeds half of the cost.

Lemma 1 Consider a non-trivial equilibrium, (�A(�); �B(�)): Then �i(x) � c=2 for all x 2 [0; 1]; for

i = A;B:

Proof. If no one has dropped out yet when the price hits c=2; it is optimal to drop out immediately

at c=2. This is because the other bidder will have to pay at least c=2, since bidders pay their drop out

price in case the good is provided. Therefore, bidders will wait at most until the price hits c=2:

Note that the price at which a bidder drops out given that the other bidder has already dropped

out can be above c=2:

To show that there exists no non-trivial equilibrium, we will �rst focus on equilibrium bidding

functions which are non-decreasing. The following lemma below shows that in a non-trivial equilibrium

with non-decreasing bidding functions both bidders receive a positive expected payo¤ for large enough

valuations.

Lemma 2 Consider a non-trivial equilibrium, (�A(�); �B(�)); with non-decreasing bidding functions.

Then �i(x; �i(x); ��i) > 0 for all x 2 (c� 1; 1]; for i = A;B:

8



Proof. Suppose (�A(�); �B(�)) is a non-trivial equilibrium. By de�nition �i > c � 1 for i = A;B.

Suppose that bidder i with a value x 2 (c� 1; 1] receives a zero expected payo¤, �i(x; �i(x)) = 0: But

then bidder i could deviate to a bid c� 1+ "; for some small " > 0 such that c� 1+ " < minfxi; ��ig

and get a positive expected payo¤. To see this, note that the fact that this bid is strictly below ��i

and the fact that ��i is non-decreasing implies that there is a positive measure set of values of bidder

�i, say [1 � �; 1]; such that bidder �i drops out second when i makes this bid. Since �i would pay

the rest of the cost whenever his type is in (1 � "; 1]; we see that the public good is provided and

i�s payo¤ is strictly positive when �i�s value is in (maxf1 � �; 1 � "g; 1]; a set with strictly positive

measure. Since an equilibrium expected payo¤ can never be strictly smaller than the expected pro�t

from a deviation, the result follows.

The next lemma says that in the relevant range, no bidder bids more than his valuation for the

public good in a non-trivial equilibrium with non-decreasing bidding functions

Lemma 3 Consider a non-trivial equilibrium, (�A(�); �B(�)), with non-decreasing bidding functions.

Then �i(x) � x for all x 2 (c� 1; 1]; for i = A;B:

Proof. Suppose �i(bx) > bx for some bx 2 (c� 1; 1]: Suppose the price has just hit his value bx: If bidder
�i drops out at this instant, then bidder i�s payo¤ is zero. To see this, note that bidder �i pays bx and
bidder i pays at most bx; making at most 2bx in total. For it to be possible for bidder i to bid above
bx, we must have bx < c=2, so 2bx < c: Hence the public good is not provided. If bidder �i does not

drop out at bx; then bidder i�s expected payo¤ is strictly negative unless the probability of provision
is zero. To see this, note that if the public good gets provided, then bidder i will have to pay at least

the lower of the two drop out prices. If he is the �rst to drop out, he pays his bid which is above bx: If
he is the second to drop out he pays the rest of the cost which is at least c=2 thus strictly bigger than

bx: Hence when the price reaches bx; bidder i will only keep being active if the probability of provision
is zero conditional on price reaching bx. Thus, his expected payo¤ is zero. But we know from Lemma

2 that this cannot be the case in a non-trivial equilibrium with non-decreasing bidding functions.

When �i(x) is non-decreasing almost everywhere over the range (c�1; 1], de�ne xi to be the value

such that �i(x) � c�xi almost everywhere over the range (xi; 1]; and �i(x) � c�xi almost everywhere

over the range (c� 1; xi):7 Let bi = c� xi: y�i and b�i are de�ned analogously.
7 If �i(x) � c � 1 for almost all x; then xi = 1: If �i(x) � c for almost all x; then xi = 0: In any other case, there
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Lemma 4 Consider a non-trivial equilibrium, (�A(�); �B(�)); with bidding functions non-decreasing

almost everywhere over the range (c�1; 1]. Then �i(x) � b�i; for almost all x 2 (c�1; 1], for i = A;B:

Proof. See Appendix A.

The intuition for Lemma 4 is as follows. Suppose bidder i has a value x less than y�i; that is,

c�x > b�i: Suppose bidder i�s bid b is such that c�x > b > b�i: If he is the �rst to drop out, then he

gets a payo¤ of x�b > 0 since �i(y) � b > b�i implies y is such that y > c�b: If bidder i is the second

to drop out, then his payo¤ is zero as c� x > b � �i(y) implies x+ ��i(y) < c: As bidder i lowers his

bid, the range in which he is the �rst to drop out expands. Thus he receives a higher payo¤ over a

bigger range. Now suppose that bidder i�s bid b is such that b > c� x > b�i: If he is the �rst to drop

out, he gets a payo¤ x � b since �i(y) � b > b�i implies y is such that y > c � b. If he is the second

to drop out, then there is a range over which he gets x� c+ ��i(y) since b � �i(y) > c� x over some

range which implies x > c � �i(y): If he lowers his bid by ", the range over which he gets x � b + "

is bigger than the range over which he would get x � b; and the range where he gets x � c + ��i(y)

is smaller. Since b � c=2 by Lemma 1, we have x� b > x� c+ ��i(y). Thus, bidder i lowers his bid

b whenever b > b�i: A similar argument applies if bidder i has a value x bigger than y�i: Thus, in a

non-trivial equilibrium, no bidder i bids above b�i:

Lemma 5 There exists no non-trivial equilibrium, (�A(�); �B(�)); with bidding functions that are non-

decreasing almost everywhere over the range (c� 1; 1].

Proof. See Appendix A.

To see the idea behind Lemma 5, �rst note that Lemma 4 implies that �i(x) = b
�i for all x > yi

for i = A;B; and hence bi = b�i: Then any type of bidder i who bids bi will deviate by cutting his bid

by a small enough amount. By bidding bi, he is the �rst one to drop out with probability 1/2 for the

values y 2 [yi; 1] of bidder �i. By deviating to bi � "; where " > 0 is arbitrarily small, he is the �rst

one to drop out with probability 1 for all y 2 [yi; 1]: Note that the �rst bidder to drop out pays less

than c=2, while the other bidder pays more than c=2, and over the range [yi; 1] bidder i decreases the

probability of provision by only a small amount by cutting his bid by ": Hence the loss can be made

arbitrarily small by taking " su¢ ciently small while the net gain is bounded above by zero for all ":

exists a xi 2 (0; 1). To see this, �rst note that if there exist a value x0 such that �i(x0) = c � x0; then there is exactly
one such x0 and xi = x0 since �i is non-decreasing. If there is no such x

0; then there exists a unique value x00 such that
�i(x) > c� x00 for all x > x00; and �i(x) < c� x00 for all x < x00; since �i is non-decreasing. Thus xi = x00:
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Having showed that there is no non-trivial equilibrium with non-decreasing bidding functions, now

we focus on bidding functions that are decreasing over some range.

Lemma 6 Consider a non-trivial equilibrium, (�A(�); �B(�)): For any x1; x2 2 (c � 1; 1] such that

x1 < x2; if �i(x1) � x1 and �i(x2) � x2; then �i(x1) � �i(x2); for i = A;B:

Proof. See Appendix A.

The next lemma shows that in a non-trivial equilibrium with a bidding function that is decreasing

over some range, the probability of provision must be zero.

Lemma 7 In a non-trivial equilibrium, (�A(�); �B(�)); the probability of provision is zero.

Proof. Fix a non-trivial equilibrium, (�A(�); �B(�)). Suppose that the probability of provision is

strictly positive in this equilibrium. If the probability of provision is strictly positive when bidder

i has a valuation x; then the probability of provision must be strictly positive when bidder i has a

valuation x0 > x: Otherwise, bidder i�s payo¤ is zero when he has valuation x0; but he can deviate

to the bid of type x and have a strictly positive expected payo¤. Now de�ne x�i to be the in�mum

over the set of values of bidder i such that the probability of provision in this equilibrium is positive.8

Then, the probability of provision is strictly positive for all x 2 (x�i ; 1]. Note that x�i � c � 1; since

in any equilibrium the probability of provision is zero when x � c � 1: Since we assumed that the

equilibrium we �xed has a strictly positive probability of provision, x�i < 1: Using the argument in the

proof of Lemma 2 together with the fact that the expected payo¤ is strictly positive for any x 2 (x�i ; 1];

we conclude that for any x 2 (x�i ; 1]; �i(x) � x:9 By Lemma 6, �i(x) is non-decreasing over the range

(x�i ; 1]: Since probability of provision is zero for all x 2 [0; x�i ]; by a similar argument used in the proofs

of Lemma 4 and Lemma 5, we can show that this cannot be a non-trivial equilibrium. Therefore the

probability of provision cannot be strictly positive.

