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1 INTRODUCTION

Hilbert’s program is, in the first instance, a proposal and a research program in the
philosophy and foundations of mathematics. It was formulated in the early 1920s
by German mathematician David Hilbert (1862–1943), and was pursued by him
and his collaborators at the University of Göttingen and elsewhere in the 1920s
and 1930s. Briefly, Hilbert’s proposal called for a new foundation of mathematics
based on two pillars: the axiomatic method and finitary proof theory. Hilbert
thought that by formalizing mathematics in axiomatic systems, and subsequently
proving by finitary methods that these systems are consistent (i.e., do not prove
contradictions), he could provide a philosophically satisfactory grounding of clas-
sical, infinitary mathematics (analysis and set theory). Had it been successful,
Hilbert’s program would perhaps not only have eclipsed in subsequent influence
other foundational projects of the time, such as the logicist projects pursued by
Frege and Russell and Brouwer’s intuitionism, but it would also have achieved
Hilbert’s stated goal, viz., to “dispose of the foundational questions in mathemat-
ics as such once and for all” [Hilbert, 1929, 228]. Unfortunately, Gödel’s theorems
show that the program as originally envisaged by Hilbert cannot be carried out.

Although Hilbert’s own project for the foundation of mathematics was ulti-
mately unsuccessful, the project itself and technical advances made in its pursuit
have had an enormous impact on logic and the foundations of mathematics more
generally. In order to carry out the first part of the program, the axiomatization
of mathematics in a formal system, Hilbert and his collaborators had pushed for-
ward the development of logical formalisms in which such an axiomatization could
be carried out. This led, in particular, to the first axiomatizations of proposi-
tional and first-order logic as independent systems (i.e., other than as fragments
of more comprehensive higher-order systems, such as Frege’s Begriffsschrift and
the Whitehead-Russell system of Principia mathematica) and their metalogical in-
vestigation, such as the proof (by Paul Bernays in 1918) of the completeness of the
propositional calculus and the work in Hilbert’s school from 1921 onward on the
decision problem. The investigation of the metalogical properties of logical sys-
tems led directly to some of the most important metalogical results in logic, viz.,
Gödel’s completeness theorem and the negative solution by Church and Turing of
the decision problem. The development of proof theory itself is an outgrowth of
Hilbert’s program. Gentzen’s development of natural deduction and the sequent
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calculus was carried out in the tradition of Hilbert’s program and with the aim of
constructing a logical system which facilitates consistency proofs. Gödel obtained
his incompleteness theorems while trying to prove the consistency of analysis. And
the tradition of reductive proof theory of the Gentzen-Schütte school and others
is itself a direct continuation of Hilbert’s program.

The present chapter is divided into three parts: The first part provides a sketch
of the historical development of logic, proof theory, and philosophy of mathematics
in the work of Hilbert and his followers through the 1930s. The second part deals
with the philosophical interpretation and assessment of Hilbert’s program. The
third part presents recent work in proof theory which bears on the aims of Hilbert’s
program.

2 HILBERT’S PROGRAM THEN

2.1 Hilbert’s early work on foundations

Hilbert’s work on the foundations of mathematics can be traced to his work on
geometry of the 1890s which resulted in his influential textbook Foundations of

Geometry [1899]. One philosophical advance of this work was the development of
Hilbert’s conception of the axiomatic method. Hilbert believed that the proper
way to develop any scientific subject rigorously required an axiomatic approach. In
providing an axiomatic treatment, the theory would be developed independently of
any need for intuition, and it would facilitate an analysis of the logical relationships
between the basic concepts and the axioms. Of basic importance for an axiomatic
treatment are, so Hilbert, investigation of the independence and, above all, of the
consistency of the axioms. In his 1902 lectures on the foundations of geometry, he
puts it thus:

Every science takes its starting point from a sufficiently coherent body
of facts as given. It takes form, however, only by organizing this body of
facts. This organization takes place through the axiomatic method , i.e.,
one constructs a logical structure of concepts so that the relationships
between the concepts correspond to relationships between the facts to
be organized.

