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This paper discusses the couple-group consensus problems for a class of heterogeneousmultiagent networks including the following
two cases: with communication and input time delays, respectively. Different from the related cooperative networks, two novel
delayed group consensus protocols are designed based on the competitive relationship between the agents. Furthermore, we
absolutely relax the in-degree balance and other restrictive preconditions which existed in the relevant works. Some sufficient
algebraic criteria for the achievement of couple-group consensus and the upper bound of the input time delays are technically
obtained via the frequency domain method and matrix theory, respectively. The results show that the achievement of the
couple-group consensus depends on the second-order agents’ in-degree and the control parameters of the systems, whereas it is
independent of the communication time delays. Meanwhile, the upper bound of the input time delay is determined by the control
parameters and the in-degree of the first-order agents. Finally, the validity of the proposed results is verified by several simulated
examples.

1. Introduction

Consensus is a typical problem of coordinate control of
complex multiagent systems (MASs). It means that all the
agents will be in agreement with each other as time goes on.
Group (cluster) consensus is an extended issue of consensus
problem. To MASs, the achievement of group consensus
implies that consensus can be reached in each subgroup,
respectively. In the last decades, consensus and group consen-
sus problems have attracted the attention of the researchers
in many fields due to their extensive applications. Such as in
mobile robot systems [1, 2], smart grid [3], pinning control,
and optimization of complex systems [4–9].

Up to now, much progress has been made in the study
of consensus and group consensus issues. However, with the
increasing demand for application, there are still many prob-
lems that need to be faced. Such as most of the related works
focus on the homogeneous MASs. In fact, complex systems

are often heterogeneous in the field of practical engineering.
Namely, the dynamics of the agents are different, at least not
identical. Hence, more and more attention should be paid
on heterogeneous MASs. Recently, lots of interesting works
about heterogeneousMASs have been reported. For example,
in [10, 11], the authors discussed the synchronization of the
heterogeneous systems and obtained some sufficient and/or
necessary criteria which can guarantee the achievement of
synchronization. In [12, 13], to the heterogeneous systems
with undirected topology, the consensus and the globally
bounded consensus problems were studied, respectively. In
[14–16], the authors discussed the synchronization and con-
sensus issues for heterogeneous systems with the influence of
time delays, respectively.Meanwhile, the consensus problems
for the discrete-time heterogeneous systems were studied in
[17, 18]. In [19–21], group consensus problems for different
kinds of heterogeneous systems have been investigated, such
as the discrete-time complex systems, the systems modeled
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by second-order, and Euler-Lagrange networks. In [22, 23],
the authors studied the group consensus for the cooperative
and heterogeneous networks with and without input time
delays, respectively. In [24], group synchronization for linear
and nonlinear heterogeneous systems was discussed via
Lyapunov theory. In [25], second-order heterogeneousMASs
in cooperation-competitionnetworkwith switching topology
are investigated. Adaptive and pinning control scheme were
proposed as well. In [26], the authors also discussed the
reverse group consensus for cooperation-competition net-
work.

Inspired by the relevant research works, this paper will
discuss the group consensus issues for the heterogeneous
MASs with time delays.The following two cases are included:
with communication and input time delays. As known, time
delays inevitably exist in the complex systems. Meanwhile,
they usually affect and even destroy the stability of complex
systems [14–16].Therefore, it is very important and necessary
to discuss the group consensus problems with the influence
of time delays. Our contributions are mainly listed as below:
firstly, two novel delayed group consensus protocols are
proposed, which is modeled by the agents’ competitive rela-
tionship.The innovation is mainly embodied in the following
two aspects: on the one hand, the related works [10–24] are
based on the cooperative complex systems. On the other
hand, there is a special case in the works [15, 21–23]; that is,
the dynamics of the first-order agents are added with a virtual
velocity estimation in order tomake theoretical analysismore
convenient. As a fact of that, this situation is not quite true.
Hence, we relax it in our protocol. Secondly, we also relax
the following two preconditions in [15, 20–24]: in-degree
balance and the geometric multiplicity of zero eigenvalues of
the Laplacianmatrix associated with the adjacencymatrix are
at least two. They limit the topology of the system and the
information interaction between the agents. As it does not
rely on the restrict conditions, the case we discuss is more
general. Lastly, by the matrix theory and frequency domain
method, we theoretically propose some sufficient algebraic
criteria for the achievement of couple-group consensus of the
proposed complex systems. In general, our results should be
more general.

