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DEVELOPMENT OF PROPOSITIONAL LOGIC

RICHARD ZACH

Abstract. Some of the most important developments of symbolic logic took place in the
1920s. Foremost among them are the distinction between syntax and semantics and the formu-
lation of questions of completeness and decidability of logical systems. David Hilbert and his
students played a very important part in these developments. Their contributions can be traced
to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period
1917–1923. The aim of this paper is to describe these results, focussing primarily on propositional
logic, and to put them in their historical context. It is argued that truth-value semantics, syntactic
(“Post-”) and semantic completeness, decidability, and other results were first obtained by Hilbert
and Bernays in 1918, and that Bernays’s role in their discovery and the subsequent development
of mathematical logic is much greater than has so far been acknowledged.

§1. Introduction. Paul Bernays is best known today for being Hilbert’s pri-
mary collaborator on foundational matters in the Göttingen of the 1920s. He
both shaped and helped execute the research project now known as Hilbert’s pro-
gram. TheGrundlagenbuch[46, 47], the decidability of the so-called Bernays-
Scḧonfinkel class of first-order formulas [11], and his work on axiomatic set
theory [8] are considered to be his major contributions to the foundations of
mathematics. Bernays is also the author of a number of influential papers on
philosophy of mathematics, and the details and refinements of Hilbert’s mature
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philosophical views certainly owe much to him. His mathematical work in the
early 1920s however, is little known and even less appreciated.

Bernays came to G̈ottingen in the Fall of 1917, at Hilbert’s invitation.1 For
the following 17-odd years, Bernays worked in Göttingen as his assistant. His
main task was to collaborate with Hilbert in his foundational work, in particular,
to assist in the preparation of Hilbert’s lecture courses and in preparing polished
typescripts of these lectures. Many of these lecture notes are preserved at the
library of the Department of Mathematics at the University of Göttingen, and
in Hilbert’s Nachlaßat the Nieders̈achsische Staats- und Universitätsbibliothek.
Hilbert’s lectures have recently received much attention, since they provide a
much more nuanced and detailed way of understanding the development not
only of Hilbert’s views on the foundations of mathematics, but on the devel-
opment of first-order logic in the 20s. Moore [60] and Sieg [69] discuss, inter
alia, the lecture notes for the course on the “Principles of Mathematics” [33].2

I, too, want to focus on these notes, and on Bernays’sHabilitationsschrift[5],
of which only parts were published [6]. My central concern, however, shall be
the results on propositional logic contained therein. These results include: ex-
plicit semantics for propositional logic using truth values, decidability of the set
of valid propositional formulas, completeness of the axiom systems considered
relative to that semantics, as well as what is now called Post completeness, con-
sistency and independence results, general three- and four-valued matrices, and
rule-based derivation systems.

All these results were obtained independently of logicians to whom they are
usually credited (notably Pierce, Wittgenstein, Post, and Łukasiewicz).3 Far
be it from me to dispute their priority. After all, Hilbert and Bernays’s work
remained unpublished, and in some respects the work by those other logicians
investigates the questions at hand more deeply or is more precise than Hilbert
and Bernays’s. I do think, however, that a detailed exposition of the results
may provide clues to the development of logic in the 1920s, in particular in the
Hilbert school.

While I believe that all of the results on propositional logic in question are in-
teresting in their own right, some of my discussion also has significant bearing
on the understanding of the development of first-order logic and Hilbert’s foun-
dational program as a whole. For instance, one of the conclusions of a close look
at the historical record will be that the seminal early results on propositionaland
first-order logic were in large part due to Bernays.

About hisHabilitationsschriftof 1918, Bernays said:

[It] was certainly of a mathematical character. But the opinion at the
time was that foundational investigations connected to mathematical
logic were not taken seriously. They were considered amusing, play-
ful. I had a similar tendency, and so did not take it seriously either.
I was not very ambitious to get it published in time, and it appeared
only much later, and then only in part [. . . ] And so some of what I
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had achieved there was not duly recognized in the expositions of the
development of mathematical logic.4

The present paper is in part an attempt to answer this complaint.
In §2, I give an exposition of the ideas contained in the lecture notes and in

theHabilitationsschriftconcerning semantics and completeness. Since there is
significant overlap between Hilbert’s lecture and Bernays’s Habilitationsschrift,
a discussion of the issue of authorship of the relevant passages is in order. This
is the topic of§3. In §4, I present the parts of the Habilitationsschrift dealing
with dependence and independence of axioms.§5 deals with Bernays’s efforts to
provide an axiomatization of propositional logic based on rules as opposed to ax-
ioms, an approach influencing later axiomatic developments and also Gentzen’s
sequent calculus. In§6, I try to provide several hints as to how this early work by
Bernays and Hilbert influenced the further direction that logical investigations
took in the G̈ottingen of the 1920s.

§2. Semantics, Normal Forms, Completeness.
2.1. Prehistory: Hilbert’s lectures on Logical Principles of Mathematical

Thought 1905. In the Summer semester of 1905, Hilbert holds a course on
“Logical principles of mathematical thought” [31]. A detailed exposition of the
lectures and their historical context is given by Peckhaus [62], to whom much
of the discussion in this section is indebted (see also [63, 64]). These lectures
are highly interesting, for they contain developments of axiom systems not only
for arithmetic and geometry, but also thermodynamics and probability theory. In
them, Hilbert first discusses set theory and the paradoxes. In Chapter V (“The
logical calculus”), we then read: “The paradoxes we have just introduced show
sufficiently that an examination and redevelopment of the foundations of math-
ematics and logic is urgently necessary.”5

Following a discussion of the purpose of logic and of the significance of con-
tradictions, Hilbert develops propositional logic algebraically, using ideas from
his first Heidelberg lecture given the year before [32]. Hilbert lays down the
following axioms:

Axiom I. If X ≡Y6 then one can always replaceX by Y andY by X.
Axiom II. From 2 propositionsX, Y a new one results (“additively”)

Z≡ X +Y

Axiom III. From 2 propositionsX, Y a new one results in a different
way (“multiplicatively”)

Z≡ X ·Y

The following identities hold for these “operations”:

IV. X +Y ≡Y +X VI. X ·Y ≡Y ·X
V. X +(Y +Z)≡ (X +Y)+Z VII. X · (Y ·Z)≡ (X ·Y) ·Z

VIII. X · (Y +Z)≡ X ·Y +X ·Z
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[ . . . ] There are 2 definite propositions 0, 1, and for each proposition
X a different propositionX is defined, so that the following identities
hold:

IX. X +X ≡ 1 X. X ·X ≡ 0
XI. 1 +1≡ 1 XII. 1 ·X ≡ X7

Hilbert’s intuitive explanations make clear thatX, Y, andZ stand for proposi-
tions, + for conjunction,· for disjunction, · for negation, 1 for falsity, and 0
for truth.8 The axioms are followed by a discussion of the system from an alge-
braic standpoint. Hilbert points out how the axioms with the exception of (XI)
also apply to arithmetic, and discusses the correspondence between negation and
subtraction. Then he poses the main metatheoretical questions:

It would now have to be investigated in how far the axioms are de-
pendent and independent of one another [. . . ] What would be most
important here, however, is the proof that the 12 axioms do not con-
tradict each other, i.e., that using the process defined one cannot obtain
a proposition which contradicts the axioms, say,X + X = 0. These are
only hints which have not been carried out completely as of yet, and one
still has free reign in the details; generally speaking this whole section
supplies material for the ultimate solution of the interesting questions,
rather than give the ultimate solution.9

These questions are to be solved 12 years later in the lectures from 1917–
18 and in Bernay’sHabilitationsschrift. It is interesting to note that Hilbert
has all the tools in hand to give the solution already in 1905. We even find
a nonderivability proof using an arithmetical interpretation of the axioms on
p. 233: The axioms (XI) and (XII) are not derivable from the other axioms
together withX + 0≡ X andX ·0≡ 0 (interpret+ and · as ordinary sum and
product of reals, and takeX to be 1−X.)

Hilbert proceeds to establish a number of consequences of the axioms in the
style of algebraic proofs, in particular, de Morgan’s laws. There is no distinction
between consequence and the material conditional,X | Y10 “Y follows from X
[ausX folgt Y]” is defined byX ·Y ≡ 0. Given this definition, it seems prob-
lematic to use nested conditionals, but subsequent examples indicate thatX |Y
is intended also as an abbreviation forX ·Y not only for the equationX ·Y = 0.

Hilbert then proves that every propositional formula can be brought into one
of two normal forms. First one uses de Morgan’s laws repeatedly to see that
every sentence can be written as sums and products of primitive propositions
and their negations. Using the distributive law, this can be rewritten as a sum of
products. Hilbert then uses a number of ways to simplify these, and claims (er-
roneously) that the resulting conjunctive normal form is unique up to reordering
of conjuncts.11 Using duality, it is then proved that every expression can also be
brought into a disjunctive normal form.

Hilbert also discusses consequence at length. The system of propositional
logic is intended as a background framework for other axiomatic theories. The
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axioms of those theories are interpreted as “correct” propositions, and the cal-
culus is intended to make clear which propositions follow from the axioms ac-
cording to the definition of consequence:Y follows fromX if X ·Y = 0. Hilbert
proves the following about this notion of consequence:

A propositionY follows from another propositionX if and only if it is
of the formA·X, whereA is some proposition. To deduce is to multiply
correct propositions with arbitrary propositions.12

This theorem leads Hilbert to identify proofs with such factorsA. The normal
form theorem then provides the first proof of decidability of the propositional
calculus. In the lecture on mathematical problems [28, p. 262], Hilbert discussed
the issue of the decidability of every mathematical problem and proclaimed that
“in mathematics there is no ignorabimus.” The decidability of the propositional
calculus is an example of what Hilbert is looking for:

I now want to point out what is probably the most important application
of the normal form of a proposition and its uniqueness. We will—and
this is a restriction we have to impose for the time being—take a finite
number of propositionsa, b, c, . . . (axioms about the things consid-
ered or proper names) as given. Then there can be only a finite number
of propositions (that is, propositions built up from these basic proposi-
tions), for every one can be brought into the form of a sum of products
[conjunction of disjunctions] in basically a unique way. Every basic
proposition appears in any summand [conjunct] only in the first dimen-
sion and any product [disjunction] appears only once as a summand
[conjunct]. Every correct proposition must follow from the sum of the
axiomsa+b+ · · · by multiplication with a certain factorA (Proof) and
for thisA there are only finitely many [possible] forms by what has just
been said. So it turns out that for every theorem there are onlyfinitely
many possibilities of proof, and thus we have solved, in the most prim-
itive case at hand, the old problem that it must be possible to achieve
any correct result by afinite proof. This problem was the original start-
ing point of all my investigations in our field, and the solution to this
problem in the most general case[,] the proof that there can be no “ig-
norabimus” in mathematics, has to remain the ultimate goal.13

There are many difficulties with this passage. First of all, if one takes the
axioms of a theory to be a finite set of unanalyzed propositionsa, b, c, . . . , the
propositional consequences of such a theory will not cover any significant num-
ber of their logical consequences. Taking the passage at face value, what we get
is essentially a decision procedure for the propositional consequences of a set
of variables. The argument can, however, easily be modified to apply to con-
sequences of a finite set of propositional formulas.14 This would not get us too
far either, but Hilbert after all acknowledges that we are here dealing only with
“a most primitive case.” The next difficulty arises from Hilbert’s earlier error
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of claiming that the normal form for a given formula is unique. For Hilbert’s
procedure to work, we would not only have to be able to enumerate all possible
proofsA, but also be able to check ifA · (a+ b+ · · ·) = Y. This would presum-
ably have to be done by comparing normal forms, since no other method—e.g.,
truth tables—is available. But normal forms are not unique, so there is no guar-
antee that the left and right side will result in the same one.15 Lastly, the worry
about the existence of a finite proof of any correct proposition is puzzling. It is
not that the proof itself has to be finite what is important, but that there are only
finitely many possibilities for a proof; we may decide, after finitely many steps,
whether there is a proof or not.

