
Artificial Intelligence and Law 5: 77–96, 1997. 77
c
 1997 Kluwer Academic Publishers. Printed in the Netherlands.

On the Logical Foundations of Compound Predicate
Formulae for Legal Knowledge Representation

HAJIME YOSHINO
Meiji Gakuin University, 1-2-37, Shirokanedai, Minato-ku, Tokyo, Japan
E-mail: yoshino@mh.meijigakuin.ac.jp

Abstract. In order to represent legal knowledge adequately, it is vital to create a formal device that
can freely construct an individual concept directly from a predicate expression. For this purpose,
a Compound Predicate Formula (CPF) is formulated for use in legal expert systems. In this paper,
we will attempt to explain the nature of CPFs by rigorous logical foundation, i.e., establishing their
syntax and semantics precisely through the use of appropriate examples. We note the advantages of our
system over other such systems and discuss the significance of CPFs with regard to the formalization
of legal reasonings using examples from the United Nations Convention for the International Sale of
Goods.

Key words: legal reasoning, CISG, knowledge representation, logic, compound predicate formula

1. Introduction

The most important factors in developing any method to represent legal knowledge
are: (1) ease for lawyers to understand and use the method; (2) the ability to express
legal knowledge in detail; and (3) its applicability to formalizing legal reasoning. In
order to obtain these three objectives, we have developed the Compound Predicate
Formulas (CPFs). The CPFs, a conservative extension of first order predicate logic,
are devices used to represent legal knowledge in our efforts to develop Legal Expert
Systems (e.g., LES-2,? LES-3,?? and LES-4z).

Given the goal of formalizing ordinary knowledge as expressed in a natural
language, CPFs and sorted logic languages seem to be incomplete sublanguages
of a Montague Grammar, which has been used in attempts to formalize our natural
language. But for computational efficiency, CPFs and sorted logic work well,
unlike a Montague Grammar. CPFs and sorted logic are very similar in their
structures. However, sorted logic implies a strong metaphysical claim that sorts and
predicates belong to different ontological categories. If we look at many examples
of legal reasoning, we find that it is meaningless to distinguish such metaphysical
differences. Just as we use nouns and predicates without any such metaphysical

? (Yoshino, 1987) and (Yoshino 1988).
?? (Yoshino and Kakuta 1992).
z This system is now under construction.

J.K.; PIPS No.: 132881 MATHKAP
arti145.tex; 16/04/1997; 13:48; v.7; p.1

78 H. YOSHINO

constraints, we do not have to express predicates and sorts separately. Therefore, it
may be useful to construct a system in which we can freely use individual concepts
derived from a predicate expression.

McCarty invented a device which, at first glance, is similar to our ID-symbols,
e.g. (McCarty, 1989), but the author is the first to introduce a method to refer to a
particular instance of a given individual concept within a knowledge representation
system. Thus, it is necessary to explain in this paper our method and its advantages
over others.

In this paper, I will explain the methodology of CPF by use of various examples
establishing its syntax and semantics, thus providing it with a rigorous logical
foundation.

2. Why Use a CPF?

In this section let me explain why we have chosen the CPFs, as opposed to other
possible methodologies. In a nutshell, I chose the CPFs in order to represent legal
knowledge adequately and in a simplistic fashion. In order to clarify this point, we
will use a simple example (i.e., “a legal sentence”) which will illustrate the difficulty
of representing such a sentence by standard first order logic. Consider the following:

EXAMPLE. John made an offer to Mary and it was accepted.

It is difficult to express the whole sentence in standard first order language, for
the standard first order language does not contain any device for representing the
referential expression “it”. We can symbolize “John made an offer to Mary” in
the above sentence, as: “offer (John, Mary)”, but how can we symbolize “it was
accepted?” We all agree that the referential pronoun “it”, which is part of the above
sentence, refers to “an offer of John to Mary”. Unfortunately, first order language
has the ability to refer only to individual entities and not to any state of affairs, such
as an offer made by John to Mary. If we are to use standard first order language,
we must content ourselves with symbolizing the above example as a predicate
p(X1;X2), thus:

offer(John, Mary):

Even though such an approach will result in a more useful way to deal with the
problem, such symbolizing does not adequately reflect the inner structure of the
sentence. This fact implies that the standard first order language is not robust
enough to adequately represent legal sentences, and therefore to describe legal
reasoning.

In short, the standard first order language lacks the means to refer to each
legal act, which involves “that contract” or “the trade at 15:00 on Feb. 3rd, 1994”.
Moreover, the standard language has no device to represent referential pronouns

arti145.tex; 16/04/1997; 13:48; v.7; p.2

LOGICAL FOUNDATIONS OF COMPOUND PREDICATE FORMULAE 79

like the word “it”. What we really need is a more robust language that enables us
to deal with these types of expressions.

3. Some Precedent Approaches

One might attempt to express various legal sentences using class notation by
allowing relations to correspond to classes and each instance to its member. For
example:

A = fX : acceptance(X)g;

O = fZ : 9X9Y (offer(X;Y) ^ Z = hX;Y ig;

9Z(Z 2 O ^ Z 2 A):

A andO show (the extension of) the concept of “acceptance” and the concept of an
“offer”, respectively. Below, (1) is derived as the translation of the legal sentence:
“X made an offer to Y and it was accepted”:

9Z(offer(X;Y) ^ Z = hX;Y i ^ acceptance(Z)): (1)

As (1) shows, the class notation is adequate for denoting a concept by itself.
However, this method is clearly not satisfactory for denoting its particular instance.
Indeed, each instance is a certain element of a given class, as already noted. Many
expressions in natural languages, however, involve ample pragmatic, i.e. contextual
information, and it is hard to specify a purposed set, which can handle much
contextual information. Even though the specification is acquired, the formula is
often too complex to understand. Also, the class notation does not have any type
of apparatus for representing referential pronouns. In legal sentences and legal
reasoning, one does meet with referential expressions frequently.