There is arbitrariness in the construction of such a structure of con-
cepts; we, however, demand of it:

1) completeness, 2) independence, 3) consistency. [Hilbert, 2004, 540]

From the time of his work on geometry forward, the last consideration, consis-
tency, was of special importance in Hilbert’s conception of the axiomatic method
in general and the foundations of mathematics in particular. Hilbert was heavily
influenced by the foundational views of late-19th century mathematicians, in par-
ticular, Cantor, Dedekind, and Kronecker. He shared with Dedekind and Cantor
the view that mathematical activity should be free of constraints, which led to
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his view, highlighted in his correspondence with Frege, that consistency of an ax-
iomatic theory guarantees the existence of the structure described, and is in this
sense sufficient to justify the use of the theory. And he shared with Kronecker a
recognition that elementary arithmetic has a privileged role in mathematics, al-
though he was of course opposed to the converse espoused by Kronecker, viz., that
the natural numbers, and constructions based on elementary arithmetic, exhaust
legitimate mathematics. These two influences in Hilbert’s thought are at the root
of his investigations of consistency.

Proofs of consistency for the axioms of geometry can be given by providing an
interpretation of the system in the real plane, and thus the consistency of geometry
is reduced to the consistency of analysis. Analysis, of course, itself requires justifi-
cation. In [1900b], Hilbert approached the problem from the axiomatic standpoint
by proposing an axiomatization of the real numbers. In order to show the consis-
tency of this system, Hilbert expressly rejected the construction of a model, e.g.,
a construction based on Dedekind cuts of rationals, as an option. He considered
the construction of the reals from the rationals and ultimately the natural num-
bers using the “genetic method” as insufficient: “Despite the high pedagogical and
heuristic value of the genetic method, for the final presentation and the complete
logical grounding of our knowledge the axiomatic method deserves the first rank”
[Hilbert, 1900b, 1093]. Hilbert thus was after a direct consistency proof of analysis,
i.e., one not based on reduction to another theory. He proposed the problem of
finding such a proof as the second of his 23 mathematical problems in his address
to the International Congress of Mathematicians in 1900 [1900a].

The discovery of Russell’s paradox in 1902 made it clear that an axiomatic
foundation of arithmetic and set theory requires a more precise development of
the underlying logical systems. Hilbert knew of the paradoxes of set theory from
Cantor and Zermelo, but it was apparently not until Russell’s [1902] publication
of the contradiction in Frege’s system that Hilbert and Zermelo realized their
importance. Hilbert’s exchange with Frege on the axiomatic approach to geometry
led him to realize that his conceptions of “axiom,” “definition,” “proof” were
in need of clarification. In response, Hilbert formulated an early version of his
proof-theoretical program in his 1904 Heidelberg talk [1905]. After criticizing the
foundational views of Kronecker as dogmatic, and those of Frege and Dedekind as
suffering from “unavoidable contradictions,” he writes:

Arithmetic is often considered to be a part of logic, and the tradi-
tional fundamental logical notions are usually presupposed when it is
a question of establishing a foundation for arithmetic. If we observe
attentively, however, we realize that in the traditional exposition of
the laws of logic certain fundamental arithmetic notions are already
used, for example, the notion of set and, to some extent, also that of
number. Thus we find ourselves turning in a circle, and that is why a
partly simultaneous development of the laws of logic and of arithmetic
is required if paradoxes are to be avoided. [Hilbert, 1905, 131]
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Hilbert’s sketch of this “simultaneous development” of logic and arithmetic in the
case of a very basic axiom system for the natural numbers is very close to the
approach Hilbert’s proof theoretic program would take 20 years later: Hilbert
gives a direct argument that no contradiction can arise from the five axioms of his
system.