The remaining parts of the paper are organised as follows.
In Section 2, definition, lemma, and problem statements are
listed firstly. In Section 3, wemainly discuss the couple-group
consensus for the heterogeneous MASs with time delays.
Subsequently, several simulated examples are illustrated to
verify the correctness of our findings, and the conclusions are
drawn finally in Section 5.

Notation. In the paper, let R, C denote the real and complex
numbers sets. ∀𝑧 ∈ C, its modulus and the real part
are represented by |𝑧| and Re(𝑧). 𝐼𝑛 denotes 𝑛-dimensional
identity matrix. 𝜆𝑖(Λ), det(Λ) denote the 𝑖th eigenvalue and
the determinant of the matrix Λ, respectively.
2. Problems Statement

Consider a heterogeneous MASs containing 𝑛+𝑚 agents; we
conveniently assume the first 𝑛 and remaining 𝑚 agents are

second-order and first-order agents, and their dynamics are
presented as follows:

̇𝜁𝑖 (𝑡) = 𝜍𝑖 (𝑡) ,
̇𝜍𝑖 (𝑡) = 𝑢𝑖 (𝑡) , 𝑖 ∈ 𝜎1,
̇𝜁𝑖 (𝑡) = 𝑢𝑖 (𝑡) , 𝑖 ∈ 𝜎2,

(1)

where 𝜎1 = {1, 2, . . . , 𝑛}, 𝜎2 = {𝑛 + 1, 𝑛 + 2, . . . , 𝑛 + 𝑚}, 𝜎 =𝜎1 ∪ 𝜎2. 𝑢𝑖(𝑡), 𝜁𝑖(𝑡), 𝜍𝑖(𝑡) ∈ R are control input, position, and
velocity state of the agent 𝑖, respectively.

In heterogeneous MASs, the neighbors of the agent 𝑖
may include second- and first-order agents, which can be
described as 𝑁𝑖,𝑠 and 𝑁𝑖,𝑓, respectively. Hence, its neighbor
set 𝑁𝑖 = 𝑁𝑖,𝑓 ∪ 𝑁𝑖,𝑠. The adjacency matrix 𝐴 can be
partitioned as 𝐴 = [ 𝐴𝑠 𝐴𝑠𝑓𝐴𝑓𝑠 𝐴𝑓

], where 𝐴 𝑠 ∈ R𝑛×𝑛, 𝐴𝑓 ∈
R𝑚×𝑚,𝐴 𝑠𝑓 represents the adjacencyweights from the second-
order agents to the first-order agents, and 𝐴𝑓𝑠 denotes
the adjacency weights from the first-order agents to the
second-order agents, respectively. The Laplacian matrix 𝐿
can also be rewritten as 𝐿 = 𝐷 − 𝐴 = [ 𝐿𝑠+𝐷𝑠𝑓 −𝐴𝑠𝑓−𝐴𝑓𝑠 𝐿𝑓+𝐷𝑓𝑠

],
where 𝐿 𝑠 and 𝐿𝑓 denote the corresponding second-order
and first-order agents’ Laplacian matrix, respectively. 𝐷𝑠𝑓 =
diag{∑𝑗∈𝑁𝑖,𝑓 𝑎𝑖𝑗, 𝑖 ∈ 𝜎1}, 𝐷𝑓𝑠 = diag{∑𝑗∈𝑁𝑖,𝑠 𝑎𝑖𝑗, 𝑖 ∈ 𝜎2}.
Therefore, when the topology of the system is a bipartite
graph, the matrix 𝐷 + 𝐴 associated with the system can be
rewritten as𝐷 + 𝐴 = [ 𝐿𝑠+𝐷𝑠𝑓 𝐴𝑠𝑓𝐴𝑓𝑠 𝐿𝑓+𝐷𝑓𝑠

] .
Next, the definition and lemma will be listed to further

our analysis.