All these difficulties aside, the main point is still notable. Here, in 1905, one
of Hilbert’s aims in the foundations of mathematics is made almost explicit,
namely the aim to provide decision procedures for logic on the one hand, and
particular systems of mathematics and science, e.g., arithmetic, on the other.

2.2. The structure of Prinzipien der Mathematik. In the years following
1905, Hilbert’s interest in the foundations of mathematics seems to have sub-
sided. He does not follow up his groundbreaking ideas of 1905 until around
1917, when he returns with full force to his work on axiomatics.16 In September
1917, Hilbert delivers his lecture on “axiomatic thought” in Zürich, and invites
Bernays to come to G̈ottingen as his assistant. In the Winter semester 1917–18
Hilbert teaches a course on the “Principles of mathematics.” The lecture notes to
that course are preserved in the library of the Department of Mathematics at the
University of G̈ottingen.17 They are divided into two parts: Part A (62 pages)
on the axiomatic method contains an exposition of axiomatic geometry; Part B
(pp. 63–246, 184 pages) deals with mathematical logic. The material in Part B
is new and interesting. It starts out with a discussion of propositional calculus in
the style of algebraic logic in Section 1 (pp. 63–80). The propositional calculus
is extended to a calculus of classes in Section 2 (pp. 81–107), and a theory of
syllogisms is developed. In Section 3, the limitations of the class calculus are
used to motivate the introduction of the calculus of functions, i.e., first-order
logic with quantifiers (pp. 108–129). This calculus of functions is formally in-
troduced and studied in Section 4 (pp. 129–187). Section 5 (pp. 188–246) deals
with the extended calculus of functions (i.e., second-order logic), as well as with
induction, the definition of identity, the paradoxes, type theory, and the axiom
of reducibility.18

From a historical point of view, the last two sections of Part B are the most
interesting ones. The development of geometry in Part A is standard, and over-
laps both with theFoundations of Geometry[30] and the material presented in
numerous courses on axiomatic geometry taught by Hilbert at Göttingen. The
propositional calculus presented in Section 1 of Part B is exactly the same as the
one developed in Hilbert’s 1905 course. There are two notable differences in
the presentation. The 1917–18 notes contain an independence proof similar to
the one in [31], as well as a proof of consistency of the axioms of propositional
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logic. In contrast to the independence proof, which uses an arithmetic interpre-
tation, consistency is proved by restricting the range to only the propositions 0
and 1, and defining sum and product case-by-case:

Restrict the domain of propositions by allowing only the propositions
0 and 1, and interpret the equations in accordance with this as proper
identities. Furthermore, define sum and product by the 8 equations

0+0 = 0 0×0 = 0
0+1 = 1 0×1 = 0
1+0 = 1 1×0 = 0
1+1 = 1 1×1 = 1

which are characterized by turning into correct arithmetical equations,
if one replaces the symbolic sum by the maximum of the summands
and the symbolic product by the minimum of the factors. Declare the
proposition 1 to be the negation of the proposition 0 and the proposition
0 to be the negation of 1.

These definitions in any case do not lead to a contradiction, for each
one of them defines a new symbol. On the other hand, one can establish
by finitely many tries that all the axioms I–XII are satisfied by these
definitions. These axioms therefore cannot result in a contradiction ei-
ther. Thus the question of consistency of our calculus can be completely
resolved.19

What is interesting here is that, while Hilbert thought that an arithmetical
interpretation is good enough to establish independence results, something more
basic is needed to show consistency. The first sentence in the last paragraph
just quoted indicates that Hilbert had scruples regarding the use of arithmetic
correctness of equations to establish consistency. He simply wanted to avoid
appeal to infinite structures at this point.

The second difference is a much more elaborate discussion of consequence.
The definition is the same as in 1905 (only the symbol for implication changes
to→), but now a number of properties are proved that one would expect of a
system of logic: For anyX andY, X→X, X+Y→X, if X→Y thenY→X, and
others. A discussion of “proofs as multiplication” and of decidability is missing,
however.

Taking this notion of consequence as a starting point, Hilbert takes on an
investigation of how much of mathematical reasoning can be accommodated in
the propositional calculus. In Section 2 (Predicate calculus and class calculus),
the propositional calculus is reinterpreted as first, a calculus of predicates, and
second, a calculus of classes (extensions of predicates). These reinterpretations
are then used to account for the Aristotelian syllogisms in the framework of
the calculus. Naturally it is ultimately found (in Section 3: Transition to the
calculus of functions) to be insufficient for a foundation of mathematics, for it is
unable to deal with relations between individuals or with nested quantifiers. This
leads Hilbert to introduce the function calculus, first by example (the difference
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between convergence and uniform convergence), and then finally, as an axiom
system.

Section 4, entitled “Systematic presentation of the function calculus,” con-
tains a presentation of the function calculus, i.e., first-order logic, organized as
follows:

4.1. Axioms of the function calculus (pp. 129–140)
4.2. The system of logical propositional formulas (pp. 140–153)
4.3. The complete system of logical formulas (pp. 154–179)
4.4. Examples of applications of the function calculus (pp. 180–187)

Section 5 of Part B of the lecture notes discusses the extended function calcu-
lus, i.e., higher-order logic. It includes discussions of definitions of number, set
theory, paradoxes and type theory.

Let me now turn to a discussion of the propositional fragment of the function
calculus as developed in 4.1 and 4.2. For discussion of the full first-order logic
and the later parts of the lecture notes, the interested reader is referred to the
papers by Moore [60] and Sieg [69].

2.3. The propositional calculus.The propositional fragment of the function
calculus is investigated separately in Subsection 2 of Section 4. Syntax and
axioms are modeled after the propositional fragment ofPrincipia Mathematica
[74]. The language consists of propositional variables [Aussage-Zeichen]X,
Y, Z, . . . , as well as signs for particular propositions, and the connectives·
(negation) and× (disjunction). The conditional, conjunction, and equivalence
are introduced as abbreviations. Expressions are defined by recursion:

1. Every propositional variable is an expression.
2. If α is an expression, so isα.
3. If α andβ are expressions, so areα×β, α→ β, α + β andα = β.20

Hilbert introduces a number of conventions, e.g., thatX×Y may be abbrevi-
ated toXY, and the usual conventions for precedence of the connectives. Finally,
the logical axioms are introduced. Group I of the axioms of the function calcu-
lus gives the formal axioms for the propositional fragment (unabbreviated forms
are given on the right, recall thatXY is “X or Y”):

1. XX→ X XXX
2. X→ XY X(XY)
3. XY→YX XY(YX)
4. X(YZ)→ (XY)Z X(YZ)((XY)Z)
5. (X→Y)→ (ZX→ ZY) XY(ZX(ZY))
The formal axioms are postulated as correct formulas [richtige Formel], and

we have the following two rules of derivation (“contentual axioms”):

a. Substitution: From a correct formula another one is obtained by replacing
all occurrences of a propositional variable with an expression.

b. If α andα→ β are correct formulas, thenβ is also correct.
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Although the calculus is very close to the one given inPrincipia Mathemat-
ica, there are some important differences. Russell uses (2′) X → YX and (4′)
X(YZ)→Y(XZ) instead of (2) and (4).Principia also does not have an explicit
substitution rule.21 The fact that Hilbert realizes that such a rule must be in-
cluded in the calculus illustrates how Hilbert’s axiomatic method makes the pre-
sentation of logic in 1917–18 much clearer than Schröder’s algebra of logic and
much closer to the modern conception of logic as calculus than Russell’sPrin-
cipia. But the division between syntax and semantics is not quite complete. The
calculus is not regarded as concerned with uninterpreted formulas; it is not sep-
arated from its interpretation. (This is also true of the first-order part, see [69],
B3.) Also, the notion of a “correct formula” which occurs in the presentation of
the calculus is intended not as a concept defined, as it were, by the calculus (as
we would nowadays define the term “provable formula” for instance), but rather
should be read as a semantic stipulation: The axioms are true, and from true
formulas we arrive at more true formulas using the rules of inference.22 Read
this way, the statement of modus ponens is not that much clearer than the one
given inPrincipia: “Everything implied by a true proposition is true.” (*1.1)

Hilbert goes on to give a number of derivations and proves additional rules.
These serve as stepping stones for more complicated derivations. First, however,
he proves a normal form theorem, just as he did in the 1905 lectures, to estab-
lish decidability and completeness. In the new propositional calculus, however,
Hilbert needs to prove that arbitrary subformulas can be replaced by equivalent
formulas, that is, that the rule of replacement is a dependent rule.23 He does
so by establishing the admissibility of rule (c): Ifϕ(α), α→ β, andβ→ α are
provable, then so isϕ(β).24 With that, the admissibility of using commutativity,
associativity, distributivity, and duality inside formulas is quickly established,
and Hilbert obtains the normal form theorem just as he did for the first proposi-
tional calculus in the 1905 lectures. Normal forms again play an important role
in proofs of decidability and now also completeness.

2.4. Consistency and completeness.“This system of axioms would have to
be called inconsistent if it were to derive two formulas from it which stand in
the relation of negation to one another.”25 That the system of axioms is not
inconsistent in this sense is proved, again, using an arithmetical interpretation.
The propositional variables are interpreted as ranging over the numbers 0 and
1, × is just multiplication andX is just 1−X. One sees that the five axioms
represent functions which are constant equal to 0, and that the two rules preserve
that property. Now ifα is derivable,α represents a function constant equal to 1,
and thus is underivable.

Why did Hilbert not use this straightforward arithmetical interpretation to
prove consistency for the first propositional calculus in 1905 or earlier in the
lectures (Section 4.1)? If it was his concern that an infinite interpretation should
not be used to establish consistency of such a basic system as that of proposi-
tional logic, then the numbers 0 and 1 alone would do just as well. One possible
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explanation is that up until the introduction of the new propositional calculus
based on thePrincipia system, conjunction and disjunction were both primi-
tives. Giving an arithmetical interpretation for these systems would thus have
required finding an interpretation which also satisfies 1+ 1 = 1. Simply tak-
ing congruences modulo 2 does not do the trick here. Only when+ is taken
as a defined symbol can one take the congruences modulo 2 as an interpreta-
tion of the axioms. Compared to the consistency proof in Section 4.1 using true
and false propositions, the arithmetical interpretation is further away again from
truth-value semantics for propositional logic.