The following proposition sums up the results.

Proposition 1 In the all-pay open ascending auction, the probability of provision is always zero.
8Note that x�i depends on the equilibrium. To save space we write x

�
i instead of x

�
i (�A(�); �B(�)):

9The argument in Lemma 2 uses the fact that the expected payo¤ is positive, which is ensured by having non-
decreasing bidding functions. Here, however, even though we do not impose bidding functions to be non-decreasing, we
know that for any x 2 (x�; 1]; the expected payo¤ is strictly positive. Hence the argument in Lemma 2 applies.

11



The intuition for this result is as follows. First observe that in a sequential contribution game with

exogenous order, being the �rst one to contribute is advantageous since the �rst player to contribute,

by committing to a low level of contribution, can free ride, in expectation, on the other player�s

contribution. In the all-pay auction game, being the �rst to drop out is essentially being the �rst

contributor and hence advantageous. Thus, for a bidder who is the second to drop out it will be

pro�table to undercut the other�s bid to be the �rst one to contribute. This incentive to deviate

disappears only when almost all bids are less than c� 1 for values that are at least c� 1; that is when

the equilibrium is trivial.

3.1 A Variation

One natural variation of the mechanism discussed above is an auction procedure in which when the

�rst bidder drops out, the auctioneer stops the auction and then lets the other bidder simply decide

whether to pay the residual cost or not, given that the contribution of the bidder who dropped out is

his drop out price.

To be more precise, the mechanism works as follows. The auctioneer, starting at zero price,

continuously increases the price. Each bidder observes the ascending price and drops out at his

preferred price. Bidders may drop out at any price, but once they do so, they cannot reenter the

auction. If both bidders drop out at the same price, the auctioneer selects one of the bidders to be

the �rst one to drop out by a fair coin toss. When the �rst bidder drops out, the auction ends and

the price at which he drops out is his contribution. Then the other bidder, having observed the �rst

bidder�s contribution, chooses to contribute the rest or not. If the second bidder contributes the rest,

then the public good is provided. If not, then the good is not provided and no payments are made. If

the public good is provided, bidder i gets a payo¤ of xi � b where b is his contribution, and xi is his

valuation for the good. If the good is not provided each bidder receives a payo¤ of zero.

Call this mechanismM: MechanismM di¤ers from the all-pay open ascending auction mechanism

in the following way. In the all-pay open ascending auction, the second bidder to drop out has to

pledge at least as much as the drop out price of the �rst bidder. However, in mechanism M, the

second bidder to drop out can pledge any amount he likes.

The following proposition shows that there is no non-trivial equilibrium in mechanism M.

Proposition 2 In mechanism M, the probability of provision is always zero.
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Proof. See Appendix B.

4 Auctioning o¤ the right to contribute �rst

We have seen that a direct application of an open ascending auction format in a discrete public good

setting severely fails: There is no equilibrium with positive probability of provision. The problem

with such an auction mechanism is that the bidders do not value being the winner; that is, they do

not value being the second one to drop out. Instead, they like to be the �rst one to drop out which

enables them to credibly commit to a low contribution and hence free ride, in expected terms, on the

other bidder�s contribution. This suggests that we should be auctioning o¤ what is considered to be

valuable. Since being the �rst one to contribute is valuable for the bidders, we propose a mechanism

in which the right to contribute �rst is auctioned o¤ through a second-price sealed-bid auction. That

is, the winner gets to be the �rst one to contribute in a sequential contribution game following the

auction. Such a mechanism enables us to make the �rst contributor pay a price to be able to free ride

on the other bidder�s contribution.

We take the widely-studied sequential contribution mechanism with exogenous order as our bench-

mark mechanism. We show that for non-decreasing equilibria the mechanism where the right to con-

tribute �rst is auctioned o¤, under weak conditions, weakly outperforms the benchmark mechanism,

in terms of the probability of provision.10

The rules of the mechanism are as follows. In the �rst stage the right to contribute �rst is auctioned

o¤ through a second-price sealed bid auction. Each bidder simultaneously bids. The bidder with the

highest bid wins and pays the other bidder�s bid, b1:11 The payment made by the winner is used

towards the provision of the public good. In case there is a tie in the auction, the winner is picked

by a fair coin toss. In the second stage, the bidders play a sequential contribution game. First, the

winner of the auction contributes an amount, k1; on top of what he has already paid in the auction.

So his total contribution is b1 + k1: Then the loser of the auction contributes an amount, k2, after

observing the total contribution made by the winner, b1+ k1: If the total contribution, b1+ k1+ k2; is

high enough to cover the cost, c, then the public good is provided. Otherwise, the good is not provided

and no payments are made; that is, all payments and contributions are fully refunded. If the public

10Although we restrict attention to non-decreasing equilibria, we conjecture that all equilibria are non-decreasing.
11The winner observes b1:
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good is provided, then a bidder gets a payo¤ of x� b where x is his valuation for the public good and

b is his total contribution, which is the sum of the contribution he made in the second stage and the

price he paid in the auction in case he is the winner.

In what follows, we will call the mechanism described above the endogenous order mechanism

and the sequential contribution mechanism with exogenous order the random order mechanism.

A strategy in the endogenous order mechanism for bidder i is given by (�i; �i1; �i2); where �i :

[0; 1]! R+; and �i1 : [0; 1]� R+ � R+ ! R+: and �i2 : [0; 1]� R+ � R+ � R+ ! R+: �i(x) is bidder

i�s bidding strategy in the auction. Denote the price paid by the winner of the auction by b1; and the

bid of the winner by b2; and the contribution made by the winner in the sequential contribution game

by k1: Then �i1(x; b1; b2) and �i2(x; b1; b2; k1) are the contributions of bidder i; if he wins the auction

and if he loses it, respectively.

An equilibrium is a strategy pro�le ((�A; �A1; �A2); (�B; �B1; �B2)) and beliefs f(�jb1) such that

at any stage of the game, strategies are optimal given the beliefs, and the beliefs are obtained from

equilibrium strategies and observed actions using Bayes�rule whenever possible.12

In the second stage, the loser of the auction will simply decide to pay the rest of the cost or not,

given his valuation for the public good and the total contribution of the winner. This strategy is the

same for both bidders, so we can drop the i subscript. Hence �2(x; b1; b2; k1) is given by

�2(x; b1; b2; k1) =

8><>: c� b1 � k1 if x� (c� b1 � k1) � 0

k 2 [0; c� b1 � k1) otherwise

�i1(x; b1; b2) solves the following maximization problem

max
k
(x� k � b1)[1� F (c� b1 � kjb1)]

where F (�jb1) is the cumulative distribution function associated with the posterior beliefs f(�jb1). We

impose the following assumption on the density function in order to ensure that the objective function

in the above maximization problem is strictly concave on the equilibrium path.

Assumption 2f(x)
jf 0(x)j > 2� c for all x 2 [0; 1]:

An equilibrium is given by ((�A; �A1; �2); (�B; �B1; �2)) where �A1; �B1 and �2 are characterized

12The equilibrium concept is Perfect Bayesian Equilibrium as in the previous sections.
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above.

The random order mechanism has a unique equilibrium in which both players adopt the strategy

(�1(x); �2(x; k1)); where �1 : [0; 1] ! R+ and �2 : [0; 1] � R+ ! R+ are the contributions of the �rst

and second contributor given that the �rst contributor has already contributed k1; respectively. By

the same argument used for �i2(x; b1; k1) above, �2(�; �) is given by

�2(x; k1) =

8><>: c� k1 if x� (c� k1) � 0

k 2 [0; c� k1) otherwise

�1(x) solves the following maximization problem

max
�
(x� �) Pr(y � c� �)

By the assumption above, the objective function is strictly concave and the solution is

�1(x) = x�
1� F (c� �(x))
f(c� �(x))

where �(x) � 0:13 Denote the probability of provision generated in the equilibrium of the random

order mechanism by p�: The following proposition states that the random order mechanism can never

generate a strictly higher probability of provision than the endogenous order mechanism does.

Proposition 3 Assume that 2fjf 0j > 2�c >
f
jf 0jand f

0 < 0: Then, for any non-decreasing and symmetric

equilibrium of the endogenous order mechanism, the probability of provision is at least p�:

Proof. Pick a non-decreasing and symmetric equilibrium of the endogenous order mechanism. Pick

an arbitrary pair of valuations x and y such that x + y > c:14 Denote the contribution function of

the �rst contributor in the random order mechanism with �(�); and the contribution function of the

winner of the auction in the endogenous order mechanism with �(�); dropping b1 and b2 to save space.

Case 1: There is no provision in the random order mechanism regardless of the order. Then, clearly

endogenous order mechanism cannot do worse, simply because the probability of provision cannot be

negative.