Definition 1. Couple-group consensus for the heterogeneous
MASs (1) is said to be reached asymptotically, if and only if the
following two conditions are satisfied for any initial states:

lim
𝑡→+∞

󵄩󵄩󵄩󵄩󵄩𝜁𝑖 (𝑡) − 𝜁𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0, if 𝑖, 𝑗 ∈ 𝜎𝑘, 𝑘 = 1, 2;
lim
𝑡→+∞

󵄩󵄩󵄩󵄩󵄩𝜍𝑖 (𝑡) − 𝜍𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0, if 𝑖, 𝑗 ∈ 𝜎𝑘, 𝑘 = 1, 2.
(2)

Lemma 2 (see [9]). Consider a complex networks with 𝑁
agents, if its topology is a bipartite digraph and contains a
directed spanning tree; it has Re(𝜆𝑖(𝐷 +𝐴)) > 0, when 𝜆𝑖(𝐷 +𝐴) ̸= 0 and rank(𝐷+𝐴) = 𝑁−1. In particular, if the topology
is an undirected bipartite graph, the nonzero eigenvalues of the
matrix𝐷 + 𝐴 are positive real numbers.

3. Main Results

In this section,wewill discuss the couple-group consensus for
the heterogeneous multiagent systems with communication
and input time delays, respectively.

First, we will discuss the case where with communication
time delays.

As is known the relationship between the agents in com-
plex systems includes cooperative relationship, competitive
relationship, and both of them. In the related works [10–
24], the cooperative and competitive relationship between the
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agents 𝑖 and 𝑗 is described as 𝑥𝑗 − 𝑥𝑖 and 𝑥𝑗 + 𝑥𝑖, respectively.
In [25, 26], they also are presented by the coupling weight𝑎𝑖𝑗 between these two agents. If 𝑎𝑖𝑗 > 0, it is shown that
the relationship between the agent 𝑖 and 𝑗 is cooperative. If𝑎𝑖𝑗 < 0, it means competition. Most of the works focused on
the systems constructed by cooperative relationship between
the agents and there are few reports about competitive
networks. Hence, motivated by the related works and on the
foundation of systems (1), a novel group protocol for a class of
heterogeneous MASs based on the competition relationship
between the agents is proposed as follows:

̇𝜁𝑖 (𝑡) = 𝜍𝑖 (𝑡) ,

̇𝜍𝑖 (𝑡) = −𝛼[
[
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 [𝜁𝑗 (𝑡 − 𝜏𝑖𝑗) + 𝜁𝑖 (𝑡)]]
]
− 𝛽𝜍𝑖 (𝑡) ,

𝑖 ∈ 𝜎1,

̇𝜁𝑖 (𝑡) = −𝛾[
[
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 [𝜁𝑗 (𝑡 − 𝜏𝑖𝑗) + 𝜁𝑖 (𝑡)]]
]
, 𝑖 ∈ 𝜎2,

(3)

where 𝜏𝑖𝑗 denotes the communication time delay between the
agents 𝑖 and 𝑗. 𝛼, 𝛽, 𝛾 > 0 are the control parameters of the
systems.

Theorem 3. If max{𝑑𝑖} < 𝛽2/2𝛼, 𝑖 ∈ 𝜎1, and 𝛾 > 0 hold,
the couple-group consensus for systems (3) with an undirected
bipartite topology can be achieved asymptotically.

Proof. Taking the Laplace transforms to (3), it yields that

𝑠𝜁𝑖 (𝑠) = 𝜍𝑖 (𝑠) ,

𝑠𝜍𝑖 (𝑠) = −𝛼[
[
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝜁𝑗 (𝑠) + 𝜁𝑖 (𝑠)]]
]
− 𝛽𝜍𝑖 (𝑠) ,

𝑖 ∈ 𝜎1,

𝑠𝜁𝑖 (𝑠) = −𝛾[
[
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝜁𝑗 (𝑠) + 𝜁𝑖 (𝑠)]]
]
, 𝑖 ∈ 𝜎2,

(4)

where 𝜁𝑖(𝑠), 𝜍𝑖(𝑠) represent the Laplace transformof 𝜁𝑖(𝑡), 𝜍𝑖(𝑡),
respectively.