4. ID-Symbols: A New Device

In the previous section, we noted that there are certain problems in utilizing the
standard first order language because it is inadequate for properly expressing each
individual legal act as well as for describing sentences with referentials in a form
which properly reflects their inner structures. We can, however, formulate a new
device for coping with these problems, namely, ID-symbols, but before doing so,
we need to clarify the notion from which they were derived. Let us assume that:

offer(Z;X; Y) : Z is an offer of X to Y ;

acceptance(W;Y;Z) : W is the acceptance of Z by Y :

If we assume these formulae, then a sentence of the form “An offer of X to Y was
accepted” would be formalized as follows?:

9Z(offer(Z;X; Y) ^ acceptance(W;Y;Z)): (2)
? In (Davidson, 1980), Davidson employed essentially the same idea in order to analyze the

logical form of action sentences. Our approach should be considered an extension to his. In another

arti145.tex; 16/04/1997; 13:48; v.7; p.3

80 H. YOSHINO

Compared to (1), (2) is simpler and more understandable. Example (2) contains a
way for referring to a certain specified individual legal act or relation. In general,
for any predicate p(X1; : : : ;Xn),

id p(X1; : : : ;Xn)

is the ID-symbol in question. For instance, for a predicate “contract(Mary, John)”,
we use:

id contract(Mary, John):

The above notation expresses a contract between Mary and John. In other words,
it is the name of that contract. Using ID-symbols, formula (2) is more concisely
rewritten as:

acceptance(id ac; [Y; id offer]): (3)

Here, I would like to emphasize that ID-symbols, a kind of nominalization, i.e. the
fact that an ID-symbol forms the name of a particular instance in a given concept.
(Recall that notations using lambda operators or classes form the name of a concept
itself.) As one more example, “the rejection of that offer by Y ” is, in ID-symbols,
formalized as:

id rejection([Y; id offer]): (4)

Using ID-symbols, we can now easily deal with such a relatively complex case.
I should note, in passing, if ID-symbols function as names, it is necessary that

the obvious identity criterion for the referents of ID-symbols be given. This means
that for particular instances of a concept, the condition of continuity through time
must be defined. To define that condition, we must define every legal concept
precisely. It should also be noted that this problem relates to law – not logic.

5. Similar Symbols

Before going into the details of the technical description of CPFs, let us consider
similar devices already used in order to understand ID-symbols better. For example,
Hilbert’s "-symbol and Gupta’s logic of the common noun should be considered.
They are syntactic devices used to build a term from a given formula. CPFs and
these two systems share certain characteristic. First, let us look at the common
elements they share.

5.1. HILBERT’S "-SYMBOL

Consider Hilbert’s "-symbol. The formation rule of an "-term is as follows:

If A is a formula, then "xA is a term:

paper (Yoshino, 1978), the author used a symbolism to refer to actions. E.g. see (Yoshino, 1978,
pp. 152–153).

arti145.tex; 16/04/1997; 13:48; v.7; p.4

LOGICAL FOUNDATIONS OF COMPOUND PREDICATE FORMULAE 81

Intuitively, "xA denotes an unspecified object satisfying the property expressed
by the formula A, if such an object exists, otherwise "xA refers to an arbitrary
object in the domain.

The "-calculus is a formal system obtained from the first-order calculus with
equality by adjoining the "-symbol to represent an additional logical constant. The
following axiom is then added:

A(t) �! A("xA);

where t is any term.
Originally, the "-symbol was introduced by Hilbert and others in order to provide

explicit definitions for the quantifiers 8 and 9. They are given by the following
formulae:

9xA ! A("xA);

8xA ! A("x:A):

These are provable in the "-calculus.
Moreover, this system has another axiom,

8x(A$ B) �! "xA = "xB:

The "-symbol is specified by the axioms only to the extent that any non-empty set
has at least one representative and this representative is an element of the set. For
example, if A is the formula x = x, then the term "xA must denote some object.
However, we have no way of knowing what that object is.

It is often desirable to have within a formal theory some way of designating
“the unique x s.t. As”. The " -symbol was introduced for just this purpose. Using
the "-symbol, we adjoin all formulae of the following forms as additional axioms
of the theory, thus

9!xA �! A(�xA);

:9!xA �! �xA = t;

where t is some specified term of the language, such as 0. These axioms say that if
there exists a unique x such that A, then �xA designates that unique object, and if
not, then it is the designated term t. That is:

�xA = "x((9!xA ^A) _ (:9!xA ^ x = t)):

Now we can say the "-symbol and the ID-symbol function essentially in the
same manner in their logical representations.?

? For more information on "-symbol, the reader should consult e.g. (Leisenring, 1969).

arti145.tex; 16/04/1997; 13:48; v.7; p.5

82 H. YOSHINO

5.2. COMMON NOUNS

The logic of common nouns, according to Gupta (1980), was used to analyze the
logical and semantic behavior of common nouns. His main concern was how the
intensions of common nouns are sorts. The common nouns are added to a language,
so a formula is defined by recursion with terms and common nouns as follows:
� If K is a common noun, x is a variable, and A is a formula, then (8K;x)A is

a formula.
� If K is a common noun, x is a variable, and A is a formula, then (K;x)A is a

common noun.
� If K is a common noun, then �K is a term.
Intuitively, a symbol (K;x)A stands for the subsort ofK each member of which

satisfies A. For example, If M stands for the common noun “man”, L for “likes”
and m for Margaret, then “man who likes Margaret” is expressed as

(M;x)L(x;m):

On the other hand, the symbol �K stands for the unique object that belongs to
the sort K if such an object exists. For example, “the man who likes Margaret” is
expressed as

�(M;x)L(x;m):

Hilbert’s and Gupta’s systems use devices to express the usual noun clauses
that are similar to ours, but their motivations are very different. As previously
noted, our motivation for using the ID-symbol is different from the one above. But
the technical devices we adopt closely resemble each other. That is, I use similar
devices but my motivation for using them is different. My motivation for using
ID-symbols stems from the idea that we need to use the symbol to refer to the
object which was represented previously by using a noun phrase or a sentence.