13Otherwise, the left hand side of �1(x) = x� 1�F (c��(x))
f(c��(x)) is negative while the right hand side is x � 0:

14 If x + y < c; then the probability of provision is zero in both mechanisms. We ignore x + y = c because it is a
measure zero event.
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Case 2: There is provision in the random order mechanism regardless of the order. Then there

is also provision in the endogenous order mechanism. To see this, consider three subcases regarding

possible information revelation in the endogenous order mechanism.

Case 2.1: The winner infers nothing about the valuation of the loser. Then, the winner, after

paying b1 (the bid of the loser) will contribute maxf�(x)� b1; 0g in the second stage; that is, his total

contribution will be at least �(x): So, if there is provision in the random order mechanism; there is

also provision in the equilibrium of the endogenous order mechanism.

Case 2.2: The winner learns the exact value of the loser. Then the winner will contribute just as

enough to make the loser pay the rest in the second stage. So, if there is provision in the random

order mechanism; there is also provision in the equilibrium of the endogenous order mechanism.

Case 2.3: The winner infers that the valuation of the loser lies in a subinterval [a; d] of [0; 1] where

0 � a < d � 1. That is, the equilibrium bidding function of the loser is constant over the interval

[a; d]: Since we are looking at the equilibrium path, Bayes�rule implies that the posterior is

bf =
8><>: zf(s) if a � s � d

0 otherwise

where z = 1=
R d
a f(s)ds > 1: Consider three subcases.

Case 2.3.1: Suppose that c � �(x) � d: Then, the probability of provision in the random order

mechanism is zero. The probability of provision in the equilibrium of the endogenous order is positive

since c� �(x) � d:

Case 2.3.2: Suppose that a < c� �(x) < d: That is, c� d < �(x) < c� a: Note that �(x) satis�es

the �rst order condition

(x� �(x))f(c� �(x))�
Z 1

c��(x)
f(s)ds = 0

Hence,

(x� �(x)) bf(c� �(x))� Z d

c��(x)
bf(s)ds = zf(x� �(x))f(c� �(x))�

Z d

c��(x)
f(s)dsg

= z

Z 1

d
f(s)ds

� 0
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Then, the optimal �(x) is at least as big as �(x): Thus if there is provision in the random order

mechanism then there is also provision in the equilibrium of the endogenous order mechanism.

Case 2.3.3: Suppose that c��(x) � a: That is, c�d < c�a � �(x): Then for any � 2 [c�d; c�a];

we have � � �(x); so the strict concavity of the ex ante objective function implies

(x� �)f(c� �)�
Z 1

c��
f(s)ds > 0

Hence,

(x� �) bf(c� �)� Z d

c��
bf(s)ds = zf(x� �)f(c� �)�

Z d

c��
f(s)dsg

> z

Z 1

d
f(s)ds

� 0

Thus, the optimal �(x) is a corner solution, which is �(x) = c� a: That is, c� �(x) = a: Thus, there

is provision in the endogenous order mechanism because y 2 [a; d] implies y � c� �(x):

Case 3: There is provision in the random order mechanism for one order but not the other. Without

loss of generality, suppose there is provision when the bidder with valuation x contributes �rst but not

when the bidder with valuation y contributes �rst. Thus the probability of provision in the random

order mechanism given (x; y) is 1=2: We �rst prove that x > y: Let �(z) be the contribution of the

�rst player in the random order mechanism, characterized by

(z � �(z))f(c� �(z)) = 1� F (c� �(z))

De�ne G(z; �) = (z � �)f(c� �)� [1� F (c� �)] = 0: Then, by implicit function theorem

d�

dz
= �@G(z; �)=@z

@G(z; �)=@�
= � f(c� �)

@G(z; �)=@�

Note that @G(z; �)=@� < 0 because it is the second derivative of the ex ante objective function which

is strictly concave by the assumption 2f
jf 0j > 2 � c. If j@G(z; �)=@� j < f(c � �); then

d�
dz > 1: That is,

j � f 0(c � �)(z � �) � 2f(c � �)j < f(c � �) implies d�
dz > 1: Since @G(z; �)=@� < 0; we have

d�
dz > 1

if f 0(c � �)(z � �) + f(c � �) < 0; that is, f(c��)
jf 0(c��)j < z � � since f 0 < 0. Since 2 � c > f

jf 0j implies
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f(c��)
jf 0(c��)j < z � � ; we get

d�
dz > 1: Since there is no provision when bidder with valuation y moves �rst

we have x+ �(y) < c: Also since there is provision when bidder with valuation x moves �rst, we have

y+�(x) � c: Thus, y+�(x) > x+�(y): That is, �(x)�x > �(y)�y which implies x > y since �(z)�z

is strictly increasing.

Since x > y and the equilibrium is non-decreasing and symmetric, �(x) � �(y): If �(x) > �(y); then

bidder with valuation x wins and argument in case 2 applies, thus there is provision. If �(x) = �(y);

then the bidder with valuation x wins with probability 1=2: There is provision if he wins the auction;

that is, the provision probability in the endogenous order mechanism given (x; y) is 1=2:

So we have shown that in all cases the probability of provision given (x; y) in the endogenous order

mechanism is at least the probability of provision given this (x; y) in the random order mechanism.

Proposition 3 says that endogenous order mechanism weakly outperforms the random order mech-

anism in terms of provision probability, under weak conditions, when non-decreasing equilibria are

concerned. Below we provide an example in which the endogenous order mechanism generates a

strictly higher probability of provision than the random order mechanism does. Although the cu-

mulative density function speci�ed below does not have full support, we believe that this example

illustrates our point.

Example. Suppose there are three valuations xL; xM and xH such that 0 < xL < xM < xH < 1:

Assume that 2xL < c and xL + xM > c: Suppose that the probabilities are given by p(xs) = ps

where s 2 fL;M;Hg such that 0 < pL < pM < pH : Assume that pL =
c�2xL
xM�xL :

15 We �rst show

that ((�A; �A1; �2); (�A; �A1; �2)) is an equilibrium where �1 and �2 are given above and �i(x), for

i = A;B; is given as follows:

�i(x) =

8><>: 0 if x = xL

c=2 if x = xM or x = xH

Suppose also that the beliefs are such that any bid other than 0 and c=2 by the loser will make the

winner infer that the loser�s valuation is xH :

To check deviations, we start with the low type, xL: Bidder i with type xL will not deviate to

c=2: If he bids c=2, then with probability (1 � pL)12 he will win the auction and pay c=2 since there

is provision so no refund is made. But c=2 is strictly bigger than his value, xL. With probability

15Since xL + xM > c and 2xL < c; we have 0 < pL < 1:
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(1� pL)12 he will lose the auction and the other bidder, bidder j; will pay c=2 and contribute no more

in the second stage, because bidder j thinks that bidder i has value either xM or xH : Hence i�s payo¤

is zero in this case. With probability pL, he will win the auction but he will infer that the bidder j

has value xL; and hence there will be no point for bidder i to contribute any positive amount. Thus

bidder i�s expected payo¤ is

(1� pL)
1

2
(xL � c=2) + (1� pL)

1

2
(0) + pL(0) < 0

Hence bidding c=2 brings a negative expected payo¤. However, bidding 0 yields a non-negative ex-

pected payo¤. This is because, in case he loses the auction his payo¤ is non-negative and in case he

wins the auction his payo¤ is zero since there is no provision. The low type will not deviate to any

bid b 2 (0; c=2): If he does so, there will be no gain if the other bidder�s type is low. He makes sure he

wins the auction against low types but there will be no provision even if he wins. Against the types

xM and xH ; there is no gain either because the opponent will win the auction, paying less than c=2;

and will think that he has value xH : Hence the winner will not contribute more, so the low type will

not contribute the rest and his payo¤ will be zero. The low type will not deviate to any bid b > c=2:

This is true because if he bids higher than c=2; he does not gain when the other bidder has low value,

and has to pay c=2 when the other bidder�s value is either xM or xH ; just as for a deviation to c=2:

Now we check deviations by the xM type. If bidder i with type xM bids 0; then with probability

pL
1
2 he wins the auction and infers that the other bidder has type xL: Hence he contributes c�xL and

the other bidder contributes the rest. With probability pL 12 he loses the auction and bidder j does

not contribute any positive amount because bidder j believes that bidder i has value xL: Thus there

is no provision. With probability (1 � pL), bidder i loses the auction and bidder j has value either

xM or xH . Bidder j contributes c� xL because he believes bidder i has value xL: Thus the payo¤ for

bidder i is xM � (c� c+ xL): Therefore, the expected payo¤ for type xM from bidding 0 is given by

�(xM ; 0) = pL
1

2
(xM � (c� xL)) + pL

1

2
(0) + (1� pL)(xM � (c� c+ xL))

= pL
1

2
(xM + xL � c) + (1� pL)(xM � xL)
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The expected payo¤ for type xM from bidding c=2 is given by

�(xM ; c=2) = pL(xM � (c� xL)) + (pM + pH)
1

2
(xM � c=2) + (pM + pH)

1

2
(xM � c=2)

= pL(xM + xL � c) + (1� pL)
1

2
(xM � c=2)

These two expected payo¤s are the same when pL =
c�2xL
xM�xL : Therefore there is no incentive to deviate

to 0 by the xM type. Now check the deviations to any b 2 (0; c=2): There is no gain if the other bidder

has type xL: There is no gain if the other bidder has type xM or xH either, because he will pay c=2 in

any case, just like he does when he bids c=2: Any deviation above c=2 is not pro�table either. Again

there is no gain if the other bidder has type xL: Also, there is no gain if the other bidder has value

xM or xH either, again because he will pay c=2 in each case.