Define

𝜁𝑠 (𝑠) = [𝜁1 (𝑠) , 𝜁2 (𝑠) , . . . , 𝜁𝑛 (𝑠)]𝑇 ,
𝜁𝑓 (𝑠) = [𝜁𝑛+1 (𝑠) , 𝜁𝑛+2 (𝑠) , . . . , 𝜁𝑛+𝑚 (𝑠)]𝑇 ,

𝐿̂ = (𝑙̂𝑖𝑗)(𝑛+𝑚)×(𝑛+𝑚) =
{{
{{{

𝑒−𝜏𝑖𝑗𝑠𝑎𝑖𝑗, 𝑖 ̸= 𝑗,
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗, 𝑖 = 𝑗,

𝑦 (𝑠) = [𝜁𝑇𝑠 (𝑠) , 𝜁𝑇𝑓 (𝑠)]𝑇 ;

(5)

then we have

𝑠𝑦 (𝑠) = Φ̃ (𝑠) 𝑦 (𝑠) , (6)

where

Φ̃ (𝑠) = [[
[

−𝑠2𝐼𝑛 − 𝛼 (𝐿̂ 𝑠 + 𝐷𝑠𝑓)
𝛽

−𝛼𝐴 𝑠𝑓
𝛽

−𝛾𝐴𝑓𝑠 −𝛾 (𝐿̂𝑓 + 𝐷𝑓𝑠)
]]
]
. (7)

Define 𝐹(𝑠) = det(𝑠𝐼−Φ̃(𝑠)). It is known that the systems’
couple-group consensus will be achieved if the roots of 𝐹(𝑠)
either are at 𝑠 = 0 or have negative real parts by the stability
theory.

When 𝑠 = 0, 𝐹(0) = (−𝛼/𝛽)𝑛(−𝛾)𝑚 det(𝐷 + 𝐴). Based on
Lemma 2, we know that the roots of 𝐹(0) are at 𝑠 = 0 if the
topology of the systems is an undirected bipartite graph.

When 𝑠 ̸= 0, define 𝐹(𝑠) = det(𝐼 + 𝐻(𝑠)), where 𝐻(𝑠) =−Φ̃(𝑠)/𝑠. Then it follows that

𝐻(𝑠) = [[[[
[

𝑠2𝐼𝑛 + 𝛼 (𝐿̂ 𝑠 + 𝐷𝑠𝑓)
𝑠𝛽

𝛼𝐴 𝑠𝑓
𝑠𝛽

𝛾𝐴𝑓𝑠
𝑠

𝛾 (𝐿̂𝑓 + 𝐷𝑓𝑠)
𝑠

]]]]
]
. (8)

Set 𝑠 = 𝑗𝜔, based on the general Nyquist criterion, it is
known that if and only if the point (−1, 𝑗0) is not enclosed by
theNyquist curve of𝐻(𝑗𝜔), the roots of𝐹(𝑠) are located in the
open left-half plane. Namely, the roots of 𝐹(𝑠) have negative
real parts. Hence, according to theGershgorinDiskTheorem,
we have

𝜆 (𝐻 (𝑗𝜔)) ∈ {𝐻𝑖, 𝑖 ∈ 𝜎1} ∪ {𝐻𝑖, 𝑖 ∈ 𝜎2} . (9)

When 𝑖 ∈ 𝜎1, it yields that

𝐻𝑖 = {{{
𝜁 : 𝜁 ∈

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜁 − 𝛼

𝑗𝜔𝛽 ∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 − 𝑗𝜔𝛽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑
𝑗∈𝑁𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼𝑎𝑖𝑗
𝑗𝜔𝛽𝑒
−𝑗𝜔𝜏𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}
}}
.