Let us now turn to the question ofcompleteness. We want to call the
system of axioms under consideration complete if we always obtain an
inconsistent system of axioms by adding a formula which is so far not
derivable to the system of basic formulas.26

This is the first time that completeness is formulated as a precise mathematical
question to be answered for a system of axioms. Before this, Hilbert [31, p. 13]
had formulated completeness as the question of whether the axioms suffice to
prove all “facts” of the theory in question. Aside from that, completeness had
always beenpostulatedas one of the axioms. In theFoundations of Geometry,
for instance, we find axiom V(2), stating that it is not possible to extend the sys-
tem of points, lines, and planes by adding new entities so that the other axioms
are still satisfied. In [31], such an axiom is also postulated for the real numbers.
Following its formulation, we read:

This last axiom is of a general kind and has to be added to every axiom
system whatsoever in some form. It is of special importance in this
case, as we shall see. Following this axiom, the system of numbers
has to be so that whenever new elements are added contradictions arise,
regardless of the stipulations made about them. If there are things which
can be adjoined to the system without contradiction, then in truth they
already belong to the system.27

We see here that the formulation of completeness of the axioms arises directly
out of the completeness axioms of Hilbert’s earlier axiomatic systems, only that
this time completeness is a theoremaboutthe system. I shall return to this issue
in the final section.

The completeness proof in the 1917–18 lectures itself is an ingenious ap-
plication of the normal form theorem: Every formula is interderivable with a
conjunctive normal form. As has been proven earlier, a conjunction is provable
if and only if each of its conjuncts is provable. A disjunction of propositional
variables and negations of propositional variables is provable only if it repre-
sents a function which is constant equal to 0, as the consistency proof shows.
A disjunction of this kind is equal to 0 if and only if it contains a variable and
its negation, and conversely, every such disjunction is provable. So a formula
is provable if and only if every conjunct in its normal form contains a variable
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and its negation. Now suppose thatα is an underivable formula. Its conjunc-
tive normal formβ is also underivable, so it must contain a conjunctγ where
every variable occurs only negated or unnegated but not both. Ifα were added
as a new axiom, thenβ andγ would also be derivable. By substitutingX for
every unnegated variable andX for every negated variable inγ, we would obtain
X as a derivable formula (after some simplification), and the system would be
inconsistent.

In a footnote, the result is used to establish the converse of the characterization
of provable formulas used for the consistency proof: every formula representing
a function which is constant equal to 0 is provable. For, supposing there were
such a function which was not provable, following the consistency proof above,
adding this formula to the axioms would not make the system inconsistent, and
this would contradict syntactic completeness [33, p. 153].

2.5. The contribution of Bernays’sHabilitationsschrift. We have seen that
the lecture notes toPrinciples of Mathematics1917–18 contain consistency
and completeness proofs (relative to a syntactic completeness concept) for the
propositional calculus ofPrincipia Mathematica. They also implicitly contain
the familiar truth-value semantics and a proof of semantic soundness and com-
pleteness. In hisHabilitationsschrift[5], Bernays fills in the last gaps between
these remarks and a completely modern presentation of propositional logic.

Bernays introduces the propositional calculus in a purely formal manner. The
concept of a formula is defined and the axioms and rules of derivation are laid
out almost exactly as done in the lecture notes.§2 of [5] is entitled “Logical
interpretation of the calculus. Consistency and completeness.” Here Bernays
first gives the interpretation of the propositional calculus, which is the moti-
vation for the calculi in Hilbert’s earlier lectures [31, 33]. The reversal of the
presentation—first calculus, then its interpretation—makes it clear that Bernays
is fully aware of a distinction between syntax and semantics, a distinction not
made precise in Hilbert’s earlier writings.28 There, the calculi were always in-
troduced with the logical interpretation built in, as it were. Bernays writes:

The axiom system we set up would not be of particular interest, were it
not capable of an important contentual interpretation.

Such an interpretation results in the following way:

The variables are taken as symbols forpropositions(sentences).

That propositions are either true or false, and not both simultaneously,
shall be viewed as their characteristic property.

The symbolic product shall be interpreted as the connection of two
propositions by “or,” where this connection should not be understood
in the sense of a proper disjunction, which excludes the case of both
propositions holding jointly, but rather so that “X or Y” holds (i.e., is
true) if and only if at least one of the two propositionsX, Y holds.29
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Similar truth-functional interpretations of the other connectives are given as
well. Bernays then defines what a provable and what a valid formula is, thus
making the syntax-semantics distinction explicit:

The importance of our axiom system for logic rests on the following
fact: If by a “provable” formula we mean a formula which can be shown
to be correct according to the axioms [footnote in text: It seems to me to
be necessary to introduce the concept of a provable formula in addition
to that of a correct formula (which is not completely delimited) in order
to avoid a circle], and by a “valid” formula one that yields a true propo-
sition according to the interpretation given for any arbitrary choice of
propositions to substitute for the variables (for arbitrary “values” of the
variables), then the following theorem holds:

Every provable formula is a valid formula and conversely.
The first half of this claim may be justified as follows: First one veri-

fies that all basic formulas are valid. For this one only needs to consider
finitely many cases, for the expressions of the calculus are all of such
a kind that in their logical interpretation their truth or falsehood is de-
termined uniquely when it is determined of each of the propositions to
be substituted for the variables whether it is true or false. The content
of these propositions is immaterial, so one only needs to consider truth
and falsity as values of the variables.30

Everything one would expect of a modern discussion of propositional logic is
here: A formal system, a semantics in terms of truth values, soundness and com-
pleteness relative to that semantics. As Bernays points out, the consistency of
the calculus, of course, follows from its soundness. Lest the reader—recall that
the intended readership includes Hilbert and his colleagues among the Göttingen
faculty—have reservations about the “logical interpetation,” Bernays points out
that the interpretation of the variables by truth values is of no consequence, the
same results could be obtained by an arithmetical interpretation using 0 and 1.

The semantic completeness of the calculus is proved in§3, along the lines
of the footnote in [33] mentioned above. What may be pointed out here is that
the formulation of syntactic completeness given by Bernays is slightly different
from the lectures and independent of the presence of a negation sign: it is im-
possible to add an unprovable formula to the axioms without thus making all
formulas provable. Bernays sketches the proof of syntactic completeness along
the lines of Hilbert’s lectures, but leaves out the details of the derivations.

Bernays also addresses the question of decidability. Decidability was not ad-
dressed at all in the lecture notes, even though Hilbert had posed it as one of the
fundamental problems in the investigation of the calculus of logic. In his talk in
Zürich in 1917, he said that an axiomatization of logic cannot be satisfactory un-
til the question of decidability by a finite number of operations is understood and
solved [34, p. 413]. Bernays gives this solution for the propositional calculus by
observing that
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[t]his consideration does not only contain the proof for the complete-
ness of our axiom system, but also provides a uniform method by which
one can decide after finitely many applications of the axioms whether
an expression of the calculus is a provable formula or not. To decide
this, one need only determine a normal form of the expression in ques-
tion and see whether at least one variable occurs negated and unnegated
as a factor in each simple product. If this is the case, then the expres-
sion considered is a provable formula, otherwise it is not. The calculus
therefore can be completely trivialized.31

2.6. A brief comparison with Post’s thesis.Emil L. Post’s dissertation of
1920 [65] is the locus classicus for all of the basic metatheoretical results about
the propositional calculus.32 It contains an explicit account of the truth table
method, and the fundamental theorem that a formula is provable from the ax-
ioms of Principia33 if and only if it defines a truth function which is always
equal to ‘+’ (true). From the fundamental theorem, Post deduces a number of
consequences. Among them are, for instance, that the truth table method pro-
vides a decision procedure for derivability in the propositional calculus and that
the addition of any unprovable formula yields an inconsistent system (inconsis-
tency is understood here alternatively as proving both a formula and its negation,
and as proving every formula). Post uses the term “closed” for systems which
are such that the addition of an unprovable formula makes all formulas provable
(p. 177).

Post’s paper contains a number of other contributions. These are, on the one
hand, a discussion of truth-functional completeness, and on the other, the in-
troduction of many-valued logics. We will see later that Bernays’s approach to
proving independence of the axioms involved something very much like many-
valued logics. It might also be pointed out that some of the discussion of truth-
functional completeness can also be found in Bernays. On pp. 16–19 of [5],
Bernays makes a number of remarks which are relevant here. For instance, there
we find the claim that “all relationships between truth and falsity of propositions
can be expressed using conjunction (‘and’), disjunction (exlusive ‘or’) and nega-
tion, so and thus also using the symbolism of our calculus.”34 Another remark
concerns the equivalence of formulas in propositional logic. Two formulas are
defined to be equivalent ifα ∼ β is provable (‘∼’ is the Principia notation for
the biconditional; Hilbert uses ‘=’). By the completeness theorem, this is the
case if and only ifα∼ β is valid. From this, Bernays shows that any formula is
equivalent to one containing only negation and disjunction, or only negation and
conjunction, or only negation and implication, and that corresponding claims for
negation and equivalence or conjunction and disjunction do not hold. What we
do not find, however, is aproof that every truth function can be represented by,
say, negation and disjunction. A proof of this can be found in lecture notes
to a course by Hilbert given in 1920 [35, pp. 18–19], the same year that Post
submitted his dissertation.
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The discussion of the fragment without negation leads Bernays to pose the
question of whether there might be an axiom system in which all and only the
provable negation-free propositional formulas are derivable. He claims that this
can in fact be done, but does not give an axiomatization. We shall return to this
question in§5.

§3. Hilbert or Bernays? It is well known that Bernays played an important
role in the development of Hilbert’s program in the 1920s, and that he wrote the
monumentalGrundlagen der Mathematik[46, 47] essentially alone, of course
using Hilbert’s ideas.35 Mancosu [57, p. 175] stresses Bernays’s contributions
to the program in giving “more explicit discussion of the central philosophi-
cal topics surrounding Hilbert’s program,” and in clarifying Hilbert’s views. Of
course, there are also Bernays’s published contributions to the program, for in-
stance the work on the Entscheidungsproblem with Schönfinkel [11], and the
investigations of the propositional calculus in the Habilitationsschrift. Through
contact with his colleagues in G̈ottingen, Bernays had great influence on techni-
cal developments, and his contributions and suggestions are acknowledged not
only by Hilbert himself. I would like to argue here that Bernays was in fact
instrumental already for the technical advances made in 1917–18, and that the
development of propositional and first-order logic in [33] is at least as much due
to Bernays as it is to Hilbert. Moore [60] and Sieg [69] point out that these
advances are not only the formulation of calculi for propositional and first-order
logic, but in particular the investigation of meta-logical questions about these
calculi: consistency, completeness, decidability. These are the questions that
Hilbert [34] emphasized as important questions to be answered for the calculus
of logic. Their solution is in large part due to Bernays.