6. Outline of the Syntax of CPFs

What follows are attempts to define the syntax of CPFs. In this respect, CPFs are
largely the same as the standard first order language, but CPFs differ from first order
language in that CPFs utilize new devices such as case symbols and ID-symbols.?

We must eventually define and describe the syntactic behavior of ID-symbols in a
more complete fashion. But our concern here is restricted only to program clauses.
Thus, we will think only of the quantifier-free part, the so-called “the Horn clause”:

B � A1; : : : ; An;

where B;A1; : : : ; An are literals.
The syntax of CPFs is as follows:

? Case symbols are a notation contrived to express the inner structure of predicates explicitly. On
the syntactic and semantic status of case symbols, we may leave this to another occasion.

arti145.tex; 16/04/1997; 13:48; v.7; p.6

LOGICAL FOUNDATIONS OF COMPOUND PREDICATE FORMULAE 83

1. Basic Vocabulary:
1.1 individual variables:X;Y; : : : ;X1;X2; : : :

1.2 individual constants: a; b; : : : ; a1; a2; : : :

1.3 case symbols: agt, obj, goa, tim, : : :
1.4 predicate letters: p; q; : : : ; p1; p2; : : : In addition to these we shall introduce

a special two-place predicate letter =, i.e., the equality symbol, into our lan-
guage.

1.5 list symbols: [;].
1.6 ID-operator: ID , id .?

1.7 logical constants: :; �;8.
1.8 commas, parentheses: (;),.
2. terms and formulae:
2.1 Variables and individual constants are terms.
2.2 If t is an individual constant, an individual variable or an ID-symbol and c is

a case symbol, then c : t is a term.
2.3 [c1 : t1; : : : ; cn : tn] is a list.
2.4 p([c1 : t1; : : : ; cn : tn]) is a formula.
2.5 If A and B are formulae, then :A, A � B are formulae.
2.6 If A(X) is a formula, then 8XA(X) is a formula.
2.7 The definition of ID-symbols: For the predicate representing a legal concept

p([c1 : t1; : : : ; cn : tn]); id p([c1 : t1; : : : ; cn : tn]) is a term called ID-symbol
of its predicate.??

2.8 The following, p(t; [c1 : t1; : : : ; cn : tn]), is a formula as well where t is either
a variable or an ID-symbol. The position in the formula p(X; [t1; : : : ; tn])
occupied by the variable X we shall call “the ID-position” of its formula.z

For the sake of convenience, we will stipulate that the ID-position of a given
predicate p be occupied only by the corresponding ID-symbol id p or the
variables.

2.9 An expression is a formula only if it can be shown to be a formula on the basis
of conditions 2.4–2.6, 2.8, above.

Other logical constants are introduced in an obvious manner.
At this juncture, I would like to make a few comments on the syntax just defined.

In the above, we simply stipulate that the ID-position of a given predicate p be
occupied only by the corresponding ID-symbol id p or the variables. Hence, we

? We shall provide two kinds of ID-operator. We shall use ID p as a variable. On the other hand,
id p is a function symbol.
?? We will omit the arguments in ID-symbols unless this leads to misunderstanding. Derivatively

we will define ID-symbols about predicate symbols as well.
z The former is called the formula without ID-position, the latter, the formula with ID-position as

a matter of convenience. As can be plainly observed, we need a formula to assurep([t1; : : : ; tn]) !
p(id p; [t1; : : : ; tn]), if we construct an axiomatic system for a CPF.

arti145.tex; 16/04/1997; 13:48; v.7; p.7

84 H. YOSHINO

shall admit only the following kinds of expressions:

p(id p; [c1 : t1; : : : ; cn : tn]);

p(X; [c1 : t1; : : : ; cn : tn]):

On the other hand, the type of expression below cannot be allowed by our formalism:

p(id q; [c1 : t1; : : : ; cn : tn]);

where p and q are predicate symbols which denote different concepts. Of course,
the following type of an expression is quite possible in our formalism.

p([s1; : : : ; sn; id q; t1; : : : ; tm]):

In other words, the ID-symbol id q can appear in other predicates than q. Before
moving on, we would like to make the following point in order to clarify the
significance of CPFs here.

Since McCarty has also invented a device similar to ID-symbols (McCarty,
1989), it is necessary to mention and compare that device with our device thus
emphasizing the advantages of our system to his.

As far as we know, this author is the first to introduce ID-symbols into a legal
knowledge representation system. Originally, ID-symbols were used as variables
ranging over the instances of the legal relations, e.g. offer, acceptance. This idea
of reification of the instances of relations has guided our development of the legal
expert system LES-2 since then.?

Motivated by essentially the same idea, McCarty employed similar symbolisms
(McCarty, 1989).?? In his paper, he used the following notation:

(OwnO1(ActorA)(PropertyP)):

This is interpreted to mean that an actor A owns a property P , and O1 denotes
this very ownership. Thus, the symbol O1 roughly corresponds to our ID-symbol
ID own. However, such symbols seem to play a minor role in his language LLD.
The use of such terms are very restrictive from a legal knowledge representation
point of view.