Finally we check deviations by type xH : Deviation to 0 is ruled out because �(xH ; c=2) � �(xH ; 0)

when pL � c�2xL
xH�xL . Since xH > xM ; we have pL =

c�2xL
xM�xL > c�2xL

xH�xL . Any other deviation is not

pro�table by the same argument given for type xM :

Now we specify pM ; xs and s 2 fL;M;Hg; and show that when the valuations are xL and xM ; there

is provision in the equilibrium given above, but there is no provision in the random order mechanism.

Suppose xL = c=2�"; xM = c=2+2"; xH = c�" and pM < 1
3
c�6"
c�4" : Note that the conditions 2xL < c=2

and xL + xM > c are satis�ed with these speci�c values. Also note that, pL =
c�2xL
xM�xL =

2
3 : In the

equilibrium described above, the xM type wins the auction, pays 0; and infers that the loser has value

xL. Then in the second stage he contributes c � xL; and there is provision. In the random order

mechanism, however, there is no provision when the values are xL and xM and the former is the �rst

one to contribute. To see this, �rst note that, the xL type will contribute either c� xM or c� xH : He

will contribute c� xH if

(1� pL � pM )(xL � (c� xH)) > (1� pL)(xL � (c� xM ))

that is,

(1� pL)(xH � xM ) > pM (xL + xH � c)

Plugging in the values, and arranging we get

1

3

c� 6"
c� 4" > pM
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Therefore, type xL will contribute only c� xH ; and the good will not be provided since type xM will

not pay the rest which is c� (c� xH) = xH :

5 Conclusion

In this paper, we explored the private provision of a discrete public good using auction mechanisms.

A natural open ascending auction severely failed. No bidder wanted to win the auction, so the drop

out prices were very low, leading to no provision at all. We then proposed an alternative mechanism

in which the right to contribute �rst was auctioned o¤, followed by a sequential contribution game.

This mechanism not only made the winner pay in order to free ride, but also endogenized the order.

We showed that this mechanism performed weakly better than the sequential contribution mechanism

with exogenous order.

6 Appendix A

Proof of Lemma 4. First, we consider the values of bidder i such that x < y�i = c � b�i: That

is, c � x > b�i: We will consider the values x > y�i later. For now, suppose that ��i(:) is strictly

increasing. We will come back to the case where it is weakly increasing later. Suppose bidder i bids

an amount b � b�i when his value is x: There are two cases, c� x � b � bj and b � c� x:

(1) c � x > b � b�i : For any y such that y < ��1�i (b); bidder �i drops out �rst and his drop out

price is less than c � x: Hence for such values of bidder �i; there is no provision. For values y such

that y > ��1�i (b); bidder i drops out �rst and his drop out price; b; is bigger than c� y: Hence there is

provision and bidder i gets x� b for such values of bidder �i: So the payo¤ for bidder i is

�i(x; b; ��i) =

Z 1

��1�i (b)
[x� b]f(y)dy = (x� b)[1� F (��1�i (b))]

As b decreases, (x � b) increases as well as [1 � F (��1�i (b))]: Therefore in the range c � x > b � b�i;

optimal bid is b�i:

(2) b � c � x > b�i : In this case, for values y; such that y < ��1�i (c � x) there is no provision

since bidder �i drops out �rst and his drop out price is less than c � x: For values y such that

��1�i (c�x) < y < �
�1
�i (b); bidder �i is still the �rst one to drop out, and his drop out price determines
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whether bidder i will contribute the rest or not. For values y such that y > ��1�i (b); there is provision

as explained above. So the payo¤ for bidder i is given by

�i(x; b; ��i) =

Z ��1�i (b)

��1�i (c�x)
[x� c+ ��i(y)]f(y)dy + (x� b)[1� F (��1�i (b))]

Suppose instead of b; bidder i bids b� "; where " > 0: Then the relevant payo¤ is given by

�i(x; b� "; ��i) =
Z ��1�i (b�")

��1�i (c�x)
[x� c+ ��i(y)]f(y)dy + (x� b+ ")[1� F (��1�i (b� "))]

Then

�i(x; b� "; ��i)� �i(x; b; ��i) = (x� b+ ")[1� F (��1�i (b� "))]� (x� b)[1� F (�
�1
�i (b))]

+

Z ��1�i (b�")

��1�i (c�x)
[x� c+ ��i(y)]f(y)dy �

Z ��1�i (b)

��1�i (c�x)
[x� c+ ��i(y)]f(y)dy

= (x� b)[F (��1�i (b))� F (�
�1
�i (b� "))]

+"[1� F (��1�i (b� "))]�
Z ��1�i (b)

��1�i (b�")
[x� c+ ��i(y)]f(y)dy

� (x� b)[F (��1�i (b))� F (�
�1
�i (b� "))]

+"[1� F (��1�i (b� "))]�
Z ��1�i (b)

��1�i (b�")
[x� c+ ��i(��1�i (b))]f(y)dy

= (x� b)[F (��1�i (b))� F (�
�1
�i (b� "))]

+"[1� F (��1�i (b� "))]� (x� c+ b)[F (�
�1
�i (b))� F (�

�1
�i (b� "))]

= (c� 2b)[F (��1�i (b))� F (�
�1
�i (b� "))] + "[1� F (�

�1
�i (b� "))]

> 0

The strict inequality follows from the fact that b � c=2 by Lemma 1, and that " > 0:

Therefore, the expected pro�t is strictly decreasing in b over the range [b�i; �i): Hence whenever

bidder i has a value x < y�i and ��i(:) is strictly increasing, he will never pick any bid higher than

b�i.

Now consider the case where ��i(y) = b for y 2 (y1; y2) � [y�i; 1]; for some y1; y2:16 Again we

consider two possible cases separately.

(1) c� x > b � b� i : Over the range (y1; y2) both bidders have the same bid, so with probability
16Since b > b�i; we do not need to consider the case where bids coincide for values y < y�i:
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1=2 bidder i gets to be the �rst one to drop out and gets a payo¤ of
R y2
y1
[x � b]f(y)dy; and with

probability 1=2 he gets to be the last one to drop out and gets a payo¤ of zero since b < c� x. Hence

the payo¤ when he bids b when he has value x is

�i(x; b; ��i) =
1

2

Z y2

y1

[x� b]f(y)dy +
Z 1

y2

[x� b]f(y)dy

However if he bids b� "; for an arbitrarily small " > 0; then his payo¤ is

�i(x; b� "; ��i) =
Z y2

ey1 [x� b+ "]f(y)dy +
Z 1

y2

[x� b+ "]f(y)dy

where ey1 is such that ��i(ey1) = b�" if ��i(:) is continuous at y1; and ey1 = y1 if ��i(:) is not continuous
at y1: For " > 0 small enough, �i(x; b � "; ��i) is strictly bigger than �i(x; b; ��i): Since any b such

that b > b�i is strictly dominated by b � "; any bid b 2 (c � x; b�i) cannot be optimal. Therefore,

bidder i bids b�i:

(2) b � c� x : De�ne y0 such that ��i(y0) = c� x:17 Then, bidder i�s payo¤ when he has value x

and bids b is given by

�i(x; b; ��i) =

Z y1

y0

[x� c+ ��i(y)]f(y)dy +
1

2

Z y2

y1

[x� b]f(y)dy + 1
2

Z y2

y1

[x� c+ b]f(y)dy

+

Z 1

y2

[x� b]f(y)dy

=

Z y1

y0

[x� c+ ��i(y)]f(y)dy +
Z y2

y1

[x� c=2]f(y)dy +
Z 1

y2

[x� b]f(y)dy

However, the bidder with value x can bid b � " and improve his payo¤. To see this, let�s �rst write

the payo¤ from bidding b� ":

�i(x; b� "; ��i) =
Z ey1
y0

[x� c+ ��i(y)]f(y)dy +
Z y2

ey1 [x� b+ "]f(y)dy +
Z 1

y2

[x� b+ "]f(y)dy

where ey1 is de�ned as in case 1 above.
17 If there is more than one such y0; then pick the smallest one. Also note that, the existence of y0 is not guaranteed

since ��i(:) is allowed to be discontinous. Even so, we can de�ne y0 to be the value at which ��i(:) has a jump with the
property that ��i(y) < c� x for all y < y0; and ��i(y) > c� x for all y > y0:
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If ey1 = y1; then �i(x; b� "; ��i) > �i(x; b; ��i) since
Z y2

ey1 [x� b+ "]f(y)dy >

Z y2

y1

[x� b]f(y)dy

�
Z y2

y1

[x� c=2]f(y)dy

where the last inequality follows from b � c=2:

If ey1 < y1; then �i(x; b� "; ��i) > �i(x; b; ��i) since
Z ey1
y0

[x� c+ ��i(y)]f(y)dy +
Z y2

ey1 [x� b+ "]f(y)dy
>

Z ey1
y0

[x� c+ ��i(y)]f(y)dy +
Z y2

ey1 [x� c=2]f(y)dy
>

Z y1

y0

[x� c+ ��i(y)]f(y)dy +
Z y2

y1

[x� c=2]f(y)dy

where the �rst inequality follows from the fact that x � b + " > x � c=2; and the second inequality

follows from the fact that x� c=2 � x� c+��i(y) and ey1 < y1: Therefore any bid b � c�x is strictly
dominated by b � ": Speci�cally c � x will be dominated by c � x � ": Hence we are back in case 1,

and optimal bid is b�i:

Now consider the values x > y�i: However in this case, there is only one region to check, which is

b > b�i; since c�x < b�i: By the same argument in case 2 above we can conclude that �i(x; b�"; ��i) >

�i(x; b; ��i); and hence any b > b
�i is dominated by b�i:

Proof of Lemma 5. First note that it is straightforward from Lemma 4 that bi = b�i. Therefore

we have �i(x) � bi for all x 2 [0; 1]: Since �i(:) is non-decreasing, de�nition of bi implies that

�i(x) = bi for any x > c � bi = yi: So we have shown that �i(x) = ��i(y) = b for x; y 2 [c � b; 1];

in a non-trivial equilibrium with non-decreasing bidding functions (In fact, we have not shown that

�i(c � b) = ��i(c � b) = b: However, if �i(c � b) < b and ��i(c � b) < b; then one of the bidders

deviates to b � "; which will be clear below). We argue that this cannot be the case in a non-trivial

equilibrium, simply because bidder i would deviate to b�" for some x where " > 0 is arbitrarily small.

To see this, �rst note that bidder i with value x when he bids b; gets a payo¤ of x� b with probability

1=2 and a payo¤ of x � c + b with probability 1=2: Note also that x � b � x � c + b since b � c=2:

However, dropping out at b � " generates a payo¤ of x � b + " over the range [c � b + "; 1]; and zero
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over [c� b; c� b+ "): So over the range [c� b; 1]; the net gain from deviating from b to b� " is equal to

Z 1

c�b+"
[x� b+ "]f(y)dy � f1=2

Z 1

c�b
[x� b]f(y)dy + 1=2

Z 1

c�b
[x� c+ b]f(y)dyg

= [x� b+ "][1� F (c� b+ ")]�
Z 1

c�b
[x� c=2]f(y)dy

= [x� b+ "][1� F (c� b+ ")]� [x� c=2][1� F (c� b)]

= [x� b][1� F (c� b+ ")]� [x� c=2][1� F (c� b)] + "[1� F (c� b+ ")]

This expression is positive for su¢ ciently small " > 0 since x � b � x � c=2:18 There is, however, a

potential loss over the range (ey; c� b) where ey is de�ned to be the solution to ��i(y) = b� " if there
is a solution; and if there is no solution ey is such that ��i(y) < b� " for all y < ey; and ��i(y) > b� "
for all c� b > y > ey: This loss, however, depends on ��i(y) for y < c� b; and there are three possible
cases. (1) ��i(:) is not continuous at c � b: Then ��i(y) < b for all y < c � b; which, together with

discontinuity, implies ey = c � b: Hence the loss is zero. Therefore the deviation to b � " is pro�table
for any x 2 [c � b; 1]. (2) ��i(:) is continuous at c � b, and ��i(y) < b for all y < c � b: Then the

loss from deviation is equal to
R c�bey [x � c + ��i(y)]f(y)dy: However, for x = c � b; this expression is

negative since ��i(y) < b for y < c � b: Hence the deviation to b � " is pro�table for x = c � b. (3)

��i(:) is continuous at c � b; and ��i(y) = b for y 2 (by; c � b);for some by 2 [0; c � b). Then the loss
is equal to 1=2

R c�bby [x � c + b]f(y)dy; which is zero when x = c � b: Hence, the deviation to b � " is

pro�table for x = c� b:

Proof of Lemma 6. Suppose that for bidder i we have, x1 < x2 and �i(x1) > �i(x2); and bidder

�i bids according to ��i(y):We will show that the bidding function �i(x) is not incentive compatible.

More precisely, we will show that �i(x2; �i(x2); ��i) � �i(x2; �i(x1); ��i) implies �i(x1; �i(x2); ��i) >

�i(x1; �i(x1); ��i), and hence we will conclude that such �i(x) cannot be decreasing over some set of

18 If b = c=2; the net gain over the range [c=2; 1] is equal to

[x� c=2][1� F (c=2 + ")]� [x� c=2][1� F (c=2)] + "[1� F (c=2 + ")]
= [F (c=2)� F (c=2 + ")][x� c=2] + "[1� F (c=2 + ")]

which is positive for x = c=2 and su¢ ciently small " > 0:
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values. To see this, �rst de�ne

YH = fyj��i(y) � �i(x1)g

YM = fyj�i(x1) > ��i(y) � �i(x2)g

YL = fyj�i(x2) > ��i(y)g

There are �ve cases de�ned in terms of the relative magnitudes between �i(xk) and c � xk; where

k = 1; 2:

(1) c� x1 > c� x2 > �i(x2); c� x1 > �i(x1): The relevant payo¤s are given as follows.

�i(x1; �i(x1); ��i) =

Z
YH\fyjy�c��i (x1)g

[x1 � �i(x1)]f(y)dy = [x1 � �i(x1)]P1

�i(x2; �i(x2); ��i) =

Z
(YH[YM )\fyjy�c��i (x2)g

[x2 � �i(x2)]f(y)dy = [x2 � �i(x2)]P2

�i(x1; �i(x2); ��i) =

Z
(YH[YM )\fyjy�c��i (x2)g

[x1 � �i(x2)]f(y)dy = [x1 � �i(x2)]P2

�i(x2; �i(x1); ��i) =

Z
YH\fyjy�c��i (x1)g

[x2 � �i(x1)]f(y)dy +
Z
YM\fyj��i (y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

= [x2 � �i(x1)]P1 +
Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

where P1 =
R
YH\fyjy�c��i (x1)g f(y)dy and P2 =

R
(YH[YM )\fyjy�c��i (x2)g f(y)dy:

Now, �i(x2; �i(x2); ��i) � �i(x2; �i(x1); ��i) implies

[x2 � �i(x2)]P2 � [x2 � �i(x1)]P1 +
Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

which implies [x2 � �i(x2)]P2 � [x2 � �i(x1)]P1; or P2 �
[x2��i (x1)]
[x2��i (x2)]P1:

19 Since x1 < x2; we have

P2 >
[x1��i(x1)]
[x1��i(x2)]

P1: This follows from the fact that

d

dx
(
[x� �i(x1)]
[x� �i(x2)]

) =
[x� �i(x2)� x+ �i(x1)]

[x� �i(x2)]
=
[�i(x1)� �i(x2)]
[x� �i(x2)]2

> 0

And P2 >
[x1��i (x1)]
[x1��i (x2)]P1 implies �

i(x1; �i(x2); ��i) > �i(x1; �i(x1); ��i): Note that, we implicitly as-

19Note that x2 > �i(x2); simply because x2 > x1 � �i(x1) > �i(x2):
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sumed that P1 > 0: However, if P1 = 0; then �i(x1; �i(x1); ��i) = 0 which contradicts with Lemma

2.