This was a promising start, but several factors delayed the further development
of Hilbert’s proof theoretic program. One was Poincaré’s [1906] criticism of what
he saw as a viciously circular use of induction in Hilbert’s sketched consistency
proof (see [Steiner, 1975], Appendix). Moreover, Hilbert realized that axiomatic
investigations required a well worked-out logical formalism in which axiomatic
systems could be developed. At the time he used a logical formalism based on
Schröder’s algebraic logic, which was not particularly suited as a formalism for
the axiomatization of mathematics. Following the 1905 lectures on foundations,
Hilbert turned his immediate attention to work in other areas of mathematics
and theoretical physics. He did, however, actively support others who worked
on foundational questions in Göttingen, in particular Ernst Zermelo and Leonard
Nelson.1

The publication of Whitehead and Russell’s Principia Mathematica [1910; 1912;
1913] provided the required logical basis for a renewed attack on foundational is-
sues. Beginning in 1914, Hilbert’s student Heinrich Behmann and others studied
the system of Principia.2 Hilbert himself returned to work on the foundations of
mathematics in 1917. In September 1917, he delivered an address to the Swiss
Mathematical Society entitled “Axiomatic Thought” [1918a]. It is his first pub-
lished contribution to mathematical foundations since 1905. In it, he again em-
phasized the requirement of consistency proofs for axiomatic systems: “The chief
requirement of the theory of axioms must go farther [than merely avoiding known
paradoxes], namely, to show that within every field of knowledge contradictions
based on the underlying axiom-system are absolutely impossible.” He posed the
proof of the consistency of the integers (and of set theory) again as the main prob-
lems. In both these cases, there seems to be nothing more fundamental available to
which the consistency could be reduced other than logic itself. Hilbert at the time
considered the problem as essentially solved by Whitehead and Russell’s work in
Principia. Nevertheless, other fundamental problems of axiomatics remained un-
solved, including the problem of the “decidability of every mathematical question,”
which also traces back to Hilbert’s 1900 address.

1See [Sieg, 1999; Sieg, 2002], [Stein, 1988], [Hallett, 1990; Hallett, 1994], [Mancosu, 1998b],
and [Avigad and Reck, 2001] for further discussion of the conceptual framework and historical
background of Hilbert’s thought, and [Resnik, 1974a] on the Frege-Hilbert correspondence. On
Hilbert’s foundational interests before 1917, and his engagement for Husserl, Zermelo, and Nelson
in Göttingen, see [Peckhaus, 1990]. On general discussions of formalism and the place of Hilbert’s
thought in the mathematical context of the late 19th century, see [Webb, 1997] and [Detlefsen,
2005].

2See [Mancosu, 1999] and [2003] on Behmann’s role in Hilbert’s school and the influence of
Russell.
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These unresolved problems of axiomatics led Hilbert to devote significant effort
to work on logic in the following years. In 1917, Paul Bernays joined him as
his assistant in Göttingen. In a series of courses from 1917–1921, Hilbert, with
the assistance of Bernays and Behmann, made significant new contributions to
formal logic. The course from 1917 [Hilbert, 1918b], in particular, contains a
sophisticated development of first-order logic, and forms the basis of Hilbert and
Ackermann’s textbook Principles of Theoretical Logic [1928]. In 1918, Bernays
submitted a treatise on the propositional calculus of Principia mathematica as a
Habilitationsschrift ; it contains the first completeness proof of the propositional
calculus for truth-functional semantics.3

The 1917–18 lectures were only the beginning of a strand of work on logic
and metalogic in Hilbert’s school, including work on the decision problem. The
decision problem for first-order logic was tightly bound up with the aim of finding a
completeness proof for the first-order predicate calculus (the “restricted calculus of
functions” in Hilbert’s terminology). This aim was stated in the 1917–18 lectures,
but since completeness does not hold for first-order logic in any purely syntactic
sense (an early result due to Ackermann), a development of the semantics of first-
order logic was needed first. The decision problem, one of Hilbert’s main aims for
metamathematics in the 1920s, was already an issue in the lectures from 1905, and
has its roots in Hilbert’s belief, first explicitly stated in the Paris address, that
“in mathematics, there is no ignorabimus,” i.e., that every mathematical question
can be solved either affirmatively or negatively. The questions of completeness
and decidability thus became closely linked in the 1920s, with Behmann, Bernays,
Schönfinkel, and later Ackermann working on special cases of the decision problem
for first-order logic throughout the 1920s.