Regardless, we must take into consideration that the name of an instance of a
given relation itself can appear in argument places of the predicate denoting another
relation. In light of this fact, we should freely and extensively use an ID-symbol
as a term denoting an instance of a given relationship. Therefore, we allow an
ID-symbol ID p to appear in predicates other than p, as noted earlier. For example,

? The author reported progress on LES-2 including CPF at the Logic Programming Conference
86 on 23–26 June 1986 in Tokyo. The paper was published in (Yoshino, 1987).
?? The author reported also about CPF at the Symposium on Legal System and Knowledge Rep-

resentation held at Meiji Gakuin University on 27 October 1986. To the symposium Professor T.
McCarty contributed as well. As the organizer of this symposium, I was very grateful for his kind
contribution.

arti145.tex; 16/04/1997; 13:48; v.7; p.8

LOGICAL FOUNDATIONS OF COMPOUND PREDICATE FORMULAE 85

the sentence “an acceptance of an offer becomes effective” can be expressed by the
following CPF:

become effective(ID bea, [obj : acceptance(ID ac,

[agt : Y , goa : X , obj : offer(ID of, [agt : X , goa : Y , obj : C])]), tim : T]).

On the other hand, such a representation cannot be expressed using McCarty’s
formalism (McCarty, 1989; McCarty and van der Meyden, 1992). This is one
advantage of our formalism over his.

7. Legal Knowledge Representation in Terms of CPFs

Having defined the syntax of CPFs, we can now state and represent legal knowl-
edge. Consider now a rule based on an article of the United Nations Convention
for the International Sale of Goods (CISG) and how it can be translated into CPFs.

Rule 23 (cf. Article 23). A contract is concluded if and only if an offer is effective
and an acceptance of the offer becomes effective.

1. contract(ID co, [agt : [X;Y], obj : C]): ID co is a contract concerning C

between X and Y .
2. acceptance(ID ac, [agt : X , obj : ID of, goa : Y]): ID ac is an acceptance of

ID of by X to Y .
3. offer(ID of, [agt : X , goa : Y , obj : C]): ID of is an offer of C by X to Y .
4. be concluded(ID bc, [obj : ID co, tim : T]): ID co is concluded at time T .
5. become effective(ID bea, [obj : ID ac, tim : T]): ID ac becomes effective at

time T .
6. is effective(ID ie, [obj : ID of, tim : T]): ID of is effective at time T .

Translating the CISG into a CPF below, we get

be concluded(ID bc, [obj : ID co, tim : T])

^contract(ID co, [agt: [X;Y], obj : C]) !

is effective(ID effective ie, [obj : ID of, tim : T])

^offer(ID of, [agt: X , goa: Y , obj : C])

^become effective(ID bea, [obj : ID ac, tim : T])

^acceptance(ID ac, [agt: Y , goa: X , obj : ID of]):

Such a formula, called a Flatted CPF formula (FCPF), is an abbreviation of
the CPF formula below:

be concluded(ID bc, [obj : contract(ID co, [agt: [X;Y], obj : C]), tim : T]) !

arti145.tex; 16/04/1997; 13:48; v.7; p.9

86 H. YOSHINO

is effective(ID ie, [obj : offer(ID of, [agt : X , goa: Y , obj : C]), tim : T])

^become effective(ID bea, [obj : acceptance(ID ac,

[agt: Y , goa: X , obj : offer(ID of, [agt: X , goa: Y , obj : C])]), tim : T]):

Legal sentences are described and stored in a knowledge base in this form. To
execute the predicational reasoning, these formulas are compiled (flatted) into
FCPF above.?

Any CPF A can be flatted into an FCPF formula according to the following
procedure:

1. if A contains no formulae which have the form of p(ID p; [c1 : t1; : : : ; ci :
q(ID q; []); : : : ; cn : tn]) (1 � i � n) in A, the formula is not flatted.

2. if A contains any formulae described in 1 above, choose the left-most one,
replace c : q(ID q; []) with c : ID q, and replace the original formula with the
one below,

p(ID p; [: : : ; c : ID q; : : :]) ^ q(ID q; []):

3 Repeat the procedure in 2 above until it can no longer be applied.
We shall need other rules based on articles of CISG which we will we use below.

Each rule is followed by its representation in CPF.

Rule 15(1) (cf. Article 15(1)). An offer becomes effective if and only if it reaches
the offeree and a withdrawal of the offer does not become effective.

become effective(ID beo, [obj : offer(ID of,

[agt : X , goa : Y , obj : C]), tim : T1]) !

offer(ID of, [agt : X , goa : Y , obj : C])

^reach(ID re, [goa : Y , obj : ID of, tim : T])

^:(become effective(ID bew, [obj : withdrawal(ID wd,

[agt : X , goa : Y , obj : ID of]);

tim : before(T1, [tim : T1, tto : T])])):

Rule 15(2) (cf. Article 15(2)). A withdrawal of the offer becomes effective if and
only if the withdrawal reaches the offeree unless the offer reaches the offeree before

? Some observers may think that we have become too involved in the so-called “Russell Paradox”
when attempting to formalize FCPFs. However, this fear is not justified. A CPF formula is only an
abbreviation of its corresponding FCPF formula. And this flatting is, substantially, the procedure for
converting a many-sorted formula into a one-sorted one. If we apply the order sorted logic, we could
deal with CPFs directly in inference.

arti145.tex; 16/04/1997; 13:48; v.7; p.10

LOGICAL FOUNDATIONS OF COMPOUND PREDICATE FORMULAE 87

the withdrawal does.

become effective(ID bew, [obj : withdrawal(ID wd, [agt : X , goa : Y ,

obj : offer(ID of, [agt : X , goa : Y , obj : C])]), tim : T]) !