(2) c� x1 > �i(x1) > �i(x2) > c� x2: The relevant payo¤s are

�i(x1; �i(x1); ��i) = [x1 � �i(x1)]P1

�i(x2; �i(x2); ��i) = [x2 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

�i(x1; �i(x2); ��i) = [x1 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

�i(x2; �i(x1); ��i) = [x2 � �i(x1)]P1 +
Z
YM[(YL\fyj��i(y)�c�x2g)

[x2 � c+ ��i(y)]f(y)dy

�i(x2; �i(x2); ��i) � �i(x2; �i(x1); ��i) implies

[x2 � �i(x2)]P2 +
Z
YL\fyj��i (y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

� [x2 � �i(x1)]P1 +
Z
YM[(YL\fyj��i(y)�c�x2g)

[x2 � c+ ��i(y)]f(y)dy

which implies [x2��i(x2)]P2 � [x2��i(x1)]P1+
R
YM
[x2� c+��i(y)]f(y)dy: Hence [x2��i(x2)]P2 �

[x2 � �i(x1)]P1: And by a similar argument in case 1 above, we get [x1 � �i(x2)]P2 > [x1 � �i(x1)]P1;

which in turn implies

[x1 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy > [x1 � �i(x1)]P1

that is, �i(x1; �i(x2); ��i) > �
i(x1; �i(x1); ��i):

20

(3) �i(x1) > c� x1 > c� x2 > �i(x2): The relevant payo¤s are

�i(x1; �i(x1); ��i) = [x1 � �i(x1)]P1 +
Z
YM\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

�i(x2; �i(x2); ��i) = [x2 � �i(x2)]P2

�i(x1; �i(x2); ��i) = [x1 � �i(x2)]P2

�i(x2; �i(x1); ��i) = [x2 � �i(x1)]P1 +
Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

20 In case P1 = 0; then �i(x1; �i(x1); ��i) = 0: Hence the argument given in case 1 applies.
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�i(x2; �i(x2); ��i) � �i(x2; �i(x1); ��i) implies

[x2 � �i(x2)]P2 � [x2 � �i(x1)]P1 +
Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

) P2 �
[x2 � �i(x1)]
[x2 � �i(x2)]

P1 +
1

[x2 � �i(x2)]

Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

) P2 >
[x1 � �i(x1)]
[x1 � �i(x2)]

P1 +
1

[x2 � �i(x2)]

Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

) [x1 � �i(x2)]P2 > [x1 � �i(x1)]P1 +
[x1 � �i(x2)]
[x2 � �i(x2)]

Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

) [x1 � �i(x2)]P2 > [x1 � �i(x1)]P1 +
[x1 � �i(x2)]
[x2 � �i(x2)]

Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

+

Z
YM\fyj��i (y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy �
Z
YM\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

) �i(x1; �i(x2)) > �
i(x1; �i(x1)) +

[x1 � �i(x2)]
[x2 � �i(x2)]

Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

�
Z
YM\fyj��i (y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

We are done if we can show

Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]
[x2 � �i(x2)]

f(y)dy �
Z
YM\fyj��i (y)�c�x1g

[x1 � c+ ��i(y)]
[x1 � �i(x2)]

f(y)dy

First we will show that for any set of values Y � YM ; we have

Z
Y

[x2 � c+ ��i(y)]
[x2 � �i(x2)]

f(y)dy >

Z
Y

[x1 � c+ ��i(y)]
[x1 � �i(x2)]

f(y)dy

To see this,

d

dx

Z
Y

[x� c+ ��i(y)]
[x� �i(x2)]

f(y)dy =

Z
Y

d

dx

[x� c+ ��i(y)]
[x� �i(x2)]

f(y)dy

=

Z
Y

[x� �i(x2)� x+ c� ��i(y)]
[x� �i(x2)]2

f(y)dy

=

Z
Y

[c� �i(x2)� ��i(y)]
[x� �i(x2)]2

f(y)dy

> 0
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To see the last inequality, note that for any y 2 YM we have ��i(y) < �i(x1) � x1 and �i(x2) �

c� x2 < c� x1: Hence for any y 2 YM ; we have �i(x2) + ��i(y) < c: To conclude,

Z
YM\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]
[x2 � �i(x2)]

f(y)dy >

Z
YM\fyj��i(y)�c�x2g

[x1 � c+ ��i(y)]
[x1 � �i(x2)]

f(y)dy

�
Z
YM\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]
[x1 � �i(x2)]

f(y)dy

The last inequality above follows from YM \ fyj��i(y) � c� x1g � YM \ fyj��i(y) � c� x2g:21

(4) �i(x1) > c� x1 > �i(x2) > c� x2. The relevant payo¤s are

�i(x1; �i(x1); ��i) = [x1 � �i(x1)]P1 +
Z
YM\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

�i(x2; �i(x2); ��i) = [x2 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

�i(x1; �i(x2); ��i) = [x1 � �i(x2)]P2

�i(x2; �i(x1); ��i) = [x2 � �i(x1)]P1 +
Z
YM[(YL\fyj��i (y)�c�x2g)

[x2 � c+ ��i(y)]f(y)dy

�i(x2; �i(x2); ��i) � �i(x2; �i(x1); ��i) implies

[x2 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

� [x2 � �i(x1)]P1 +
Z
YM[(YL\fyj��i(y)�c�x2g)

[x2 � c+ ��i(y)]f(y)dy

21 If P1 = 0; then the proof still works because of the strict inequalityR
YM\fyj��i(y)�c�x2g

[x2�c+��i (y)]
[x2��i (x2)]

f(y)dy >
R
YM\fyj��i(y)�c�x1g

[x1�c+��i(y)]
[x1��i (x2)]

f(y)dy
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) [x2 � �i(x2)]P2 � [x2 � �i(x1)]P1 +
Z
YM

[x2 � c+ ��i(y)]f(y)dy

) P2 �
[x2 � �i(x1)]
[x2 � �i(x2)]

P1 +
1

[x2 � �i(x2)]

Z
YM

[x2 � c+ ��i(y)]f(y)dy

) P2 >
[x1 � �i(x1)]
[x1 � �i(x2)]

P1 +
1

[x2 � �i(x2)]

Z
YM

[x2 � c+ ��i(y)]f(y)dy

) [x1 � �i(x2)]P2 > [x1 � �i(x1)]P1 +
[x1 � �i(x2)]
[x2 � �i(x2)]

Z
YM

[x2 � c+ ��i(y)]f(y)dy

+

Z
YM\fyj��i (y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy �
Z
YM\fyj��i (y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

) �i(x1; �i(x2); ��i) > �
i(x1; �i(x1); ��i) +

[x1 � �i(x2)]
[x2 � �i(x2)]

Z
YM

[x2 � c+ ��i(y)]f(y)dy

�
Z
YM

[x1 � c+ ��i(y)]f(y)dy

Since �i(x2) < c� x1; for any y 2 YM ; we have �i(x2) + ��i(y) < c: So for any Y � YM ;

Z
Y

[x2 � c+ ��i(y)]
[x2 � �i(x2)]

f(y)dy >

Z
Y

[x1 � c+ ��i(y)]
[x1 � �i(x2)]

f(y)dy

Hence �i(x1; �i(x2); ��i) > �
i(x1; �i(x1); ��i):

22

(5) �i(x1) > �i(x2) > c � x1 > c � x2: Since �i � c=2 and ��i(y) < �i(x1) for any y 2 YM

we have �i(x2) + ��i(y) < c for any y 2 YM : Then the argument given in case 4 above proves

�i(x1; �i(x2); ��i) > �
i(x1; �i(x1); ��i):

23

22 If P1 = 0; the argument given in previous footnote works here too.
23To see this,

�i(x1; �i(x1); ��i) = [x1 � �i(x1)]P1 +
Z
YM[(YL\fyj��i(y)�c�x1g)

[x1 � c+ ��i(y)]f(y)dy

�i(x2; �i(x2); ��i) = [x2 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

�i(x1; �i(x2); ��i) = [x1 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

�i(x2; �i(x1); ��i) = [x2 � �i(x1)]P1 +
Z
YM[(YL\fyj��i (y)�c�x2g)

[x2 � c+ ��i(y)]f(y)dy

where P1 =
R
YH\fyjy�c��i (x1)g

f(y)dy and P2 =
R
YM\fyjy�c��i (x2)g

f(y)dy:Again, �i(x2; �i(x2); ��i) �
�i(x2; �i(x1); ��i) implies

[x2 � �i(x2)]P2 +
Z
YL\fyj��i (y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

� [x2 � �i(x1)]P1 +
Z
YM[(YL\fyj��i(y)�c�x2g)

[x2 � c+ ��i(y)]f(y)dy
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7 Appendix B

Lemma 8 Consider a non-trivial equilibrium, (�A(�); �B(�)); with non-decreasing bidding functions.

Then �i(x; �i(x); ��i) > 0 for all x 2 [c� 1; 1], for i = A;B:

Proof. Similar to the proof of Lemma 2.

We will �rst assume that for i = A;B; �i is non-decreasing over [0; 1] where �i is �nite, and show

that there is no non-trivial equilibrium within this domain. Later on, we will generalize this result

by allowing �i to be in�nite. Then we will consider the bidding functions which are decreasing over

a set of values, and show that there is no such non-trivial equilibrium. Finally we will rule out any

non-trivial constant bidding. Hence all equilibria will be trivial.