(10)

Define ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗 = 𝑑𝑖, 𝑖 ∈ 𝜎1; since the point (−𝑎, 𝑗0),
𝑎 ≥ 1 is not enclosed in 𝐻𝑖, 𝑖 ∈ 𝜎1, the following inequation
(11) can be obtained:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−𝑎 −
𝛼𝑑𝑖
𝑗𝜔𝛽 −

𝑗𝜔
𝛽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > ∑
𝑗∈𝑁𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼𝑎𝑖𝑗
𝑗𝜔𝛽𝑒
−𝑗𝜔𝜏𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (11)

From (11), it follows that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−𝑎 +

𝛼𝑑𝑖
𝜔𝛽 𝑗 −

𝑗𝜔
𝛽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 >

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼𝑑𝑖
𝑗𝜔𝛽 (cos𝜔𝜏𝑖𝑗 − 𝑗 sin𝜔𝜏𝑖𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (12)

After some manipulation, it yields that

𝑎2 + 𝜔2𝛽2 −
2𝛼𝑑𝑖
𝛽2 > 0. (13)
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As 𝑎 ≥ 1, hence, we have
1 + 𝜔2𝛽2 −

2𝛼𝑑𝑖
𝛽2 > 0. (14)

As 𝛽 > 0, the following inequations can be obtained:

𝛽2 − 2𝛼𝑑𝑖 > 0. (15)

From (15), the condition 𝑑𝑖 < 𝛽2/2𝛼 can be obtained.
When 𝑖 ∈ 𝜎2, it yields that

𝐻𝑖 = {{{
𝜁 : 𝜁 ∈

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜁 − 𝛾

𝑗𝜔 ∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∑
𝑗∈𝑁𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛾𝑎𝑖𝑗
𝑗𝜔 𝑒
−𝑗𝜔𝜏𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}
}}
. (16)

Define ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗 = 𝑑𝑖, 𝑖 ∈ 𝜎2; if the point (−𝑎, 𝑗0), 𝑎 ≥ 1 is
not enclosed in𝐻𝑖, 𝑖 ∈ 𝜎2, we have

𝑎2 > 0. (17)

It is easy to know that inequation (17) can be satisfied for𝑎 ≥ 1.
Fromwhat have been discussed above, that completes the

proof of Theorem 3.

Corollary 4. For systems (3) with a directed bipartite topology
which contains a directed spanning tree, if max{𝑑𝑖} < 𝛽2/2𝛼,𝑖 ∈ 𝜎1, and 𝛾 > 0 hold, the couple-group consensus of the
systems can be achieved asymptotically.

We omit the proof progress here due to the space
limitation.

Remark 5. From the results inTheorem 3 and Corollary 4, we
can find that the achievement of the couple-group consensus
relies on the control parameters and the second-order agents’
in-degree. Meanwhile, communication time delays cannot
affect the achievement of the group consensus.

Next, we will investigate the couple-group consensus
problem for the heterogeneous MASs with input time delays.

Based on systems (3), a delayed protocol which based on
the competitive relationship between the agents is designed
as follows:

̇𝜁𝑖 (𝑡) = 𝜍𝑖 (𝑡) ,

̇𝜍𝑖 (𝑡) = −𝛼[
[
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 [𝜁𝑗 (𝑡) + 𝜁𝑖 (𝑡 − 𝜏)]]
]
− 𝛽𝜍𝑖 (𝑡 − 𝜏) ,

𝑖 ∈ 𝜎1,

̇𝜁𝑖 (𝑡) = −𝛾[
[
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 [𝜁𝑗 (𝑡) + 𝜁𝑖 (𝑡 − 𝜏)]]
]
, 𝑖 ∈ 𝜎2,

(18)

where 𝜏 denotes the input time delays of the agent 𝑖. 𝛼, 𝛽, 𝛾 >0 are the control parameters of the systems. Note that we just
discuss the special case.

Theorem 6. If max{𝑑𝑖} < 𝛽2/2𝛼 and 𝜏 ∈ [0,min{1/2𝛽,
max{1/2𝛾𝑑𝑖}}] can be held, couple-group consensus for the
heterogeneous MASs (18) with an undirected bipartite graph
topology can be achieved asymptotically, where 𝑑𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗,𝑖 ∈ 𝜎1, and 𝑑𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈ 𝜎2.
Proof. Taking the Laplace transforms to (18), it yields that

𝑠𝜁𝑖 (𝑠) = 𝜍𝑖 (𝑠) ,

𝑠𝜍𝑖 (𝑠) = −𝛼[
[
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 [𝜁𝑗 (𝑠) + 𝑒−𝜏𝑠𝜁𝑖 (𝑠)]]
]

− 𝛽𝑒−𝜏𝑠𝜍𝑖 (𝑠) , 𝑖 ∈ 𝜎1,

𝑠𝜁𝑖 (𝑠) = −𝛾[
[
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 [𝜁𝑗 (𝑠) + 𝑒−𝜏𝑠𝜁𝑖 (𝑠)]]
]
, 𝑖 ∈ 𝜎2,

(19)

where 𝜁𝑖(𝑠), 𝜍𝑖(𝑠) represent the Laplace transformof 𝜁𝑖(𝑡), 𝜍𝑖(𝑡),
respectively.