2.2 The consistency program, finitism, and proof theory

In about 1920, Hilbert came to reject Russell’s logicist solution to the consistency
problem for arithmetic, mainly for the reason that the axiom of reducibility cannot
be accepted as a purely logical axiom. In lectures from the Summer term 1920, he
concluded that “the aim of reducing set theory, and with it the usual methods of
analysis, to logic, has not been achieved today and maybe cannot be achieved at
all” [Hilbert, 1920]. At the same time, Brouwer’s intuitionist mathematics gained
currency. In particular, Hilbert’s former student Hermann Weyl converted to
intuitionism. Weyl’s 1920 address to the Hamburg Mathematical Seminar, “The
new foundational crisis in mathematics” [1921] was answered by Hilbert in three
talks in Hamburg in the Summer of 1921 [1922b]. Here, Hilbert presented his own
mature proposal for a solution to the problem of the foundation of mathematics.
This proposal incorporated Hilbert’s ideas from 1904 regarding direct consistency
proofs, his conception of axiomatic systems, and also the technical developments
in the axiomatization of mathematics in the work of Russell as well as the further

3See [Moore, 1997], [Sieg, 1999] and [Zach, 1999] for more detail on the development of logic
in Hilbert’s school around 1918.
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developments carried out by him and his collaborators. What was new was the way
in which Hilbert wanted to imbue his consistency project with the philosophical
significance necessary to answer Brouwer and Weyl’s criticisms: the finitary point
of view.

According to Hilbert, there is a privileged part of mathematics, contentual
elementary number theory, which relies only on a “purely intuitive basis of concrete
signs.” Whereas the operating with abstract concepts was considered “inadequate
and uncertain,” there is a realm of

extra-logical discrete objects, which exist intuitively as immediate ex-
perience before all thought. If logical inference is to be certain, then
these objects must be capable of being completely surveyed in all their
parts, and their presentation, their difference, their succession (like
the objects themselves) must exist for us immediately, intuitively, as
something which cannot be reduced to something else.4

The objects in questions are signs, both numerals and the signs that make up
formulas and formal proofs. The domain of contentual number theory consists
in the finitary numerals, i.e., sequences of strokes. These have no meaning, i.e.,
they do not stand for abstract objects, but they can be operated on (e.g., concate-
nated) and compared. Knowledge of their properties and relations is intuitive and
unmediated by logical inference. Contentual number theory developed this way is
secure, according to Hilbert: no contradictions can arise simply because there is
no logical structure in the propositions of contentual number theory.

The intuitive-contentual operations with signs form the basis of Hilbert’s meta-
mathematics. Just as contentual number theory operates with sequences of strokes,
so metamathematics operates with sequences of symbols (formulas, proofs). For-
mulas and proofs can be syntactically manipulated, and the properties and rela-
tionships of formulas and proofs are similarly based in a logic-free intuitive ca-
pacity which guarantees certainty of knowledge about formulas and proofs arrived
at by such syntactic operations. Mathematics itself, however, operates with ab-
stract concepts, e.g., quantifiers, sets, functions, and uses logical inference based
on principles such as mathematical induction or the principle of the excluded mid-
dle. These “concept-formations” and modes of reasoning had been criticized by
Brouwer and others on grounds that they presuppose infinite totalities as given, or
that they involve impredicative definitions (which were considered by the critics as
viciously circular). Hilbert’s aim was to justify their use. To this end, he pointed
out that they can be formalized in axiomatic systems (such as that of Principia

or those developed by Hilbert himself), and mathematical propositions and proofs
thus turn into formulas and derivations from axioms according to strictly circum-
scribed rules of derivation. Mathematics, so Hilbert, “becomes an inventory of
provable formulas.” In this way the proofs of mathematics are subject to meta-
mathematical, contentual investigation. The goal of Hilbert’s program is then to

4[Hilbert, 1922b, 202]. The passage is repeated almost verbatim in [Hilbert, 1926, 376],
[Hilbert, 1928, 464], and [Hilbert, 1931b, 267]
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give a contentual, metamathematical proof that there can be no derivation of a
contradiction, i.e., no formal derivation of a formula A and of its negation ¬A.