Lemma 9 Consider a non-trivial equilibrium, (�A(�); �B(�)); with non-decreasing bidding functions,

where �i is �nite: Then �i � c=2 for i = A;B:

Proof. Suppose �i > c=2: Then we will consider two cases: ��i > c=2 and c=2 � ��i:

(1) ��i > c=2 :

If ��i > �i; then bidder i, who drops out at �i(or arbitrarily close to �i; in case there is no value

for which he drops out at �i) would deviate to ��i + " where " > 0 is arbitrarily small. To see that

this is a pro�table deviation, note that for those bids of bidder �i which are already smaller than �i;

bidder i�s payo¤ is not a¤ected. This is because once he is the second one to drop out, his payo¤ is

) [x2 � �i(x2)]P2 � [x2 � �i(x1)]P1 +
Z
YM

[x2 � c+ ��i(y)]f(y)dy

) P2 �
[x2 � �i(x1)]
[x2 � �i(x2)]

P1 +
1

[x2 � �i(x2)]

Z
YM

[x2 � c+ ��i(y)]f(y)dy

) P2 >
[x1 � �i(x1)]
[x1 � �i(x2)]

P1 +
1

[x2 � �i(x2)]

Z
YM

[x2 � c+ ��i(y)]f(y)dy

) [x1 � �i(x2)]P2 > [x1 � �i(x1)]P1 +
[x1 � �i(x2)]
[x2 � �i(x2)]

Z
YM

[x2 � c+ ��i(y)]f(y)dy

�
Z
YM\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

) �(x1; �(x2); ��i) � [x1 � �(x2)]P2 > �(x1; �(x1); ��i)

+
[x1 � �(x2)]
[x2 � �(x2)]

Z
YM

[x2 � c+ ��i(y)]f(y)dy �
Z
YM

[x1 � c+ ��i(y)]f(y)dy

Since �i � c=2 and ��i(y) < �i(x1) for any y 2 YM we have �i(x2)+��i(y) < c for any y 2 YM : Hence for any Y � YM ;
we have Z

Y

[x2 � c+ ��i(y)]
[x2 � �i(x2)]

f(y)dy >

Z
Y

[x1 � c+ ��i(y)]
[x1 � �i(x2)]

f(y)dy

Therefore as in case 4 we have �i(x1; �i(x2); ��i) > �
i(x1; �i(x1); ��i):
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independent of his drop out price. And for those bids of bidder �i; which are bigger than �i; deviating

to ��i + " makes him strictly better o¤ since he will guarantee to be the second bidder to drop out.

And since ��i � �i > c=2; his payment is c� ��i < c=2; which is less than what he would have paid

if he were to drop out �rst, which is strictly bigger than c=2: If �i > ��i; then bidder �i deviates to

�i + " by the same reasoning given above. If �i = ��i; then there is deviation by either one of the

bidders.

(2) c=2 � ��i : First, we rule out the case where ��i = c=2: To show that there is a pro�table

deviation, de�ne ex to be the value of bidder i where �i(x) < c=2 for all x < ex; and �i(x) > c=2

for all x > ex: Note that bidder i has a positive measure of values for which he bids less than c=2;
because otherwise bidder �i bidding ��i would simply deviate to any b such that b > �i: Consider

two sub-cases, ex > c=2; and ex � c=2:
When ex > c=2; bidder �i with value 1 deviates to c=2 � " which is pro�table. To see this, �rst

assume that �i(:) is continuous at ex: De�ne eex to be the value such that �i(x) < c=2� " for all x < eex,
and c=2 > �i(x) � c=2 � " for all ex � x � eex: In the range [0; eex] the payo¤s from bidding c=2 and

c=2� " are the same, so we just need to look at the range [eex; 1]: The payo¤ from bidding c=2� "; over

[eex; 1]; is Z 1

eex [1� c=2 + "]f(x)dx =
Z ex
eex [1� c=2 + "]f(x)dx+

Z 1

ex [1� c=2 + "]f(x)dx
And the payo¤ from bidding c=2, over [eex; 1]; is

Z ex
eex [1� c+ �i(x)]f(x)dx�

Z 1

ex (1� c=2)f(x)dx

Therefore the net gain from deviation is

Z ex
eex [c=2 + "� �i(x)]f(x)dx+

Z 1

ex "f(x)dx > 0

The strict inequality follows from the fact that �i(x) � c=2 for ex > x > eex: If �i(:) is discontinuous atex; then ex = eex: Hence the net gain is simply R 1ex "f(x)dx > 0:
When ex � c=2; bidder �i with value 1 deviates to any b such that b > �i: This deviation is

pro�table because of the following reason. Over the range [0; ex]; there is no gain or loss, and over the
range [ex; c=2] the net gain is non-negative. However, over the range [c=2; 1] the net gain is strictly
positive by a similar argument given in case 1 above.
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Now we focus on the case where ��i < c=2: Note that ��i > c � 1 by de�nition. Then bidder i

with value bx deviates to ��i � "; where bx 2 fxj�i(x) > �jg: To see that this is a pro�table deviation:
�i(bx; �i(bx); ��i) = Z

fyjbx�c���i (y)g[bx� c+ ��i(y)]f(y)dy
and

�i(bx; ��i � "; ��i) = Z
fyjbx�c���i (y)gnY" [bx� c+ ��i(y)]f(y)dy +

Z
Y"\fyjy�c���i+"g

[bx� ��i + "]f(y)dy
where Y" = fyj��i > ��i(y) > ��i � "g: Note that de�nition of ��i implies that Y" has a positive

measure for arbitrarily small ": Hence Y" � fyjy � c� ��i + "g: To show this, let y 2 Y": Since �j (:)

is non-decreasing and fyj��i = ��i(y)g has measure-zero,24 we can pick " arbitrarily small so that y

is arbitrarily close to 1: Since ��i > c� 1; we also have 1 > c� ��i+ " . Then y > c� ��i+ ": Hence

y 2 fyjy � c� ��i + "g: Therefore Y" \ fyjy � c� ��i + "g = Y": Then, the net gain is

�i(bx; ��i � "; ��i)� �i(bx; �i(bx); ��i) =

Z
Y"

[bx� ��i + "� bx+ c� ��i(y)]f(y)dy
=

Z
Y"

[c� ��i � ��i(y) + "]f(y)dy > 0

since c=2 > ��i > ��i(y) for all y 2 Y":

Assuming that �i(x) is non-decreasing, de�ne x
i to be the value such that �i(x) � c � xi for all

x > xi; and �i(x) � c� xi for all x < xi: And let bi = c� xi: y�i and b�i are de�ned analogously.

Lemma 10 Consider a non-trivial equilibrium, (�A(�); �B(�)); with non-decreasing bidding functions,

where �i is �nite: Then �i(x) � b�i for all x 2 [0; 1], for i = A;B:

Proof. Similar to the proof of Lemma 4.

Lemma 11 There exists no non-trivial equilibrium, (�A(�); �B(�)); with non-decreasing bidding func-

tions where �i is �nite:

Proof. Similar to the proof of Lemma 5.
24 If fyj��i = ��i(y)g has a positive measure, then bidder i would simply deviate to ��i and hence match the bid of

bidder �i with positive probability which would be a pro�table deviation, since ��i < c=2:

33



Having showed that there is no non-trivial equilibrium with non-decreasing bidding functions where

�i is �nite for i = A;B, now we focus on bidding functions that are decreasing over some set of values.

Lemma 12 Consider a non-trivial equilibrium, (�A(�); �B(�)): Assume �i � c=2; for i = A;B. Then

for any x1; x2 2 (c � 1; 1] such that x1 < x2; if �i(x1) � x1 and �i(x2) � x2; then �i(x1) � �i(x2);

for i = A;B:

Proof. Similar to the proof of Lemma 6.

Lemma 13 There exists no non-trivial equilibrium in which �i(x) > �j for x 2 X+ where X+ is a

positive measure set.

Proof. Suppose that in a non-trivial equilibrium �i(x) > ��i for a set of values with positive measure:

Consider two cases, �i is either �nite or in�nite.

case(1) �i is �nite: If ��i � c=2, bidder �i with a value y such that ��i(y) = ��i deviates to a

bid that is higher than �i : If there is no such y; then the same deviation will work for bidder �i with a

value for which he bids arbitrarily close to ��i. This deviation does not a¤ect his payo¤ for bidder i�s

bids that are less than ��i: However, it generates strictly higher payo¤ for all x such that �i(x) > ��i

since c � �i(x) < ��i: Hence the net gain is positive since the set of such x has positive measure by

assumption. Therefore, ��i < c=2: First note that if ��i(by) > by for some by then fxj�i(x) > ��i(by)g
must be a measure-zero set, because otherwise he would drop out at a su¢ ciently higher price to

avoid non-positive payo¤s. Since fxj�i(x) > ��i(y)g has a positive measure for any y, we must have

��i(y) � y for all y: Since ��i < c=2; Lemma 14 implies that ��i(:) cannot be strictly decreasing

over any range: But now we are back in case 2 in Lemma 11, where bidder i with value bx deviates to
��i � "; where bx 2 fxj�i(x) > ��ig:

case (2) �i =1.

When ��i < c=2 the proof in case 1 still applies since it does not rely on how big �i is. So we

only need to show that whenever ��i � c=2 there is a deviation: Note that bidder �i cannot deviate

to a bid that is higher than �i because the probability to pay an arbitrarily large amount is positive.