As the proof progress is similar with that in Theorem 3,
we omit it here due to the space limitation.

Corollary 7. If the conditions max{𝑑𝑖} < 𝛽2/2𝛼 and 𝜏 ∈
[0,min{1/2𝛽,max{1/2𝛾𝑑𝑖}}] are satisfied, couple-group con-
sensus for the heterogeneousMASs (18) with a bipartite digraph
topology which has a directed spanning tree can be achieved
asymptotically, where 𝑑𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈ 𝜎1, and 𝑑𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗,𝑖 ∈ 𝜎2.
Remark 8. From the proof progress of theorems and corol-
laries, it is found that we absolutely relax the following
two restrictive assumptions which existed in [15, 20–24]:
in-degree balance and the geometric multiplicity of zero
eigenvalues of the systems Laplacianmatrix are at least two. It
is known that in-degree balance means that there is no actual
communication between the clusters. Meanwhile, the later
condition also restricts the topology of the systems.As both of
them are very restrictive conditions, our results will be more
general.

Remark 9. From the results in Theorem 6 and Corollary 7,
we know that the achievement of couple-group consensus
relies on control parameters of the systems, in-degree of the
second-order agents, and the input time delay. Meanwhile,
the upper bound of the input time delay is determined by the
control parameters and the in-degree of the first-order agents.

Remark 10. It is worth noting that there is a virtual velocity
estimation in the dynamics of the first-order agents for the
convenience of analysis in [15, 21–23]. In fact, this situation is
so ideal that it cannotmeet the requirement in applications. In
our models, we relax it.Therefore, the protocols we proposed
are more practical. Meanwhile, the work will become more
challenging when some preconditions are removed.
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Figure 1: The bipartite topology of the heterogeneous MASs.
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Figure 2: The state trajectories of the agents in systems (3). (a) 𝜏𝑖𝑗 = 0 s, (b) 𝜏𝑖𝑗 = 0.3 s, and (c) 𝜏𝑖𝑗 = 0.5 s.
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Figure 3: The state trajectories of the agents in systems (18). (a) 𝜏 = 0.1 s and (b) 𝜏 = 0.2 s.

4. Simulation Results

In the section, we will illustrate the correctness of the
obtained results by several simulated examples.

Suppose the heterogeneous systems with the undirected
bipartite topology shown in Figure 1. For convenience, we
also assume agents 1 and 5 are second-order and agents 2, 3,
and 4 are first-order. In this situation, clusters 𝐺1 and 𝐺2 are
heterogeneous as well.

Set 𝛼 = 1, 𝛽 = 2.5, 𝛾 = 1, and 𝑎𝑖𝑗 = 1, 𝑖, 𝑗 ∈ [1, 5]. From
Figure 1, we have 𝑑1 = 3, 𝑑2 = 2, 𝑑3 = 1, 𝑑4 = 2, and 𝑑5 = 2.
Example 1. It is easy to verify that the conditions inTheorem3
are satisfied. As the communication time delays cannot
affect the achievement of the systems, in the example, we
suppose the communication time delays between the agents
are equal. Meanwhile, in order to describe the effect of the
communication time delay on systems’ convergence rate, we
mainly consider the following three cases: (1) 𝜏𝑖𝑗 = 0 s;
(2) 𝜏𝑖𝑗 = 0.3 s; (3) 𝜏𝑖𝑗 = 0.5 s. The trajectories of the
agents in systems (3) are shown in Figure 2, respectively.
The results show that the systems’ couple-group consensus is
reached, respectively. Moreover, we can find that the systems’
convergence rate will be improved with the decrease of
communication delay.