reach(ID rew, [goa : Y , obj : withdrawal(ID wd,

[agt : X , goa : Y , obj : ID of]), tim : T])

^:(reach(ID reo, [goa : Y , obj : offer(ID of, [agt : X , goa : Y , obj : C]),

tim : before(T1, [tim : T1, tto : T]))):

Rule 16(1) (cf. Article 16(1)). A revocation of an offer becomes effective if and
only if the revocation reaches the offeree before he has dispatched an acceptance
of the offer.

become effective(ID berv, [obj : revocation(ID isre,

[agt : X , goa : Y , obj : offer(ID of,

[agt : X , goa : Y , obj : C])]), tim : T]) !

reach(ID rer, [goa : Y , obj : revocation(ID isre,

[agt : X , goa : Y , obj : ID of]), tim : T])

^:(dispatch(ID dpa, [agt : Y , goa : X , obj : acceptance(ID ac,

[agt : Y , goa : X , obj : offer(ID of,

[agt : X , goa : Y , obj : C])]), tim : before(T1, [tim : T1, tto : T])])).

Rule 17 (cf. Article 17). A rejection of an offer becomes effective when a rejection
reaches the offeror.

become effective(ID berj, [obj : rejection(ID rj, [agt : Y , goa : X ,

obj : offer(ID of, [agt : X , goa : Y , obj : C])]), tim : T]) �

reach(ID rej, [goa : X , obj : rejection(ID rj,

[agt : Y , goa : X , obj : offer(ID of, [agt : X , goa : Y , obj : C])]), tim : T]):

Rule 18(2) (cf Article 18(2)). An acceptance of an offer becomes effective at the
moment T when the acceptance reaches the offeror.

become effective(ID bea, [obj : acceptance(ID ac,

arti145.tex; 16/04/1997; 13:48; v.7; p.11

88 H. YOSHINO

[agt : Y , goa : X , obj : ID of]), tim : T]) �

reach(ID rea, [goa : X , obj : acceptance(ID ac, [agt : Y , goa : X ,

obj : offer(ID of, [agt : X , goa : Y , obj : C ,])]), tim : T]):

8. Application of CPF to Legal Reasoning

The ID-symbols play an important role in CPF. We have already noted some advan-
tages of ID-symbols. In this section, we will attempt to show another advantage
from introducing ID-symbols into legal reasoning. Since our CPF has its basis
in the standard first order language, we can utilize its inference rules. Moreover,
ID-symbols increase the power of our language so that we can also deal with some
legal reasoning cases that have been difficult to cope with up to this point. For
example, consider the following common situation:

On October 1st, A in Budapest dispatched a letter of an offer to B in Hamburg,
the content of which is that A sells a construction machine to B. The letter reached
B on October 8th.

In the following two cases, have contracts been concluded?

Case a: On October 7th A telephoned to say “I withdraw my offer”. B said imme-
diately after that “I accept your offer”.

Case b: On October 7th A dispatched a revocation of offer, which reached B Octo-
ber 11th. On October 10th B dispatched the acceptance of the offer, which reached
A on October 12th.

Legal regulations presuppose the following principle:

Pr1: Everything is effective at T if and only if it becomes effective at time T1

before T and it is not the case that it becomes null at any time between T1 and T .

The CPF formalization is as follows:

is effective(ID ie,([obj : X , tim : T])) !

become effective(ID bee, [obj : X , tim : before(T1, [tim : T1, tto : T])])

^:(become null(ID ben, [obj : X , tim : between(T2, [tfr : T1, tto : T])])):

In relation to Pr1, Rule 16(1) and Rule 17, legal regulations presuppose the
following principle:

Pr2: An offer becomes null at T if and only if a revocation of the offer becomes
effective or a rejection of the offer becomes effective at T .

arti145.tex; 16/04/1997; 13:48; v.7; p.12

LOGICAL FOUNDATIONS OF COMPOUND PREDICATE FORMULAE 89

The relevant legal facts of the above situations can be formalized by means of CPF
as follows:

The common situation(C):
C-1: On October 1st, A in Budapest dispatched an offer to B in Hamburg, the
content of which is that A sells a construction machine to B.

dispatch(id dpo1 [agt : ‘A’, goa : ‘B’, obj : offer(id of1, [agt : ‘A’, goa : ‘B’,

obj : “A sells a construction machine to B”]), tim : 10 1]).

C-2 : It reached B on October 8th.

reach(id reo1, [obj : id of1, goa : ‘B’, tim : 10 8]).

Case a:
Case a-1: A’s withdrawal of the offer reached B on October 7th.

reach(id rew, [goa : ‘B’, obj : withdrawal(id wd1, [agt : ‘A’, goa : ‘B’,

obj : offer(id of 1, [agt : ‘A’, goa : ‘B’, obj :

“A sells a construction machine to B”])]), tim : 10 7]):

Case a-2: B’s acceptance of the offer reached A on October 7th.

reach(id rea, [goa: A, obj : acceptance ([id ac,

[agt : ‘B’, goa : ‘A’, ob: id of1]), tim :’10 7]):

Below is a statement which can be proven from the common situation and Case a?:

fa-1: It is not the case that the offer reached B before October 7th.