The winter term of 1917–18 was Bernays’s first semester as Hilbert’s assis-
tant in G̈ottingen. Bernays characterized his duties as assistant as follows: “So
I was [Hilbert’s] assistant. That job was not like what assistants usually do here
[in Zürich], helping the students with exercises and such. I had nothing to do
with that. On the one hand, we discussed foundational questions, and on the
other I helped with the preparation of his lectures and prepared lecture notes.”36

Bernays held an appointment asaußerplanm̈aßiger Assistent, which meant that
he did not have a regular position which carried a salary, but that he relied on
stipends. Hilbert urged Bernays to obtain thevenia legendiso that he would
be able to teach courses. Bernays submitted his application for theHabilita-
tion on 9 July 1918, it included theHabilitationsschrift[5].37 Bernays gave his
Probevorlesungon 23 December 1918, and the dean of the Faculty of Philos-
ophy granted thevenia legendion 14 January 1919.38 TheHabilitationsschrift
contains page references to the lecture notes for the 1917–18 lectures, so the
lecture notes must have been finished by the time Bernays submitted the thesis
in July 1918. The winter term lasted from 1 October 1917 to 2 February 1918—
approximately 15 weeks of classes. The course onPrinzipien der Mathematik
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was given on Thursdays, 9–11 am. Bernays’s own shorthand notes, which he
took during the lecture, survive in hisNachlaßin Zürich.39 Bernays marked the
end of each lecture with a horizontal line, and thus a comparison with the lecture
notes makes it possible to ascertain which parts of the lecture were given when.
Approximately, we find the following: The first seven lectures correspond the
Part A on geometry. The first version of the propositional calculus is developed
in the next three lectures, corresponding to pp. 63–80 of [33]. The predicate and
class calculi are discussed in the next two lectures, corresponding to pp. 81–129.
Already it is remarkable that the typewritten notes contain a lot of material that is
not contained in Bernays’s notes, e.g., the extended discussion of syllogisms on
pp. 99–105. The last three lectures cover the following: the axioms and rules of
the restricted function calculus (corresponding to pp. 129–135); application to
inferences with a singular premise (pp. 180–181), the extended function calcu-
lus, definition of identity, number, sets (pp. 188–194), paradoxes (pp. 209–218);
and paradoxes continued. We see that key parts of the lecture notes were appar-
ently not covered in the lecture: the sections on derivations of theorems and rules
in the propositional calculus (pp. 140–179) including consistency and complete-
ness are completely missing from Bernays’s notes, as is the last section on type
theory (pp. 219–245); the sections on the extended function calculus, set theory
and the paradoxes were only briefly sketched. In total, 117 pages—almost the
latter half of the lecture notes—correspond to three two-hour lectures, 8 pages
of shorthand notes out of 55. Not surprisingly, while the typescript keeps very
closely to the structure of the lectures for the first one hundred pages or so (half-
empty pages where a lecture ended, references to subjects discussed “the last
time”), these last 117 read more like a monograph than like lecture notes.

The documentary record thus strongly suggests the following: The important
results on the propositional and the restricted function calculus were obtained
after the lectures were given, approximately in the period February–May 1918,
when Bernays elaborated his notes to the lecture. TheHabilitationsschriftwas
written after the lecture notes were completed, in the Spring of 1918. Some ad-
ditional circumstantial evidence can be adduced for the thesis that the additional
parts of the lecture notes, including the important results, are due in large part
to Bernays. For one, the completeness proof is referred to a number of times by
members of the Hilbert school. Bernays mentions it in the introduction of the
Habilitationsschrift, where he states that proofs of consistency and complete-
ness can be found in the 1917–18 lecture notes, before he gives the proof itself.
We have seen that these proofs were not given in the actual lectures, and so these
remarks must be understood as merely pointing the reader to the details of the
normal form theorem (which was not proved in theHabilitationsschrift) rather
than crediting Hilbert with the results. The published version [6] does not men-
tion Hilbert’s lectures at all. Behmann [3] presents the decision procedure based
on the completeness proof and refers in this connection only to [5], although
Behmann is certainly aware of the 1917–18 lectures (they are quoted on p. 165,
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and he almost certainly took the class). In the notes to a course on mathematical
logic given in G̈ottingen in the summer term 1922, Behmann writes:

These questions [of independence] concerning the axiomatics of ele-
mentary propositions were treated a few years ago by the Göttingen
mathematician Bernays (Habilitationsschrift, unfortunately not published),
and, one may well say, given a complete and satisfactory answer. [. . . ]
Bernays also rigorously proved completeness, i.e., has shown that every
universally valid elementary proposition can indeed be derived from the
basic formulas according to the basic rules.40

The most convincing piece of evidence may be the following remark by Ber-
nays:

My knowledge [of logic] was very incomplete at the time, in 1917. Be-
fore Hilbert took up the [investigation of the foundations of mathemat-
ics] directly again, which he had started much earlier [in [32]], he did
not immediately lecture on that, but he gave a course on mathemati-
cal logic. And I was in charge of writing up [ausarbeiten] that lecture
course, and I did this in such a way that I avoided free variables. I had
looked at Russell a little bit, and first I found it too broad and did not
like it in all respects, but in particular I did not understand what it means
to say “for allx, F(x), thenF(y) follows.” In fact, the application of free
variables is something technical. These are two ways to represent gen-
erality. One has generality on the one hand through bound variables and
on the other through free variables. There is no such difference in natu-
ral langauge. So I avoided free variables at first. This is a possible way
of approach, and later others have also done it this way. So that was a
lecture course, which was written up, and then was filed in the library
of the Mathematical Institute.41

Bernays’s testimony here clearly indicates that the formulation of the quanti-
fier axioms in [33] is due to him. It explains the particular form of these axioms,
and why they differ so much from the corresponding postulates ofPrincipia
Mathematicaand from later presentations (e.g., in [43],42 which are otherwise
based closely on the lecture notes from 1917–18). We may infer from this that
the extent of Bernays’s influence on the formulation and presentation of the re-
sults in the lecture notes from 1917–18 goes far beyond merely typing up what
Hilbert said. Some of the results may or may not be due to Bernays. For in-
stance, it is possible that Hilbert simply did not have enough time to present
the completeness proof, but told Bernays to include it in the typescript. Given
the amount of material that was not covered in the lecture, and the character of
Hilbert and Bernays’s working relationship, it is clear that a large amount of that
material must have been worked out by Bernays alone. The fact that something
as central as the formulation of the quantifier axioms is due to Bernays shows
that it is very likely that he was the author of the parts of the lecture notes not
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covered in the lecture itself, and even that much of the material that was covered
is in fact due to him. Be that as it may, the insights and results that are certainly
due to Bernays—a clear syntax-semantics distinction, formulation of semantic
completeness, independence results—are important enough to earn Bernays a
prominent place in the history of the subject.

Why did Bernays not claim the results as his? A possible explanation may be
his pronounced modesty.43 (By the same token, if the results were exclusively
Hilbert’s, Bernays would have made a point of noting that when he presented the
proofs, e.g., in [6] and [11].) Also recall the then prevalent tendency described
by Bernays in a quote in§1 above, not to take mathematical logic seriously—at
the time, he may well have thought of the results as not worth mentioning.

§4. Dependence and independence.Consistency and independence are the
requirements that Hilbert laid down for axiom systems of mathematics time and
again. Consistency was established—but the “contributions to the axiomatic
treatment” of propositional logic could not be complete without a proof that the
axioms investigated are independent. In fact, however, the axiom system for the
propositional calculus, slightly modified from the postulates in (*1) ofPrincipia
Mathematica, is not independent. Axiom 4 is provable from the other axioms.
Bernays devotes§4 of theHabilitationsschriftto give the derivation, and also
the inter-derivability of the original axioms ofPrincipia (2′) and (4′) with the
modified versions (2) and (4) in presence of the other axioms. Together the
derivations also establish the dependence of (*1.5) from the other propositional
postulates inPrincipia.

Independence is of course more challenging. The method Bernays uses is not
new, but it is applied masterfully. Hilbert had already used arithmetical interpre-
tations in [31] to show that some axioms are independent of the others. The idea
was the same as that originally used to show the independence of the parallel
postulate in Euclidean geometry: To show that an axiomα is independent, give
a model in which all axioms butα are true, the inference rules are sound, butα is
false. Schr̈oder was the first to apply that method to logic.§12 of hisAlgebra of
Logic [68] gives a proof that one direction of the distributive law is independent
of the axioms of logic introduced up to that point. The interpretation he gives is
that of the “calculus of algorithms,” developed in detail in Appendix 4. Bernays
combines Schr̈oder’s idea with Hilbert’s arithmetical interpretation and the idea
of the consistency proof for the first propositional calculus in [33] (interpreting
the variables as ranging over a certain finite number of propositions, and defin-
ing the connectives by tables). He gives six “systems” to show that each of the
five axioms (and a number of other formulas) is independent of the others. The
systems are, in effect, finite matrices. He introduces the method as follows:

In each of the following independence proofs, the calculus will be re-
duced to a finite system (a finite group in the wider sense of the word
[footnote: that is, without assuming the associative law or the unique
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invertability of composition]), where for each element a composition
(“symbolic product”) and a ”negation” is defined. The reduction is
given by letting the variables of the calculus refer to elements of the
system as their values. The “correct formulas” are characterized in each
case as those formulas which only assume values from a certain subsys-
temT for arbitrary values of the variables occurring in it.44

In the published version [6], the elements of the subsystemT are calledaus-
gezeichnete Werte—designated values. The term is commonly used today.

I shall not go into the details of the derivations and independence proofs.45 Let
me just say that Bernays’s method was of some importance in the investigation
of alternative logics. For instance, Heyting [27] used it to prove the indepen-
dence of his axiom system for intuitionistic logic and Gödel [26] was influenced
by it when he defined a sequence of sentencesFn so that eachFn is independent
of intuitionistic propositional calculus together with allFi , i > n.46 The many-
valued logics G̈odel used to show this are now called Gödel logics. It may be
debated whether Bernays’s systems can properly be called many-valuedlogics,
but they certainly had the distinction of being useful in proving independence
results in logic, an achievement considered important.

§5. Axioms and rules. In the final section of hisHabilitationsschrift, Ber-
nays considers the question of whether some of the axioms of the propositional
calculus may be replaced by rules. This seems like a natural question, given
the relationship between inference and implication: For instance, axiom 5 sug-
gests the following rule of inference: (Recall thatαβ is Hilbert’s notation for the
disjunction ofα andβ. See§2.3 for a list of the axioms and rules.)