This sketch of the aims of the program was fleshed out by Hilbert and his collab-
orators in the following 10 years. On the conceptual side, the finite standpoint and
the strategy for a consistency proof were elaborated by Hilbert [1923; 1926; 1928]

and Bernays [1922; 1928b; 1930], of which Hilbert’s article “On the infinite” [1926]

provides the most detailed discussion of the finitary standpoint. In addition to
Hilbert and Bernays, a number of other people were involved in technical work
on the program. The ε-operator was first introduced in the Hamburg lecture of
1921 [Hilbert, 1922b], and developed in a number of lectures given in Göttingen
[Hilbert, 1922a; Hilbert and Bernays, 1923], as well as in [Hilbert, 1923]. Hilbert
and Bernays developed the ε-calculus as their definitive formalism for axiom sys-
tems for arithmetic and analysis, and the so-called ε-substitution method as the
preferred approach to giving consistency proofs.

Briefly, the ε-calculus is a formalism that includes ε as a term-forming operator.
If A(x) is a formula, then εxA(x) is a term, which intuitively stands for a witness
for A(x). In a logical formalism containing the ε-operator, the quantifiers can be
defined by: ∃x A(x) ≡ A(εxA(x)) and ∀x A(x) ≡ A(εx¬A(x)). The only additional
axiom necessary is the so-called “transfinite axiom,” A(t) → A(εxA(x)). Based
on this idea, Hilbert and his collaborators developed axiomatizations of number
theory and analysis. Consistency proofs for these systems were then given using
the ε-substitution method. The idea of this method is, roughly, that the ε-terms
εxA(x) occurring in a formal proof are replaced by actual numerals, resulting in a
quantifier-free proof. The simplest case, outlined in Hilbert’s papers, is as follows.
Suppose we had a (suitably normalized) derivation of 0 = 1 that contains only
one ε-term εxA(x). Replace all occurrences of εxA(x) by 0. The instances of the
transfinite axiom then are all of the form A(t) → A(0). Since no other ε-terms
occur in the proof, A(t) and A(0) are basic numerical formulas without quantifiers
and, we may assume, also without free variables. So they can be evaluated by
finitary calculation. If all such instances turn out to be true numerical formulas,
we are done. If not, this must be because A(t) is true for some t, and A(0)
is false. Then replace εxA(x) instead by n, where n is the numerical value of
the term t. The resulting proof is then seen to be a derivation of 0 = 1 from
true, purely numerical formulas using only modus ponens, and this is impossible.
Indeed, the procedure works with only slight modifications even in the presence
of the induction axiom, which in the ε-calculus takes the form of a least number
principle: A(t) → εxA(x) ≤ t, which intuitively requires εxA(x) to be the least

witness for A(x).

The ε-substitution method is simple enough for the basic cases considered by
Hilbert, but becomes extremely complex when ε-operators are nested. In his
1924 dissertation, [Ackermann, 1925] presented an (erroneous) consistency proof
based on the ε-substitution method for a version of analysis. John von Neumann,
then visiting Göttingen, gave a corrected consistency proof for a system of the
ε-formalism (which, however, did not include the induction axiom) in 1925 [1927].
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Building on von Neumann’s work, Ackermann devised a new ε-substitution proce-
dure which he communicated to Bernays (see [Bernays, 1928b]). Ackermann and
Bernays considered the proof to be correct for the entire first-order fragment of
arithmetic and were confident that it could be extended to a consistency proof
of analysis. In his address “Problems of the grounding of mathematics” to the
International Congress of Mathematicians in Bologna in 1928 [1929], Hilbert opti-
mistically claimed that the work of Ackermann and von Neumann had established
the consistency of number theory and that the proof for analysis had already been
carried out by Ackermann “to the extent that the only remaining task consists in
the proof of an elementary finiteness theorem that is purely arithmetical.”5