So, bidder �i cannot have an arbitrarily large ��i: Also note that there is no x 2 [0; 1] such that

��i > �i(x) � c=2: Otherwise, bidder i would deviate to a bid that is higher than ��i:

For any x � c � ��i; any bid higher than ��i yields zero payo¤. However, bidding c=2 would

guarantee a positive expected payo¤ if ��i > c=2. If ��i = c=2; then bidding c=2� � would guarantee
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a positive expected payo¤ for su¢ ciently small � > 0: Hence we have �i(x) < ��i for all x � c� ��i:

Moreover, �i(x) < x for x � c � ��i: Otherwise the expected payo¤ is non-positive. This is because

for those values y such that bidder i is the second one to drop out, bidder i never wants to pay the

rest which follows from c � (c � ��i) � ��i(y) for any y 2 [0; 1]: And for those values y such that

bidder i is the �rst one to drop out, the payo¤ is non-positive when �i(x) � x:

Now, consider the set X = fxj�i(x) > ��ig. If infX > c � ��i; then bidder �i with bid ��i

deviates to ��i � " (If ��i(y) < ��i for all y 2 [0; 1]; then bidder �i with bid ��i � "=2 deviates to

��i � "): To see that this is a pro�table deviation, �rst note that for any x 2 [0; 1]nX, �i(x) < c=2:

Since ��i � c=2; for small enough "; we have ��i � " > �i(x) for all x 2 [0; 1]nX: Hence the payo¤ is

only a¤ected for x 2 X: However, since infX > c � ��i and " is arbitrarily small, bidder i will still

contribute the rest for any value x 2 X; and hence bidder �i will pay less by bidding ��i� "; instead

of ��i without decreasing the probability of provision.

Therefore, to �nish the proof, we only need to show that infX = c � ��i cannot be the case.

Suppose it is the case. First note that it is not the case that �i(c � ��i) > ��i because the payo¤

would be zero for bidder i; while bidding c=2 would yield a positive expected payo¤: Now consider

ex 2 fxjc���i < x < c���i+"; �i(x) > ��ig for " > 0: Then �i(ex; �i(ex); ��i) is zero in the limit as "
goes to zero. However, �i(ex; b; ��i) > 0; where b 2 (c���i; c�1): To see this, �rst note that if the set
fyjy � ��i; ��i(y) � c���ig has a positive measure, then �i(ex; b; ��i) > 0 for any b 2 (c���i; c�1):
If the set fyjy � ��i; ��i(y) � c � ��ig is a measure-zero set, then �i(ex; b; ��i) > 0 for any b such
that inf��i�y�1 ��i(y) < b < c � 1: This follows from the fact that for bidder �i it is never optimal

to bid c� 1 for values y � ��i: To see this, note that fyj��i(y) � c=2g has a positive measure25 and

fyjy � ��i; ��i(y) � c���ig has measure-zero. So, by the de�nition of ��i; there exist an � > 0 such

that for all y 2 (��i � �; ��i) the bidder �i bids arbitrarily close to ��i: Therefore, for any y > ��i

the payo¤ from bidding arbitrarily close to ��i gives a positive payo¤. Since bidding c� 1 gives zero

payo¤, we have ��i(y) > c� 1 for all values y � ��i: Hence bidder i with value ex can get a positive
payo¤ from bidding slightly above c � 1 but below the in�mum of the support of the bids of bidder

�i for the values in the range y � ��i: The payo¤ from such a bid is independent of "; which gives us

a contradiction. Therefore it must be the case that infX > c� ��i:
25Since ��i � c=2; the set fyj��i(y) � c=2g has a positive measure. Otherwise we would be back in the case with

��i < c=2:
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Note that, above lemma has also showed that there exists no equilibrium, (�A(�); �B(�)); where �i

is in�nite,i = A;B. Hence we have,

Lemma 14 There exists no non-trivial equilibrium, (�A(�); �B(�)); with non-decreasing bidding func-

tions.

Proof. Follows from Lemma 13 and the fact that in any equilibrium �i is �nite for i = A;B:

Suppose that �i(x) > x for a positive measure set of values X+. Then it must be the case that

�i(x) > ��i for all x 2 X+; Otherwise bidder i can simply deviate to a bid that is higher than ��i

and hence avoid negative payo¤s.26 Also for those bids of bidder �i that are less than �i(x), bidder i

is still the second bidder to drop out if he deviates to a bid higher than ��i; so there is no loss. Hence

it is a pro�table deviation. Therefore, the set of values such that �i(x) > x has measure-zero.

We will focus on the set of values that has �i(x) � x in the following lemma which is essentially

revisiting case 5 in Lemma 14.

Lemma 15 Consider a non-trivial equilibrium, (�A(�); �B(�)): Suppose that �i(x1) > �i(x2) where

x1 < x2, and that �i(xk) � xk for k = 1; 2: Then �i(x1) > ��i for i = A;B:

Proof. The only case where we can have �i(x1) > �i(x2) with x1 < x2 is when �i(xk) > c � xk

for k = 1; 2: and �i(x2) > c � x1: This is case 5 in Lemma 14. Although Lemma 14 assumes that

�i(x) � c=2 for all x 2 [0; 1]; cases 1-4 do not use this assumption. Hence we need to focus on case 5

without using this assumption. Again de�ne

YH = fyj��i(y) � �i(x1)g

YM = fyj�i(x1) > ��i(y) � �i(x2)g

YL = fyj�i(x2) > ��i(y)g

If �i(x2) + ��i(y) < c for any y 2 YM ; then a similar argument given in case 4 in Lemma 14 proves

that �i(x1; �i(x2)) > �i(x1; �i(x1)): Therefore we assume that �i(x2) + ��i(y) � c for some y 2 YM

which implies �i(x1) > c=2: Hence x1 > c=2 since �i(x1) � x1: The relevant payo¤s are given as

26This deviation is possible since Lemma 7 showed that ��i cannot be in�nite.
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follows.

�i(x1; �i(x1); ��i) = [x1 � �i(x1)]P1 +
Z
YM[(YL\fyj��i(y)�c�x1g)

[x1 � c+ ��i(y)]f(y)dy

�i(x2; �i(x2); ��i) = [x2 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

�i(x1; �i(x2); ��i) = [x1 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

�i(x2; �i(x1); ��i) = [x2 � �i(x1)]P1 +
Z
YM[(YL\fyj��i(y)�c�x2g)

[x2 � c+ ��i(y)]f(y)dy

where P1 =
R
YH\fyjy�c��i (x1)g f(y)dy and P2 =

R
YM\fyjy�c��i (x2)g f(y)dy:

�i(x2; �i(x2); ��i) � �i(x2; �i(x1); ��i) implies

[x2 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x2g

[x2 � c+ ��i(y)]f(y)dy

� [x2 � �i(x1)]P1 +
Z
YM[(YL\fyj��i(y)�c�x2g)

[x2 � c+ ��i(y)]f(y)dy

That is,

[x2 � �i(x2)]P2 � [x2 � �i(x1)]P1 +
Z
YM

[x2 � c+ ��i(y)]f(y)dy

If YH \ fyjy � c� �i(x1)g has a positive measure, then we have

[x1 � �i(x2)]P2 > [x1 � �i(x1)]P1 +
Z
YM

[x1 � c+ ��i(y)]f(y)dy

Then,

[x1 � �i(x2)]P2 > [x1 � �i(x1)]P1 +
Z
YM[YL

[x1 � c+ ��i(y)]f(y)dy �
Z
YL

[x1 � c+ ��i(y)]f(y)dy

That is,

[x1 � �i(x2)]P2 +
Z
YL\fyj��i(y)�c�x1g

[x1 � c+ ��i(y)]f(y)dy

> [x1 � �i(x1)]P1 +
Z
YM[(YL\fyj��i(y)�c�x1g)

[x1 � c+ ��i(y)]f(y)dy
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which implies �i(x1; �i(x2); ��i) > �
i(x1; �i(x1); ��i): Therefore it must be the case that YH \fyjy �

c��i(x1)g is a measure-zero set. However, if YH is a positive measure set, then for all y 2 YH we have

y < c � �i(x1): Since �i(x1) > c=2; we have y < c=2: But ��i(y) � �i(x1) since y 2 YH : Therefore,

��i(y) > c=2 but y < c=2. But, since the set of values with ��i(y) > y has measure-zero, YH must be

a measure-zero set, which implies that �i(x1) > ��i:

Lemma 16 There exists no non-trivial equilibrium with a bidding function which is decreasing over

a positive measure set of values.

Proof. If there is a non-trivial equilibrium bidding function which is decreasing over a positive

measure set of values X+, then by Lemma 17, we have �i(x) > ��i for all x 2 X+.27 But then by

Lemma 15 it cannot be a non-trivial equilibrium.

27Note that the set of values such that �i(x) > x has measure-zero.
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