:(reach(id reo1, [obj : id of1, goa : ‘B’,

tim : before(10 8, [tim : 10 8, tto : 10 7])])):

Case b:
Case b-1: B dispatched the acceptance of the offer on October 10th.

dispatch(id dpa2, [agt : ‘A’, goa : ‘B’, obj : acceptance(id aco1,

[agt : ‘A’, goa : ‘B’, obj : offer (id of1, [agt : ‘A’, goa : ‘B’, obj :

“A sells a construction machine to B”])]), tim : 10 10]).
? We omit the formalization of the following facts because of the limitation of space. In a legal

reasoning system, these propositions can be proven through “negation as failure” under the closed
world assumption.

arti145.tex; 16/04/1997; 13:48; v.7; p.13

90 H. YOSHINO

Case b-2: B’s acceptance of the offer reached A on October 12th.

reach(id rea, [obj : acceptance(id aco1,

[agt : ‘B’, goa : ‘A’, obj : offer (id of1, [agt : ‘A’, goa : ‘B’, obj :

“A sells a construction machine to B”])]), tim : 10 12]).

Case b-3 : A’s revocation of the offer reached B on October 11th.

reach (id rerv, [obj : revocation(id revo1,

[agt : ‘A’, goa : ‘B’, obj : offer (id of1, [agt : ‘A’, goa : ‘B’, obj :

“A sells a construction machine to B”])]), tim : 10 11]).

Some of the statements which can be proven from the situation and Case b are:

fb-1: Any withdrawal of the offer did not become effective.
fb-2: Any rejection of the offer did not become effective.

Now, let us check the respective cases.

In Case a: We get the answer “The contract was not concluded between A and B”
to the question “is a contract concluded?” as the withdrawal of the offer becomes
effective. Rule 15(2) applies to this case. Formalization of this conclusion is as
follows:

:9ID bc9ID co9ID of9T (be concluded(ID bc;

[obj : contract(ID co, [agt : [A;B], obj : ID of]), tim : T])).

In Case b: We get the answer “yes”, based on the following reasoning. We conclude
that the offer becomes effective, based on Rule 15(1). The letter of acceptance of
the offer reached A on October 12. Thus, we conclude that the acceptance of the
offer becomes effective, according to Rules 18(2). In turn, we conclude that the
contract is consummated by virtue of Rule 23. In this case, the revocation does not
become effective since the requirements of Rule 16(1) are not met. Formalization
of this conclusion is as follows:

be concluded(id bc, [obj : contract(id co,

[agt : [A;B], obj : id of1]), tim : 10 12]).

We can give the formalization of the above informal reasoning using CPF in the
following manner:

arti145.tex; 16/04/1997; 13:48; v.7; p.14

LOGICAL FOUNDATIONS OF COMPOUND PREDICATE FORMULAE 91

Deduction in Case a

1 Formalization of Pr1 in CPF

2 Formalization of Rule 15(1) in CPF

3 Formalization of Rule 15(2) in CPF

4 Formalization of Rule 23 in CPF

5 Formalization of Case a-1 in CPF

6 Formalization of fa-1 in CPF

7 Formalization of the conclusion in CPF.

Lines 5 and 6 fulfill the requirements of line 3, Rule 15(2). Therefore, it is
proven that the withdrawal of the offer became effective on October 7th. There-
fore, it is proven through line 2, Rule 15(1), that it is not the case that the offer
does not become effective. Therefore, it is proven through line 1, Pr1 that the first
requirement of line 4, Rule 23 is not fulfilled, i.e. the offer is not effective at any
time. Therefore, it is proven that no contract has been concluded.?

Now, consider

Deduction in Case b

1 Formalization of Pr1 in CPF

2 Formalization of Pr2 in CPF

3 Formalization of Rule 15(1) in CPF

4 Formalization of Rule 15(2) in CPF

5 Formalization of Rule 16(1) in CPF

6 Formalization of Rule 18(2) in CPF

7 Formalization of Rule 23 in CPF

8 Formalization of C-2 in CPF

9 Formalization of Case b-1 in CPF

10 Formalization of Case b-2 in CPF

11 Formalization of Case b-3 in CPF

12 Formalization of fb-1 in CPF

13 Formalization of fb-2 in CPF

14 Formalization of the conclusion in CPF.

? Strictly speaking, some principles governing temporal reasoning might be needed in order to
sanction these deductions. But they should be obvious. So we do not mention them explicitly.

arti145.tex; 16/04/1997; 13:48; v.7; p.15

92 H. YOSHINO

From line 3 Rule 15(1), line 8, together with line 12, we can infer that the offer
becomes effective on October 8th. (We call this conclusion (a).) From line 6, Rule
18(2) and line 10 we deduce that the acceptance of the offer becomes effective
on October (b). From lines 9 and 11 we infer that the acceptance of the offer is
dispatched on October 10th before October 11th, i.e. the date when A’s revocation
reaches B. Therefore, the second requirement of line 5, Rule 16(1) is not fulfilled,
thus proving that the revocation does not become effective, even if it reaches the
offeree B(c). From line 2, Pr2 and (c) together with line 13 it is proven that: it
is not the case that the offer becomes null (d). From line 1, Pr1 and (a) together
with (d), we can infer that the offer is effective on October 12th (e). From line 7,
Rule 23 and (e) as well as (b), we conclude therefore that the contract is concluded
between A and B on October 12th.

We have applied the CPFs above as examples of legal reasoning in the field of
the contracts for the international sales of goods. We would like to now explain
a merit of ID-symbols with respect to legal reasoning. In the above rules, we
have expressions which refer to an instance of a given concept, withdrawal of an
offer, revocation of an offer, an acceptance of an offer, etc. Hence, in order to
formalize the above rules and reason using them, we need such terms to denote
a particular instance of a concept. As a result, we have introduced ID-symbols in
CPFs. CPFs could formalize relevant rules, facts and legal reasoning adequately.
Such representation of legal reasoning would be difficult only by means of pure
standard first order language. As is shown, we can enrich the representation power
of first order language by introducing ID-symbols to a considerable degree. We
have, thus, a new formal system enabling us to reify relations themselves.