Example 2. From Theorem 6, we know 𝜏 ∈ [0, 1/5]. Hence,
in the simulation, we choose 𝜏 = 0.1 s and 𝜏 = 0.2 s,
respectively. It is known that all the conditions in Theorem 6
can be satisfied. The trajectories of the agents in systems (18)
are shown in Figure 3, respectively. The results show that
the systems’ couple-group consensus is reached, respectively.
Furthermore, with the increase of input time delay, the
convergence rate of the systems will decrease accordingly.

1 2

3 4 5

G1

G2

Figure 4: The directed bipartite topology of the heterogeneous
MASs.

Example 3. Consider systems (3) with the topology shown
in Figure 4. It is a bipartite digraph and contains a directed
spanning tree. In this example, all the parameters are set as
those in Example 1. It is easy to verify that the conditions in
Corollary 4 are satisfied as well. The trajectories of the agents
in systems (3) with different communication time delays are
shown in Figure 5, respectively. From the results illustrated
in Figure 5, we can find the couple-group consensus can be
reached asymptotically, respectively.

Example 4. Based on Example 2, we suppose systems (18)
with the topology shown in Figure 4 and set 𝜏 = 0.1 s and𝜏 = 0.2 s, respectively. It is known that all the conditions in
Corollary 7 can be satisfied. The trajectories of the agents in
systems (18) are shown in Figure 6, respectively. The results
show that the systems’ couple-group consensus is reached,
respectively.

Example 5. In this example, we will discuss the other case
where systems (18) with the topology are shown in Figure 7.
It is shown that the second-order agents 1 and 2 belong to
cluster𝐺1. Similarly, cluster𝐺2 contains the first-order agents
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Figure 5: The state trajectories of the agents in systems (3). (a) 𝜏𝑖𝑗 = 0 s, (b) 𝜏𝑖𝑗 = 0.3 s, and (c) 𝜏𝑖𝑗 = 0.5 s.

3, 4 and 5. Namely, the whole system is heterogeneous, but its
two clusters are homogeneous. Based onExamples 2 and 4,we
also set 𝜏 = 0.1 s and 𝜏 = 0.2 s, respectively. Meanwhile, the
other parameters coincide with those in Example 2. It is not
difficult to find that the conditions in Corollary 7 are satisfied.
The trajectories of the agents in systems (18) are illustrated in
Figures 8 and 9, respectively. From the results, they show that
the couple-group consensus of the systems can be achieved
asymptotically.

Remark 11. We assume each subgroup is heterogeneous in
Examples 1–4. Note that our results also apply to the case
where the clusters are homogeneous. At this point, the

position and velocity states of the agents will achieve group
consensus in the cluster containing second-order agents. The
results in Example 5 can be explained here.

5. Conclusions

In this paper, we investigate the couple-group consensus
problems for the heterogeneous MASs with communication
and input time delays, respectively. Based on the competitive
relationship between the agents, two novel delayed group
consensus protocols are designed. Specifically, some suffi-
cient algebraic criteria are obtained by the matrix theory
and frequency domain method in the case of relaxing the
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Figure 6: The state trajectories of the agents in systems (18). (a) 𝜏 = 0.1 s and (b) 𝜏 = 0.2 s.
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Figure 7: The directed bipartite topology of the heterogeneous MASs.
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Figure 8: The state trajectories of the agents in systems (18) when 𝜏 = 0.1 s. (a) Position state and (b) velocity state.
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Figure 9: The state trajectories of the agents in systems (18) when 𝜏 = 0.2 s. (a) Position state and (b) velocity state.

restrictive preconditions existing in the related works. From
the results, we find that the achievement of the couple-group
consensus depends on the second-order agents in-degree
and the control parameters of the systems, whereas it is
independent of the communication time delays. Meanwhile,
the upper bound of the input time delay is determined by
the control parameters of the systems and the in-degree of
the first-order agents. With the increase of the in-degree
of the first-order agents, the tolerance of the systems to
the input time delay will be reduced. It reveals that we
should improve the data processing capability of the key
agents. Furthermore, through the simulated examples, it is
found that the smaller the time delays are including input
and communication time delays, the faster the systems will
converge. In the future, we will further our work to the
cases with multiple time delays, switching topology, and so
on.
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