2.3 The impact of Gödel’s incompleteness theorems

Gödel’s incompleteness theorems [Gödel, 1931] showed that Hilbert’s optimism
was unfounded. In September 1930, Kurt Gödel announced his first incomplete-
ness theorem at a conference in Königsberg. Von Neumann, who was in the
audience, immediately recognized the significance of Gödel’s result for Hilbert’s
program. Shortly after the conference he wrote to Gödel, telling him that he
had found a corollary to Gödel’s result. Gödel had found the same result already
independently: the second incompleteness theorem, asserting that the system of
Principia does not prove the formalization of the claim that the system of Prin-

cipia is consistent (provided it is). All the methods of finitary reasoning used in
the consistency proofs up till then were believed to be formalizable in Principia,
however. Hence, if the consistency of Principia were provable by the methods
used in Ackermann’s proofs, it should be possible to formalize this proof in Prin-

cipia; but this is what the second incompleteness theorem states is impossible.
Bernays also immediately realized the importance of Gödel’s results after he stud-
ied Gödel’s paper in January 1931. He wrote to Gödel that (under the assumption
that finitary reasoning can be formalized in Principia) the incompleteness theo-
rems seem to show that a finitary consistency proof of Principia is impossible.
Shortly thereafter, von Neumann showed that Ackermann’s consistency proof is
flawed and provided a counterexample to the proposed ε-substitution procedure.6

Although the impact of Gödel’s incompleteness theorems for Hilbert’s pro-
gram was recognized soon after their publication, Hilbert’s program was by no
means abandoned. Hilbert himself was no longer actively involved in founda-
tional research, but Bernays continued to work on the foundations of mathemat-
ics. The two-volume Grundlagen der Mathematik [Hilbert and Bernays, 1934;
Hilbert and Bernays, 1939] was prepared by Bernays alone, and included new re-

5See [Avigad and Zach, 2002] for a general introduction to the ε-calculus and [Zach, 2003b]

and [2004] on the history of the ε-calculus and the substitution method. [Sieg, 1999] presents a
detailed and perceptive analysis of the development of the program and its influence as a whole.

6The correspondence between Gödel and Bernays is published in [Gödel, 2003a, 41–313] and
that with von Neumann in [Gödel, 2003b, 327–377]. See also the informative introductions by
Feferman and Sieg, respectively, to these sections of the correspondence, as well as [Mancosu,
2004] and the last section of [Zach, 2003b].
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sults by Ackermann and Bernays on the ε-calculus. It also included Herbrand’s
[1930] work on proof theory, and a sketch of Gentzen’s [1936] consistency proof
of first-order arithmetic. Bernays’s and Gentzen’s work, in particular, focused on
possible extensions of the finitary standpoint which could yield consistency proofs
for substantial parts of mathematics in spite of Gödel’s theorems.

Gentzen’s first consistency proof for number theory, the so-called galley proof
[1935], was the result of a combination of Gentzen’s [1934] earlier work on the log-
ical formalism of the sequent calculus, which provided a proof-theoretically more
convenient axiomatization of arithmetic, and a new strategy of proving consis-
tency. This strategy involved defining certain “reduction steps” on proofs: local
transformations of parts of a derivation in the new formalism. The consistency
proof then proceeds by showing that by iterating these reductions on a proof one
eventually arrives at a proof of a special form (a proof free of the cut rule and the
induction rule), and no proof of such a form can be the proof of a contradiction.
The first version of the proof relied on the notion of a reduction rule, which itself
cannot be formalized in arithmetic.7 This notion met with some objections, and
in the revised, published version [1936], Gentzen replaced the appeal to reduction
rules by a proof that the iteration of reduction steps itself terminates. He did this
by assigning a measure for the complexity of a given derivation, and showed that
the result of the application of a reduction step to a proof reduces the complexity
measure of that proof. The complexity measure Gentzen used was certain finite
strings of numbers which may be interpreted as naming countable ordinals less
than ε0.