9. The Semantics of CPF

We can define the semantics of CPFs in the usual manner. The only difference
between the usual first order language and CPF is the introduction of ID-symbols
in the latter. Our basic idea in defining the interpretation of ID-symbols is that
an ID-symbol ID p stands for an instance of the given predicate p. The semantics
of CPF reflects this point. A model for CPF is of the form M = hD1;D2; I;�i,
where D1 and D2 are non-empty sets. Intuitively, D1 is a set of possible state
of affairs or instances of relations. D2 is a set of individuals in the usual sense.
I is an interpretation function defined on D. If t is a individual constant, then
I(t) 2 D1[D2. For an n-place predicate symbol pwith the ID-position, we define
its extension I(p) as follows:

I(p) � D1 �D1 : : :�Dn;

where Di is either D1 or D2. � is a choice function on D1, i.e. for any non-empty
subsetE ofD1;�(E) 2 E. Next, we introduce an assignment function g such that

arti145.tex; 16/04/1997; 13:48; v.7; p.16

LOGICAL FOUNDATIONS OF COMPOUND PREDICATE FORMULAE 93

g : INDVAR? 7�! D1[D2. The following function Ig (it is called an interpretation
relative to the assignment function g) is to be defined:
1. If t is an individual variable, Ig(t) = g(t).
2. if t is an individual constant, Ig(t) = I(t) 2 D1 [D2.

With these preliminaries completed, we can define the satisfaction of the formu-
lae with respect to a given assignment and interpretation of the ID-symbols in the
following manner. First, a satisfaction of an atomic formula with the ID-position is
defined as follows:

M j=g p(t; [t1; : : : ; tn])() (hI(t); I(t1); : : : ; I(tn)i) 2 I(p):

Then, derivatively, we can define a satisfaction of an atomic formula without the
ID-position as follows:

M j=g p([t1; : : : ; tn])() 9� 2 D
1(h�; I(t1); : : : ; I(tn)i 2 I(p)):

As to the equality predicate, it would appear as

M j=g s = t() Ig(s) = Ig(t):

Having determined the truth value of p([t1; : : : ; tn]) in the model M =
hD1;D2; I;�i, we are ready to define the interpretation of an ID-symbol
id p([t1; : : : ; tn]): If fI(X) : M j=g p(X; [t1; : : : ; tn])g 6= ;, then

Ig(id p) = �fI(X) : M j=g p(X; [t1; : : : ; tn])g:

Otherwise, we simply determine:

Ig(id p) = an arbitrary element of D1:

As for the other types of expressions, we shall attach the usual interpretations.

9.1. BASIC PROPERTIES OF OUR SEMANTICS

In this subsection we shall formalize some of the basic properties of our semantics.
First, consider

M j=g 9Xp(X; [t1; : : : ; tn])() p(id p; [t1; : : : ; tn]):

Secondly, consider

M j=g 9Xp(X; [t1; : : : ; tn])()M j=g p([t1; : : : ; tn]):

These are desirable properties of our semantics. The reader can easily verify that
our models will validate all of the axioms listed below. From these observations
the soundness of the system below follows immediately.

? INDVAR is the set of the individual variables of our language.

arti145.tex; 16/04/1997; 13:48; v.7; p.17

94 H. YOSHINO

10. The Axiomatic System of CPFs

We have explained the ID-symbols and CPFs. It was pointed out that ID-symbols
and "-symbols have the same logical roles. Hence, it is not difficult to construct an
axiomatic system for which we can use the system of "-symbols to construct our
system. As a matter of fact, it is just a simple adaptation of the system of "-symbols.
Of course, there are several minor differences.

The axioms of CPF are as follows.
1. All tautological formulae of the syntax of CPFs.
2. If '; are formulae of the syntax of CPF and X is an individual variable

(therefore, X is a Xi or Tj) not free in ', then the formula

(8X � ') � 8X(� ')

is an axiom.
3. If '; are formulae and is obtained from ' by freely substituting each free

occurrence of � in ' by the term t (i.e., no variable X in t shall occur bound
in at the place where it is introduced), then the formula

 � 8X

is an axiom.
4. (Identity Axioms) If X;Y are variables, t(X1; : : : ;Xn) is a term and
'(X1; : : : ;Xn) is an atomic formula, then the formulas
1. X = X

2. t(X1; : : : ;Xi�1;X;Xi+1; : : : ;Xn) =
t(X1; : : : ;Xi�1; Y;Xi+1; : : : ;Xn) � X = Y

3. ('(X1; : : : ;Xi�1; Y;Xi+1; : : : ;Xn) �
'(X1; : : : ;Xi�1;X;Xi+1; : : : ;Xn)) � X = Y

are axioms.
5. If p(X; [t1; : : : ; tn]) is an atomic formula with the ID-position occupied byX ,

then

p(id p; [t1; : : : ; tn]) � 9Xp(X; [t1; : : : ; tn])

is an axiom.
6. id p([t1; : : : ; tn]) = id q([t1; : : : tn]) � 8X(p(X; [t1; : : : ; tn]) !
q(X; [t1; : : : ; tn]))
is an axiom.
Rule 1: Rule of Detachment: From ' and � �, we can infer .
Rule 2: Rule of Generalization: From ', we can infer 8X'.

Given the axioms and the rules of inference, we can define the usual notions of
proof, theorem, etc. Following standard usage, ` ' means that ' is a CPF theorem
and
P
` ' means that there is a proof of ' from the axioms and

P
, a set of

formulae.

arti145.tex; 16/04/1997; 13:48; v.7; p.18

LOGICAL FOUNDATIONS OF COMPOUND PREDICATE FORMULAE 95

We should mention briefly concerning the completeness of the axiomatic system
of CPF that the proof itself is almost clear, for the basic idea is in the spirit of
Henkin’s proof of the completeness of first order predicate calculus. That is, what
we prove is that every consistent set of sentencesT has a model. For a more precise
proof, see Leisenring (1969, Ch. 4).