α→ β
γα→ γβ

c

which Bernays used earlier as a derived rule. Indeed, axiom 5 is in turn derivable
using this rule and the other axioms and rules. Bernays considers a number of
possible rules

α→ β
β→ γ
α→ γ d αα

α r1
α

αβ r2
αβ
βα r3

α(βγ)
(αβ)γ r4

ϕ(αα)
ϕ(α) R1

ϕ(αβ)
ϕ(βα) R3

and shows that the following sets of axioms and rules are equivalent (and hence,
complete for propositional logic):

1. Axioms: 1, 2, 3, 5; rules: a, b
2. Axioms: 1, 2, 3; rules: a, b, c
3. Axioms: 2, 3; rules: a, b, c, r1

4. Axioms: 2; rules: a, b, c, r1, R3

5. Axioms:XX47; rules: a, b, c, r1, r2, r3, r4
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Bernays also shows, using the same method as before, that these axiom sys-
tems are independent, and also the following independence results:48

6. Rule c is independent of axioms: 1, 2, 3; rules: a, b, d (showing that in (2),
rule c cannot in turn be replaced by d);

7. Rule r2 is independent of axioms: 1, 3, 5; rules: a, b, (thus showing that in
(1) and (2), axiom 2 cannot be replaced by rule r2);

8. Rule r3 is independent of axioms: 1, 2; rules: a, b, c (showing similarly,
that in (1) and (2), rule r3 cannot replace axiom 3);

9. Rule R3 is independent of axioms:XX, 3; rules: a, b (showing that R3 is
stronger than r3, since 3 is provable from R3 andXX );

10. Rule R1 is independent of axioms:XX, 1; rules: a, b (showing that R1 is
stronger than r1, since 1 is provable fromXX and R1);

11. Axiom 2 is independent of axioms:XX, 1, 3, 5; rules: a, b, and
12. Axiom 2 is independent of axioms:XX; rules: a, b, c, r1, R3 (showing that

in (5), XX together with r2 is weaker than axiom 2).

The detailed study exhibits, in particular, a sensitivity to the special status of
rules like R3, where subformulas have to be substituted. The discussion fore-
shadows developments of formal language theory in the 1960s. Bernays also
mentions that a rule (corresponding to axiom 1), allowing inference ofϕ(α)
from ϕ(αβ) would be incorrect (and hence, “there is no such generalization of
r1”).

Bernays’s discussion of axioms and rules, together with his discussion of ex-
pressibility in the “Supplementary remarks to§2–3” (discussed above at the end
of §2.6), shows his acute sensitivity for subtle questions regarding logical cal-
culi. His remarks are quite opposed to the then-prevalent tendency (e.g., Sheffer
and Nicod) to find systems with fewer and fewer axioms, and foreshadow inves-
tigations of relative strength of various axioms and rules of inference, e.g., of
Lewis’s modal systems, or more recently of the various systems of substructural
logics.

At the end of the “Supplementary remarks,” Bernays isolates the positive frag-
ment of propositional logic (i.e., the provable formulas not containing negation;
here+ and→ are considered primitives) and claimed that he had an axiomati-
zation of it. He did not give an axiom system, but stated that it is possible to
choose a finite number of provable sentences as axioms so that completeness
follows by a method exactly analogous to the proof given in§3. The remark
suggests that Bernays was aware that the completeness proof is actually a proof
schema, in the following sense. Whenever a system of axioms is given, one only
has to verify that all the equivalences necessary to transform a formula into con-
junctive normal form are theorems of that system. Then completeness follows
just as it does for the axioms ofPrincipia.

In his next set of lectures on the “logical calculus” given in the Winter se-
mester of 1920,49 Hilbert makes use of the fact that that these equivalences are
the important prerequisite for completeness. The propositional calculus we find
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there is markedly different from the one in [33] and [5], but the influences are
clearly visible. The connectives are all primitive, not defined, this time. The
sole axiom isXX, and the rules of inference are:

X
XY

b2

X
Y

X +Y
b3

plus the rule (b4), stating: “Every formula resulting from a correct formula by
transformation is correct.” “Transformation” is meant as transformation accord-
ing to the equivalences needed for normal forms: commutativity, associativity,
de Morgan’s laws,X andX, and the definitions of→ and= (biconditional).
These transformations work in both directions, and also on subformulas of for-
mulas (as did R1 and R3 above).50 One equivalence corresponding to modus
ponens must be added, it is:(X +X)Y is intersubstitutable withY.

Anyone familiar with the work done on propositional logic elsewhere might
be puzzled by this seemingly unwieldy axiom system. It would seem that the
system in [35] is a step backward from the elegance and simplicity of thePrin-
cipia axioms. Adjustments, if they are to be made at all, it would seem, should
go in the direction of even more simplicity, reducing the number of primitives
(as Sheffer did) and the number of axioms (as in the work of Nicod and later
Łukasiewicz). Hilbert is motivated by different concerns. He was not only in-
terested in the simplicity of his axioms, but in their efficiency. Decidability, in
particular, supersedes considerations of independence and elegance. The pre-
sentation in [35] is designed to provide a decision procedure which is not only
efficient, but also more intuitive to use for a mathematician trained in algebraic
methods. Bernays’s study of inference rules made clear, on the other hand, that
such an approach can in principle be reduced to the axiomatics ofPrincipia.
One may ask whether the truth table method is not just as efficient a decision
procedure. As any computer scientist working in automated theorem proving
knows, truth tables are the worst possible decision procedure for propositional
logic—exponential not only in the worst case, but ineverycase. In a similar
vein, the subsequent work on the decision problem is not strictly axiomatic,
but uses transformation rules and normal forms. The rationale is formulated by
Behmann:

The form of presentation will not be axiomatic, rather, the needs of
practical calculation shall be in the foreground. The aim is thus not to
reduce everything to a number (as small as possible) of logically inde-
pendent formulas and rules; on the contrary, I will give as many rules
with as wide an application as possible, as I consider appropriate to the
practical need. The logical dependence of rules will not concern us, in-
sofar as they are merely of independent practical importance. [. . . ] Of
course, this is not to say that an axiomatic development is of no value,
nor does the approach taken here preempt such a development. I just
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found it advisable not to burden an investigation whose aim is in large
part the exhibition of new results with such requirements, as can later
be met easily by a systematic treatment of the entire field.51

Such a systematic treatment, of course, was necessary if Hilbert’s ideas re-
garding his logic and foundation of mathematics were to find followers. Starting
in [37] and [38], Hilbert presents the logical calculus not in the form ofPrin-
cipia, but by grouping the axioms governing the different connectives. In [37],
we find the “axioms of logical consequence,” in [38], “axioms of negation.” The
first occurrence of axioms for conjunction and disjunction seems to be in a class
taught jointly by Hilbert and Bernays during Winter 1922–23, and in print in
Ackermann’s dissertation [2]. The project of replacing the artificial axioms of
Principia with more intuitive axioms grouped by the connectives they govern,
and the related idea of considering subsystems such as the positive fragment, is
Bernays’s. In 1918, he had already noted that one could refrain from taking+
and→ as defined symbols and consider the problem of finding a complete axiom
system for the positive fragment. The notes to the lecture course from 1922–23
[44, p. 17] indicate that the material in question was presented by Bernays. In
1923, he gives a talk entitled “The role of negation in propositional logic:”

In axiomatizing the propositional calculus, the predominant tendency is
to reduce the number of basic connectives and therewith the number of
axioms. One can also, on the other hand, sharply distinguish the various
connectives; in particular, it would be of interest to investigate the role
of negation.52

The emphasis of separating negation from the other connectives is of course
necessitated by Hilbert’s considerations on finitism as well.53

Full presentations of the axioms of propositional logic are also to be found
in [39], and in slightly modified form in a course on logic taught by Bernays
in 1929–30. The axiom system we find there is almost exactly the one later
included in [46].

I. A→ (B→ A)
(A→ (A→ B))→ (A→ B)
(A→ (B→C))→ (B→ (A→C))
(B→C)→ ((A→ B)→ (A→C))

II. A& B→ A
A& B→ B
(A→ B)→ ((A→C)→ (A→ B& C))

III. A→ A∨B
B→ A∨B
(B→ A)→ ((C→ A)→ (B∨C→ A))
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IV. (A∼ B)→ (A→ B)
(A∼ B)→ (B→ A)
(A→ B)→ ((B→ A)→ (A∼ B))

V. (A→ B)→ (B→ A)
(A→ A)→ A

A→ A
A→ A54

The algebraic perspective, evident only a few years earlier by the adoption of
associativity, commutativity, and distributivity as axioms in some way or other,
is completely lacking here. On the other hand, the influence of Frege is palpable
in groups I, IV, and V. In [7], Bernays claims that the axioms in groups I–IV
provide an axiomatization of the positive fragment, and raises the question of a
decision procedure. This is where he first follows up on his his claim in [5] that
such an axiomatization is possible.

§6. Lasting influences.Let me now summarize the advances made by Ber-
nays and Hilbert and try to put them in the historical context of the development
of mathematical logic and the foundations of mathematics. The most impor-
tant of these contributions are certainly the distinction between syntax and se-
mantics, the formulation of syntactic and semantic completeness, the proof of
completeness for the propositional calculus, and the proof of decidability.

The history of the the concept(s) of completeness of an axiomatic system has
yet to be written. The need for such a history, however, is apparent; complete-
ness is the most fundamental property—alongside consistency—that an axiom
system can have, and proofs of completeness and incompleteness of some kind
or another count among the most celebrated results of mathematical logic. One
need only mention the names of Gödel and Tarski in this connection to illustrate
its importance. Although I cannot undertake the task of providing this history
here, I want to indicate some of its milestones, since the work of Hilbert and
Bernays I have been discussing is probably among the most important.

As we have seen, one of the roots of completeness as a property of axiom sys-
tems is the completeness axiom that Hilbert introduced in [29]. The axiom was
not present in the first edition ofFoundations of Geometry, but was included in
the French translation of 1900, and then in the second German edition of 1903.55

In the lectures from 1905 and again in “Axiomatic thought” [34] the axiom was
formulated as the requirement that the addition of entities (numbers) to a model
of the axioms would result in inconsistencies. In 1906, writing in Göttingen, Jo-
hannes Mollerup discusses Hilbert’s axiomatization of the reals, and—without
explicitly criticizing Hilbert on this issue—shifts the focus from completeness
as something to be stipulated to something to be proven. He writes: “So we have
two requirements for an axiom system, namelyfirst an arithmetical requirement
of consistency, andseconda set-theoretic requirement of completeness” [59,
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p. 237]. König [51, p. 209] also criticizes Hilbert’s use of the completeness
axiom, stating that “the ‘completeness axiom’ is an intuition we should come
to have of a completed thought-system; ‘completeness’ is an assumption which
cannot even be formulated as an ‘axiom’ in our synthesis; just as the assumption
of consistency cannot be so formulated.”56

Hilbert did not address or acknowledge these criticism explicitly, and the com-
pleteness axiom survives in subsequent editions of theFoundations of Geome-
try. In the lectures from 1917–18, however, completeness is first formulated as
a property of the propositional calculus in the form: whenever a hitherto non-
derivable formula is added to the system, the system becomes inconsistent. The
shift from talking about adding elements to talking about adding formulas (new
axioms) may be explained in one of two ways: Possibly Hilbert and Bernays
agreed that completeness should not be formulated as an axiom, but should be a
property which one should prove about the system, and then the formulation cor-
responding to Post completeness seems to be the straightforward adaptation. On
the other hand, if we take into account that the “elements” described by an ax-
iom for propositional logicare propositions, then Post completeness says about
propositions exactly the same thing that the completeness axiom says about the
reals. Such an interpretation of propositions as the “things” that an axiom sys-
tem is about is actually hinted at by Hilbert [31, pp. 257–58], and is supported
by Hilbert’s comparison of Russell’s axiom of reducibility to the completeness
axiom in 1918 (reported in [58,§8]).

By 1921 at least, Hilbert is well aware of the difference between the require-
ment expressed by the completeness axiom and completeness of axiom system
in the syntactic sense, which is equivalent to the requirement that it proves or
refutes every formula of the language.57 The latter requirement is obviously
closely related to Hilbert’s “no ignorabimus,” the conviction that every well-
posed mathematical question can be answered positively or negatively. Where
and how does the shift from the completeness axiom to the question of com-
pletenessof the axioms occur? Was it the recognition that in the context of logic
the two amount to the same, and that syntactic completeness also makes the in-
formal question of completeness (“We will have to require that all other facts of
the area in question are consequences of the axioms.”58) more precise? I cannot
give an answer to this interesting and important question here. The issues are
complicated enough to warrant their own extended treatment.59

The question of semantic completeness arises only when one makes a clear
distinction between syntax and semantics. In 1917, Hilbert is still heavily influ-
enced by Russell and Whitehead’sPrincipia, and the influence is clearly visible
in the lecture notes from 1917–18. But already there, Hilbert brings his view of
axiomatics to bear: Derivation rules are formulated with more care, the expres-
sions of the system are defined recursively, and we find metatheoretical results
stated and proved which Russell and Whitehead considered misplaced because
they could not be formulated within the system. But, as Sieg [69] points out, the
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axiom systems still come with a built-in interpretation, as it were. Bernays [5]
makes the division between syntax and semantics complete.60 The axioms and
rules are stated purely formally—the study of the axiom system would be idle,
were it not possible to give a “logical interpretation.” This logical interpreta-
tion is precisely truth-value semantics for the propositional calculus. Now the
semantical concept of completeness arises naturally: every valid formula is for-
mally derivable.

The main application of the completeness proof, besides establishing that
the propositional calculus provides an adequate formalization of the domain of
propositional logic, is that of its decidability. The decision problem is vaguely
formulated in [29] and [34], but in Bernays’sHabilitationsschriftwe find a
model example of what a decision procedure looks like. This procedure serves
as the model for subsequent attacks on theEntscheidungsproblem. For these at-
tacks, however, axiomatics is put aside in favor of semantic methods. Behmann
seems to be the first to state the decision problem explicitly:

A general [set of] instructions shall be exhibited, according to which the
correctness or falsityof an arbitrary given claim, which can be formu-
lated with logical means, can be decided after a finite number of steps;
this aim shall be realized at least within the bounds—which are to be
determined exactly—within which its realization is in fact possible.61

The decision problem was, of course, another great problem on which Hilbert’s
students were working fervently in the 1920s. We have seen how the early work
by Bernays and Hilbert in 1917–18 provides a paradigm for the solution. A de-
cision procedure should be a determinate method to answer, in a finite number
of steps, whether a logical formula is provable. But one should not forget that
Bernays’s decision procedure not only provides a model for whatkind of result
was to be proved, buthow it should be proved. The method of transformation to
normal forms, which was used by Behmann, Schönfinkel, and ultimately G̈odel,
can be traced back to Bernays’sHabilitationsschrift[5] and Hilbert’s 1905 lec-
tures. With the semantic completeness and the work of [3], a shift towards
semantic methods occurred, which was foreshadowed by semantic procedures
for deciding validity and equivalence of propositional formulas in [35].

It is not until 1928 that completeness resurfaces. At the Congress of Mathe-
maticians in Bologna, Hilbert poses the syntactical completeness of arithmetic
and the semantic completeness of first order logic as problems of the foundations
of mathematics [40, 41].62 (In the 1917–18 lectures, it was already conjectured
that the function calculus was not Post complete. This was subsequently proved
by Ackermann.) Completeness of first-order logic was also posed as a question
in the book with Ackermann [43]. The question is solved a year later in Gödel’s
dissertation [25].63

The metalogical investigations of Bernays on independence and axioms ver-
sus rules in 1918 laid the groundwork for several later developments. On the
one hand, they provided a rigorous justification for the “algebraic” methods of
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manipulating formulas (e.g., of “applying” the law of associativity to subformu-
las) that were used as the official formulation of propositional logic until about
1923. At that time the strictures of Hilbert’s developing finitism made it clear
that distinctions must be made between the unproblematic connectives (disjunc-
tion, conjunction, and in particular the conditional, or “consequence”), and the
problematic part, namely negation and the quantifiers. Here, too, Bernays’s
investigations helped satisfy these strictures by separating the axioms for the
unproblematic notions from those for the problematic ones. In the notation of
Prinicipia, this would not have been possible: there, the unproblematic notion
of consequence was even defined in terms of negation (and disjunction).

The development of clear and intuitive axioms for propositional logic, and the
investigations of the extent to which axioms can be replaced by rules undoubt-
edly also had great influence on Gentzen’s development of natural deduction and
the sequent calculus. Bernays was still teaching in Göttingen at the time when
Gentzen was preparing his thesis [23], and in all likelihood was in close contact
with him. Bernays was working closely with Paul Hertz throughout the 1920s,
and Hertz’s work on axiom systems is commonly acknowledged to be one of
Gentzen’s main sources.64 The picture is far from complete, however, and it
seems well worth filling in the details. In the course of this, in particular in a
reexamination of Hertz’s work on logic, it may well be that further important
contributions by Bernays may come to light.

NOTES

1. Hilbert issued the invitation in September 1917 at the occasion of Hilbert’s talk on axiomatic
thought in Z̈urich. Reid [66, p. 151] reports that the invitation was made in the Spring of 1917.
Bernays, however, reported the former version in [9], in an interview on 25 July 1977 [10], and
even in a letter to Reid (27 November 1968, Bernays Nachlaß, WHS, ETH Zürich, Hs 975.3775).
As far as I can see, there is no evidence for Reid’s version.

2. See also [1].
3. Pierce, Wittgenstein, and Post are commonly credited with the truth-table method of de-

termining propositional validity; Post for the completeness of propositional calculus; and Pierce,
Post, and Łukasiewicz for the invention of many-valued logics. The method of using many-valued
matrices for independence proofs was also discovered independently by Łukasiewicz and Tarski.

4. “[Sie] hatte zwar durchaus mathematischen Character, aber so die damalige Auffassung war
die, dass man diese Grundlagenuntersuchungen, die an die mathematische Logik anknüpften, dass
man die mathematisch nicht für voll genommen hat, nicht wahr, ja, das ist ja so ganz nett, das ist
so halb spielerisch, nicht wahr, [. . . ] und ich war auch so in der Tendenz [. . . ] und habe das
sozusagen auch nicht so ganz für voll genommen, und da [. . . ] hatte ich keinen solchen Eifer,
das rechtzeitig zu publizieren, und das ist erst sehr viel später, und doch eigentlich nicht ganz
vollständig, sondern bloss mit gewissen Partien herausgekommen [. . . ] so ist das, ist Manches
zum Beispiel in den Darstellungen der Entwicklung der mathematischen Logik ist das zum Teil
nicht, nicht wahr, entsprechend zum Ausdruck gekommen, was ich da in dieser Arbeit hatte.” In-
terview, 25 July 1977 [10]; also reported by Specker [70]. All translations are mine except where
English translations are noted in the bibliography. It might be interesting to list some historical
accounts and how they treat Bernays. Jørgensen [49], who in other respects provides a very com-
prehensive account of the developments in symbolic logic up to 1930, mentions neither Post nor
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Bernays in connection with completeness or independence results. Kneale and Kneale [50] treat
Bernays’s independence proofs in depth and give his completeness proof, but credit it to Post.
Bochénski [13] mentions Post in connection with the decision procedure for propositional logic,
but does not mention Bernays. Church [14] cites Bernays’s results on dependence and indepen-
dence, but does not mention him in connection with consistency, completeness, or decidabilty.
Surma [71] makes no mention of Bernays at all.

5. “Die Paradoxien, die wir im voranstehenden kennen gelernt haben, zeigen zur Genüge, dass
eine Pr̈ufung und Neuauff̈uhrung der Grundlagen der Mathematik und Logik unbedingt nötig ist.”
[31], p. 215

6. A marginal note on p. 224 instructs: “write more simply= ‘equal’ ”.
7. [31], pp. 225–228.
8. “We may think of 0—if we want to proceed intuitively—as the proposition which ‘expresses

nothing’ and which therefore is the ideally correct one; we may call every proposition identical
to 0 acorrect [richtige] or maybe betternon-contradictory[widerspruchslose] proposition. . . ”
[31], p. 226

9. “Es müßte nun untersucht werden, wie weit die Axiome von einander unabhängig sind [. . . ]
Das Wichtigste aber ẅare hier der Nachweis, dass die 12 Axiome sich nicht widersprechen, d.h.
daß man aus ihnen durch die festgelegten Proceße [sic] keine Aussage herleiten kann, die den Ax-
iomen widerspricht,X + X ≡ 0 etwa. Das sind alles hier nur Andeutungen, die noch keineswegs
vollkommen durchgef̈uhrt sind, und man hat in Einzelheiten noch sehr viel freie Hand;überhaupt
liefert dieser ganze AbschnittAbschnitt vorläufig eigentlich mehr Materialien zu einer endgültigen
Lösung der interessierenden Fragen, als eine endgültige Lösung von ihnen.” [31], pp. 230–31

10. The notationX |Y was introduced in [32], this is changed toX→Y in a marginal note on
p. 236. The influence of Frege is obvious here: “b follows from a” is motivated as excluding the
second of the four possibilities:a+b, a+b, a+b, a+b, compareBegriffsschrift, §5.

11. When proving a similar normal form theorem for the calculus in [33, p. 149], the fact
that normal forms are not unique is pointed out in a footnote. Even if the procedure outlined
by Hilbert were deterministic and would thus produce unique normal forms for every formula,
different formulas may still have different normal forms, a fact which will become important
below.

12. “Eine AussageY folgt aus einer andernX dann und nur dann, wenn sie von der From
A ·X ist, wo A irgend eine Aussage ist. Schliessen heisst richtige Aussagen mit irgend welchen
Aussagen multiplizieren.” [31], p. 246.