11. Conclusion

Typically, natural languages are used for expressing legal knowledge. Hence, if we
want to formalize inferences with legal knowledge, we believe it would be better
to use a formal language which has the ability to translate sentences expressed by
a natural language correctly. We already possess such a formal language, called
“Montague grammar”. If we focus on the logical aspect of Montague grammar, we
find there the theory of types, which is an extension of higher-order logic. Of course,
Montague grammar has another component, namely, a categorial grammar. Because
of these, a Montague grammar possesses a characteristic which we cannot find in
the first-order language. This characteristic is the quantification over properties.
But it is too large as a system to be treated computationally. Therefore, introducing
CPF, which is easy to use computationally, helps to resolve this problem. It is also
very useful in expressing individual concepts. Moreover, as to the latter, CPF is
less complex than sorted logic. We have so far been stating the quantifier-free part
of CPF (syntax, legal knowledge representation using it, semantics, and so on).
Finally, by way of summary I give the merits of introducing CPF, in particular
ID-symbols.
� CPFs have great expressive capacity.
� CPFs make legal knowledge representation whose form is close to natural

language.
In this way CPFs have significant advantages. The most important significance

of this paper is that it gives a logical basis for CPF.
In order to avoid the focus of the argument becoming obscured, I omitted to

offer an explanation of case symbols here. Of course they are an important tool.
Case symbols are a device for clarifying what roles terms play in a predicate. It is
interesting to give semantics for such a category of grammar.

I have often mentioned the characteristics of ID-symbols in terms of demon-
strative pronouns. We must also consider the other kinds of demonstrative pronoun
(indexicals such as “I”, demonstratives such as “the book I have” and so on) from
a wider point of view. The following are two points to consider in the future.
� How to formally identify objects that are represented by making some exten-

sion of first order language.
� How to combine ID-symbols and many sorted language.

arti145.tex; 16/04/1997; 13:48; v.7; p.19

96 H. YOSHINO

References

Davidson, D. (1980). The Logical Form of Action Sentences. In Davidson, D. (ed.)Essays on Actions
and Events, 105–122. Oxford University Press: New York.

Ebbinghaus, H.D., Flum, J. & Thomas, W. (1984). Mathematical Logic. Springer-Verlag: New York.
Gupta, A. (1980). The Logic of Common Noun. Yale University Press: New Haven.
Leisenring, A.C. (1969). Mathematical Logic and Hilbert’s "-symbol. Gordon and Breach Science

Publishers: New York.
Lloyd, J. (1987). Foundations of Logic Programming. Springer-Verlag: Berlin.
McCarty, T. (1989). A Language For Legal Discourse I. Basic Features. In Proceedings of The

Second International Conference on Artificial Intelligence and Law, 180–189. The Association
for Computing Machinery.

McCarty, T. & van der Meyden, R. (1992). Reasoning about Indefinite Actions. In Principles of
Knowledge Representation and Reasoning. Proceedings of the Third International Conference
(KR92), 59–70. Morgan Kaufmann: Los Altos.

Rödig, J. (1972). Über die Notwendigkeit einer besonderen Logik der Normen. In Albert, H. et al.
(eds.) Rechtstheorie als Grundlagenwissenschaft der Rechtwissenschaft, Jahrbuch für Rechtssozi-
ologie und Rechtstheorie Bd. 2, 163–185. Bertelmann Universitätsverlag: Düsseldorf.

Sakurai, S. & Yoshino, H. (1993). Identification of Implicit Legal Requirements with Legal Abstract
Knowledge. In Proceedings of The Fourth International Conference on Artificial Intelligence and
Law, 298–305. Association for Computing Machinery: Amsterdam.

Yoshino, H. (1978). Über die Notwendigkeit einer besonderen Normenlogik als Methode der juris-
tischen Logik. In Klug, U. et al. (eds.) Gesetzgebungstheorie, Jurisitische Logik, Zivil- und
Prozeßrecht (Gedächtnisschricht für Jürgen Rödig), 140–161. Springer-Verlag: Berlin.

Yoshino, H. (1994). Representation of Legal Knowledge by Compound Predicate Formula. In Pre-
Proceedings of the Workshop on Legal Application of Logic Programming (ICLP ’94), 128–137.

Yoshino, H. (1995). Systematization of Legal Meta-inference. In Proceedings of The Fifth Inter-
national Conference on Artificial Intelligence and Law, 266–275. Association for Computing
Machinery: Maryland.

Yoshino, H. & Kitahara M. (1988). LES-Project. In Fielder, H. et al. (eds.) Expert Systems in Law
(Neue Methoden im Recht Band 4), 47–65. Attempto Verlag: Tübingen.

Yoshino, H. & Kakuta, T. (1992). The Knowledge Representation of Legal Expert System LES-3.3
with Legal Meta-inference. In Yoshino, H. (ed.) Legal Knowledge and Legal Reasoning Systems
(Proceedings of the 6th International Symposium of Legal Expert System Association), LESA,
1–9. Legal Expert System Association: Tokyo.

Yoshino, H. et al. (1987). Legal Expert System Les-2. In Wada, E. (ed.) Logic Programming ’86,
Lecture Notes in Computer Science, Vol. 264, 36ff, Springer-Verlag: Berlin.

Yoshino, H. et al. (1993). Towards a Legal Analogical Reasoning System Knowledge Representation
and Reasoning Methods. In Proceedings of The Fourth International Conference on Artificial
Intelligence and Law, 110–116. Association for Computing Machinery: Amsterdam.

arti145.tex; 16/04/1997; 13:48; v.7; p.20