13. “Ich will hier noch auf eine, wohl die wichtigste Anwendung der Normalform einer Aus-
sage und ihrer Eindeutigkeit hinweisen. Wir wollen—und darauf müssen wir und zun̈achst
beschr̈anken—eine endliche Anzahl von Aussagena, b, c . . . (Axiome über die behandelten
Dinge oder Eigennamen) zu Grund legen. Dann kann esüberhaupt nur endlich viele Aussagen
dar̈uber (d.h. aus diesen Grundaussagen zusammengesetzte Aussagen) geben; denn jede läßt
sich auf eine Summe von Produkten im wesentlichen eindeutig bringen, wo in jedem Summand
dieselbe Grundaussage nur in der ersten Dimension erscheinen und dasselbe Produkt auch nur
einmal als Summand auftreten kann. Jede richtige Aussage muß aus der Summe der Axiome
a+ b+ · · · durch einen gewissen MultiplikatorA folgen (Beweis), und f̈ur diesesA gibt es nach
dem gesagten auch nur endlich viele Formen. So ergibt sich hier, daß für jeden Satz nurendlich
viele Beweism̈oglichkeitenexistieren, und wir haben damit in dem vorliegenden primitivsten Falle
das alte Problem gelöst, daß jedes richtige Resultat sich durch einenendlichen Beweiserzielen
lassen muß. Dies Problem war eigentlich der Ausgangspunkt aller meiner Untersuchungen auf
unserem Gebiete und die Erledigung dieses Problemes im allerallgemeinsten Falle der Beweis,
daß es in der Mathematik kein “Ignorabimus” geben kann, muß auch das letzte Ziel bleiben.”
[31], pp. 248–9.

14. This correction is made by Hilbert later in the lectures (p. 257), see also [62, pp. 70–72].
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15. Of course it would be enough to know that there are only finitely many normal forms,
and we can check all of these. But Hilbert does not have a deterministic and finite procedure to
produce all these.

16. I do not mean to suggest that Hilbert was not interested in the foundations of mathematics
during this period. Sieg [69] has pointed out that Hilbert lectured a number of times on foun-
dations of mathematics and physics during that time. These lectures, however, contain far less
of logical interest than those of 1905 or those after 1917; most of them were courses on “ele-
mentary mathematics from a higher standpoint,” a topic on which Klein had also often lectured.
Even though Hilbert may not himself have worked much on the subject, there is a lot of activity in
foundations of mathematics in Göttingen at the time, as the list of lectures in the Mathematical So-
ciety published in theJahresberichte der Deutschen Mathematiker-Vereinigungshows. Mancosu
[58] gives a survey of the developments going on in the early 1910s. He stresses in particular
the role of Heinrich Behmann in introducing the mathematicians in Göttingen to thePrincipia
Mathematica.

17. [33], call number 6817a.44a
18. Heinrich Behmann was completing his dissertation entitled “The antinomy of transfinite

number and its solution by Russell and Whitehead” [Die Antinomie der transfiniten Zahl und ihre
Auflösung durch Russell und Whitehead] under Hilbert in the Spring of 1918 (see [58]); it would
be interesting to compare it with the presentation of the paradoxes and type theory in the 1917–18
lectures.

19. “Man beschr̈anke den Bereich der Aussagen, indem manüberhaupt nur die beiden Aus-
sagen 0 und 1 zulässt, und deute dementsprechend die Gleichungen als eigentliche Identitäten.
Ferner definiere man Summe und Produkt durch die 8 Gleichungen [. . . ] welche dadurch char-
acterisiert sind, dass sie in richtige arithmetische Gleichungenübergehen, sofern man die sym-
bolische Summe durch den Maximalwert der Summanden und das symbolische Produkt durch
den Minimalwert der Faktoren ersetzt. Als Gegenteil der Aussage 0 erkläre man die Aussage 1
und als Gegenteil von 1 die Aussage 0.

Diese Definitionen f̈uhren jedenfalls zu keinem Widerspruch, da in jeder von ihnen ein neues
Zeichen erkl̈art wird. Andererseits kann man durch endlich viele Versuche feststellen, dass
bei den getroffenen Festsetzungen allen Axiomen I–XII Genüge geleistet wird. Diese Axiome
können daher gleichfalls keinen Widerspruch ergeben. So lässt sich f̈ur unseren Kalk̈ul die Frage
der Widerspruchslosigkeit vollkommen zur Entscheidung bringen.” [33], p. 70

20. Where Hilbert [33] uses ‘=’, Bernays [5] uses the Russellian ‘∼’.
21. The use of substitution is indicated at the beginning of *2. A substitution rule was ex-

plicitly included in the system of Russell [67], and Russell also acknowledged its necessity later
(e.g., in the introduction to the second edition ofPrincipia). For a discussion of the origin of the
propositional calculus ofPrincipia and the tacit inference rules used there, see O’Leary [61].

22. This becomes clear from Bernays [5], who makes a point of distinguishing between correct
and provable formulas, in order “to avoid a circle.” In [35, p. 8], we read: “It is now the first task
of logic to find those combinations of propositions, which are always, i.e., without regard for the
content of the basic propositions,correct.”

23. This rule is tacitly used inPrincipia, but Russell’s view that logic is universal prevented
him from formulating it as a rule. Replacement “can be proved in each separate case, but not
generally [. . . ]” [74, p. 115].

24. [33], p. 144. There is actually a gap in the proof. Hilbert argues that since multiple sub-
stituitions can be reduced to successive single substitutions, only the cases whereϕ(α) is α, αγ
andγα need to be considered. Somewhere, however, induction has to play a role. What should be
done is to prove that wheneverα→ β andβ→ α is provable then so areα→ β, β→ α, αγ→ γα
andγα→ γβ, and then argue by induction on the depth of the occurrence ofα in φ. Compare in
this regard Post’s [65, p. 170] proof of essentially the same result; his proof uses induction on the
complexity of formulas.
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25. “Dieses System von Axiomen wäre als widerspruchsvoll zu bezeichen, falls sich daraus
zwei Formeln ableiten liessen, die zueinander in der Beziehung des Gegemteils stehen.” [33],
p. 150.

26. “Wenden wir uns nun zu der Frage derVollständigkeit. Wir wollen das vorgelegte Axiom-
en-System vollsẗandig nennen, falls durch die Hinzufügung einer bisher nicht ableitbaren Formel
zu dem System der Grundformeln stets ein widerspruchsvolles Axiomensystem entsteht.” [33],
p. 152

27. “Dieses letzte Axiom tr̈agt einen durchaus allgemeinen Character und ist in jedem Ax-
iomensystem irgendwelcher Art in gewisser Form anzufügen; hier ist es, wie wir sehen werden,
von ganz besonderer Bedeutung. Das Zahlensystem soll nach ihm so beschaffen sein, daß bei
jeder Anf̈ugung neuer Elemente Widersprüche auftreten, was für Festsetzungen man auchüber
sie treffe; lassen sich Dinge angeben die sich widerspruchslos anfügen lassen, so m̈ussen sie dem
Systeme in Wahrheit schon angehören.” [31], p. 17

28. The possibility for such a move was of course already implicit in Hilbert’s earlier writings
on the foundations of geometry.

29. “Das aufgestellte Axiomen-System könnte kein besonderes Interesse beanspruchen, wenn
es nicht einer bedeutsamen inhaltlichen Interpretation fähig ẅare.

Eine solche Interpretation ergibt sich auf folgende Art:
Die Variablen fasse man als Symbole für Aussagen(Sätze) auf.
Als characteristische Eigenschaft der Aussagen soll angesehen werden, dass sie entweder wahr

oder falsch und nicht beides zugleich sind.
Das symbolische Produkt deute man als die Verknüpfung zweier Aussagen durch ‘oder,’ wobei

diese Verkn̈upfung nicht im Sinne der eigentlichen Disjunktion zu verstehen ist, welche das
Zusammenbestehen der beiden Aussagen ausschliesst, sondern vielmer derart, dass ‘X oderY’
dann und nur dann zutrifft (d.h. wahr ist), wenn mindestens eine der beiden AussagenX, Y
zutrifft.” [5], pp. 3–4.

30. “Die Bedeutsamkeit unseres Axiomen-Systems für die Logik beruht nun auf folgender Tat-
sache: Versteht man unter einer ‘beweisbaren’ Formel eine solche, die sich gemäss den Axiomen
als richtige Formel erweisen lässt [footnote: Den Begriff der beweisbaren Formel neben dem der
richtigen Formel (welcher nicht vollständig abgegrenzt ist) einzuführen, erscheint mir zur Ver-
meidung eines Zirkels als notwendig.], und unter einer ‘allgemeingültigen’ Formel eine solche,
die im Sinne der angegebenen Deutung bei beliebiger Wahl der für die variablen einzusetztenden
Aussagen (also für beliebige ‘Werte’ der Variablen) stets eine wahre Aussage ergibt, so gilt der
Satz:

Jede beweisbare Formel ist eine allgemeingültige Formel und umgekehrt.
Was zun̈achst die erste Ḧalfte dieser Behauptung betrifft, so lässt sie sich folgendermassen

begr̈unden: Man verifiziert zuerst, dass sämtliche Grundformeln allgemeingültige Formeln sind.
Hierzu hat man nur endlich viele Fälle auszuprobieren, denn die Ausdrücke des kalk̈uls sind
alle von der Art, dass bei der logischen Interpretation ihre Wahrheit und Falschheit eindeutig
bestimmt ist, wenn von jeder der für die Variablen einzusetzenden Aussagen feststeht, ob sie
wahr oder falsch ist, ẅahrend imübrigen der Inhalt dieser Aussagen gleichgültig ist, sodass man
als Wert der Variablen anstatt der Aussagen nur Wahrheit und Falschheit zu betrachten braucht.”
[5], p. 6.

31. “Diese Betrachtung enthält nicht allein den Beweis für die Vollsẗandigkeit unseres Axiom-
en-Systems, sondern sie liefert unsüberdies noch ein einheitliches Verfahren, durch welches man
bei jedem Ausdruck des Kalküls nach endlich vielen Anwendungen der Axiome entscheiden
kann, ob er eine beweisbare Formel ist oder nicht. Zum Zweck dieser Entscheidung braucht man
nur für den betreffenden Ausdruck eine Normalform zu bestimmen und nachzusehen, ob darin bei
jedem der einfachen Produkte mindestens eine Variable sowohl unüberstrichen wiëuberstrichen
als Glied vorkommt. Trifft dies zu, so ist der untersuchte Ausdruck eine beweisbare Formel,
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andernfalls ist er es nicht. Der Kalkül lässt sich demnach vollkommen trivialisieren.” [5], pp. 15–
16.

32. For biographical information on Post and his influences, see [17]. Davis [18] points out
that some of the clarifications that Hilbert and Bernays achieved, e.g., the distinction between
syntax and semantics, correct and provable formulas, and between theorems about the calculus
and theorems in the calculus, were also seen by Lewis [53], who strongly influenced Post. In fact,
the last of the distinctions just mentioned is emphasized by Post.

33. Recall that the axioms investigated by Hilbert and Bernays are not precisely the axioms of
Principia. While Hilbert and Bernays augment the axiom system with an unrestricted substitution
rule, Post’s substitution rule allows only substitution of formulas containing one connective.

34. “In der Tat lassen sich ja alle Beziehungen zwischen Wahrheit und Falschheit von Aus-
sagen mit Ḧulfe der Konjunktion (‘und’), der Disjunktion (ausschliessendes ‘oder’) und der
Negation, also auch durch die Symbolik unseres Kalküls zum Ausdruck bringen, und sofern
solche Beziehungen für beliebige Aussagen gelten, müssen die ihnen entsprechenden symbolis-
chen Ausdr̈ucke in dem definierten Sinne allgemeingültige Formeln sein.” [5], p. 16.

35. “Hilbert hat ja da [an denGrundlagen der Mathematik] eigentlich nicht mitgearbeitet,
was da benutzt wurde waren sehr viele Gedanken von Hilbert, aber an der Ausgestaltung hat
er eigentlich nicht mitgearbeitet, auch schon eigentlich beim ersten Band nicht und beim zweiten
schon gar nicht.” Interview, 27 August 1977 [10].

36. “[A]lso da war ich damals [Hilberts] Assistent [. . . ] [die] Assistentenbeschäftigung, das
ist nicht so eine Beschäftigung, wie sie hier [in Z̈urich] im allgemeinen die Assistenten haben,
die den Studenten helfen bei denÜbungen, damit hatte ich gar nichts zu tun, sondern das war
ganz privatim bei Hilbert, also daß wir einerseits diskutiertenüber die grunds̈atzlichen Fragen
und dann auch, daß ich ihm für seine Vorlesungen zum Teil half, bei den Vorbereitungen mithalf
und Ausarbeitungen machte.” Interview, 25 July 1977 [10].

37. Habilitationsakte Paul Bernays, Gemeinsames Prüfungsamt der mathematisch-naturwis-
senschaftlichen Fakultäten, Universiẗat Göttingen.

38. Bernays Papers, ETH Library/WHS, Hs 976.3.
39. Bernays, “Kolleg von Hilberẗuber Grundlagen. Zu meiner Göttinger Habilitationsschrift.”

Unpublished manuscript. Bernays Nachlaß, WHS,ETH Zürich, Hs 973.184
40. “Diese Fragen, die die Axiomatik der elementaren Verknüpfungsaussagen betreffen, sind

vor wenigen Jahren von dem Göttinger Mathemathiker Bernays behandelt worden (Habilitations-
schrift, leider nicht gedruckt) und man kann wohl sagen zu einem vollständigen und befriedi-
gendem Abschluß gebracht worden. [. . . ] Bernays hat die Vollsẗandigkeit ebenfalls streng be-
wiesen, also gezeigt, daß jede allgemeingültige elementare Verkn̈upfungsaussage tatsächlich aus
den Grundformeln nach den Grundregeln abgeleitet werden kann [. . . ]. ” [4], p. 97.

41. “Damals zum Beispiel ja, auch meine eigenen Kentnisse waren da noch sehr sehr un-
vollständing, als ich da zunächst, zum Beispiel, 1917, damals. Wie gesagt, zuerst bevor Hilbert
direkt an seine Sache wieder ging, die er ja schon viel früher angefangen hatte, da war, da hat er
noch nicht gleich dar̈uber gelesen, sondern er hatüber mathematische Logik gelesen, eine Vor-
lesung. Und die hab ich auch ausgearbeitet und die hab ich, nicht wahr, und zwar in solcher
Weise, daß ich die freien, das hab ich Ihnen glaub ich erzählt, daß ich die freien Variablen ver-
mieden habe. Bei Russell hatte ich mir so ein bißchen einiges angekuckt aber erstens war mir
dasüberhaupt zu breit diese Art der Behandlung, sagte mir nicht in jeder Hinsicht zu, aber ins-
besondere hab ich das nicht recht verstanden, was das heisst für alle x, F(x) dann folgtF(y).
Tats̈achlich ist ja auch die Anwendung der freien Variablen, das ist etwas Technisches, nicht wahr.
Es sind eigentlich zwei Arten der Darstellung der Allgemeinheit. Man hat die Allgemeinheit eben
einerseits durch die gebunde Variable und andererseits durch die freie Variable. Solch einen Un-
terschied gibt es nicht in der gewöhnlichen Sprache, nicht wahr. Nun hab ich also da zunächst
die freien Variablen vermieden. Das ist ein mögliches Verfahren, das ist auch später wieder von
anderen manchmal gemacht worden so. Das ist also eine Vorlesung, die ist ausgearbeitet worden
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und hat auch nachher da im Hilbertschen, da im Lesezimmer vom Institut gestanden.” Interview,
27 August 1977 [10]

42. The use of free variables was also avoided in lectures on theLogik-Kalk̈ul [35]. Free
variables are first used in Hilbert’s talks of 1922 [37, 38] and in lectures taught by Hilbert and
Bernays in 1922–23 [45, 44].

43. See, e.g., Lauener’s [52] testimony.
44. “Es wird also bei jedem der folgenden Unabhängigkeits-Beweise der Kalkül auf ein end-

liches System (eine endliche Gruppe im weiteren Sinne des Wortes [footnote in text: Das heisst
ohne Voraussetzung des assoziativen Gesetzes und der eindeutigen Umkehrbarkeit der Komposi-
tion]) zurückgef̈uhrt, für dessen Elemente eine Komposition (‘symbolisches Produkt’) und eine
‘Negation’ definiert ist, und diese Zurückführung findet in der Weise statt, dass die Variablen des
Kalküls auf die Elemente jenes Systems als ihre Werte bezogen werden. Die ‘richtigen Formeln’
sollen jedesmal dadurch characterisiert sein, dass sie für beliebige Werte der vorkommenden
Variablen nur Werte eines gewissen TeilsystemsT annehmen.” [6], pp. 27–28.

45. The interested reader may consult [50], pp. 689–694, and, of course, [6]. The method
was discovered independently by Łukasiewicz [54], who announced results simlar to those of
Bernays. Let me remark in passing that Bernays’s first system defines Łukasiewicz’s 3-valued
implication.

46. Gödel [26] quotes the independence proofs given in [39].
47.XX, of course, is the principle of the excluded middle, and is synonymous in the system

with X→ X.
48. These results extend the method of the previous sections insofar as the independence of

rules is also proved. To do this, it is shown that an instance of the premise(s) of a rule always
takes designated values, but the corresponding instance of the conclusion does not. This extension
of the matrix method for proving independence was later rediscovered by Huntington [48].

49. According to theVerzeichnis der Vorlesungenfor the semester, the course was announced
under the title “Formal logic and its epistemological value [Formale Logik und ihr erkenntnisthe-
oretischer Wert].” The term lasted 5 January 1920–31 March 1920. Lecture notes by Bernays
survive at the library of the Institute of Mathematics at the University of Göttigen [35].

50. This is not stated explicitly, but is evident from the derivation on p. 11.
51. [3], p. 167.
52. “Bei der Axiomatisierung des Aussagenkalküls herrscht die Tendenz vor, die Anzahl der

Grundverkn̈upfungen und damit die der Axiome zu reduzieren. Man kann aber andererseits
auch die Rolle der verschiedenen Verknüpfungen scharf voneinander sondern; insbesondere ist
es von Interesse, die Rolle der Negation zu untersuchen.” Talk given in the Mathematical Soci-
ety at G̈ottingen, 20 February 1923, as reported inJahresbericht der Deutschen Mathematiker-
Vereinigung, 2. Abteilung, vol. 32 (1922), p. 22.

53. Compare, e.g., the logical axioms in [37] and [38]. In the latter paper, Hilbert notes: “In
[37] I had still avoided [the negation sign]; as it turned out, the sign for ‘not’ can be used in the
present, slightly modified presentation of my theory without danger.” [38, p. 152] He could not
have avoided the negation sign if the whole calculus was based on it.

54. Paul Bernays, notes to “Mathematische Logik,” lecture course held Winter semester 1929–
30, Universiẗat Göttingen. Unpublished shorthand manuscript. Bernays Nachlaß, WHS, ETH
Zürich, Hs 973.212. The signs ‘&’ and ‘∨’ were is first used as signs for conjunction and dis-
junction in [45]. The third axiom of group I and the second axiom of group V are missing from
the system given in [46]. The first (Simp), third (Comm), and fourth axiom (Syll) axioms of group
I are investigated in the published version of theHabilitationsschrift[6], but not in the original
version [5].

55. For a discussion of the history of Hilbert’sFoundations of Geometry, and in particular of
the completeness axiom, see Toepell [72, pp. 254–256] and Birkhoff and Bennett [12].
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56. “Ebenso ist das ‘Vollständigkeitsaxiom’ eine an dem fertigen Denkbereiche zu erlangende
Anschauung; die ‘Vollsẗandigkeit’ ist ein Postulat, das in unserer Syntheseüberhaupt nicht als
‘Axiom’ des Denkbereichs gefaßt werden kann; ebensowenig wie das Postulat der Widerspruch-
slosigkeit.” [51], p. 209. K̈onig’s book was known in G̈ottingen: Felix Bernstein reported on it in
the Mathematical Society on 16 February 1915.

57. See [36], pp. 18–19, where both the distinction and the equivalence are pointed out.
58. “Weiters interessiert uns dieVollständigkeitdes Axiomensystems. Wir werden verlangen

müssen, dass allëubrigen Thatsachen des vorgelegten Wissensbereiches Folgerungen aus den
Axiomen sind,” [31], p. 13.

59. I would like to just mention as two more possible influences the work of the American pos-
tulate theorists (Huntington, Veblen) on categoricity [15, 16], and the exchange between Husserl
and Hilbert on completeness in 1901, recently analyzed by Majer [55].

60. The pivotal role that Bernays [5] played in the shift from syntactic to semantic complete-
ness is stressed by Moore [60].

61. “Es soll eine ganz bestimmte allgemeine Vorschrift angegeben werden, dieüber die Rich-
tigkeit oder Falschheit einer beliebig vorgelegten mit rein logischen Mitteln darstellbaren Be-
hauptung nach einer endlichen Anzahl von Schritten zu entscheiden gestattet, oder zum min-
desten dieses Ziel innerhalb derjenigen — genau festzulegenden — Grenzen verwirklicht wer-
den, innerhalb deren seine Verwirklichung tatsächlich m̈oglich ist.” [3], p. 166, emphasis mine.
This was Behmann’sHabilitationsschrift, he received hisvenia legendiin July 1921. Behmann
spoke on his results to the mathematical society in Göttingen on 10 May 1921, the talk was
entitled “Das Entscheidungsproblem der mathematischen Logik” (Jahresberichte der Deutschen
Mathematiker-Vereinigung, 2. Abteilung, vol. 30 (1921), p. 47). The manuscript of the talk sur-
vives in the Behmann Papers in Erlangen. This seems to be the first documented use of the
expression “Entscheidungsproblem.” Behmann had requested leave from his teaching duties in
late September 1920 to work on his Habilitation, the problem was probably formulated in its full
generality sometime in early to mid-1920.

62. The notion of syntactic completeness of a theory is closely related to what we now call
“complete theories.,” i.e., theories which either prove or refute every sentence of the language.
[41] proposes the proof of syntactic completeness of arithmetic as a finitistic analog of the proof
of completeness in the sense of categoricity. That completeness and categoricity are not the same
was realized only with Skolem’s discovery of nonstandard models.

63. See [60] and [20] for a discussion of Gödel’s motivations and influences.
64. See in this regard the introduction to [24], and [19].
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