8 The consistency result then follows if one accepts that there are no in-
finite descending sequences of such ordinal notations, or, more precisely, by using
transfinite induction up to ε0. This principle, by Gödel’s incompleteness theorem,
cannot itself be formalized in first-order arithmetic [Gentzen, 1943]. Gentzen’s
proof allowed Ackermann [1940] to give a correct consistency proof based on the
ε-substitution method for first-order arithmetic, also based on transfinite induction
up to ε0.

Gentzen’s work marks the beginning of post-Gödelian proof theory. In the proof-
theoretic tradition of Gentzen, axiomatic theories are analyzed according to which
transfinite induction principles are required to prove the consistency of the theory.
However, Gentzen’s contribution and influence goes beyond this: He emphasized
that proof-theoretic methods do not just allow us to prove the consistency of a
theory, but that they also enable us to extract information from proofs beyond
the fact that the formula proved follows from the axioms.

3 PHILOSOPHICAL INTERPRETATION OF HILBERT’S PROGRAM

The philosophical importance and influence of Hilbert’s work on foundations is
twofold. First, the epistemological standpoint of Hilbert’s finitism is of inter-

7On the galley proof, see [Bernays, 1970], [Kreisel, 1971, Appendix II], and [Negri, 1980].
8If ω0 = ω, and ωn+1 = ωωn , then the ordinal ε0 is the limit of ωn for n = 1, 2, . . .. In other

words, ε0 is the least fixed point of α = ωα.
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est in the philosophy of mathematics quite independently of the success of the
proof-theoretic program which it underlies. Like other important proposals in
the philosophy of mathematics such as intuitionism, predicativism, and logicism,
Hilbert’s finitism is, inter alia, a philosophical view about the nature of mathemat-
ical knowledge and delineates a particular set of (finitarily) meaningful proposi-
tions, as well as finitarily admissible constructions and methods of proof. Debate
about the status of finitary evidence and proof are still very much alive today.
Second, Hilbert’s program can and has been seen as a version of reductive in-
strumentalism in mathematics. That is to say, one can read Hilbert as propos-
ing that only a certain part of mathematics (propositions, proofs) is meaningful,
viz., the finitary part. The rest, which includes classical infinitary mathematics
(full first-order arithmetic, analysis, and set theory, in particular) are mere in-
struments. Hilbert’s program has thus been an important inspiration for related
instrumentalist proposals in the philosophy of mathematics (e.g., [Field, 1980;
Detlefsen, 1986]).

This section will expand on these two themes. In the case of both the debate
on the philosophy of finitism, and on the view of Hilbert’s program as an instru-
mentalist philosophy of mathematics, questions of historical interpretation interact
with conceptual analysis. The distinction between these aspects should be kept in
mind.

3.1 The finitary point of view

The cornerstone of Hilbert’s philosophy of mathematics, and the substantially new
aspect of his foundational thought from [1922b] onward, was the so-called finitary
standpoint. This methodological standpoint consists in a restriction of mathemati-
cal thought to objects which are “intuitively present as immediate experience prior
to all thought,” and to those operations on and methods of reasoning about such
objects which do not require the introduction of abstract concepts, in particular,
require no appeal to completed infinite totalities.

Hilbert characterized the domain of finitary reasoning in a well-known para-
graph which appears in roughly the same formulation in all of Hilbert’s more
philosophical papers from the 1920s [1922b; 1926; 1928; 1931b]:

[A]s a condition for the use of logical inferences and the performance
of logical operations, something must already be given to our faculty
of representation, certain extra-logical concrete objects that are intu-
itively present as immediate experience prior to all thought. If logical
inference is to be reliable, it must be possible to survey these objects
completely in all their parts, and the fact that they occur, that they
differ from one another, and that they follow each other, or are con-
catenated, is immediately given intuitively, together with the objects,
as something that can neither be reduced to anything else nor requires
reduction. This is the basic philosophical position that I consider req-
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uisite for mathematics and, in general, for all scientific thinking, un-
derstanding, and communication. [Hilbert, 1926, 376]

These objects are, for Hilbert, the signs. For the domain of contentual number
theory, the signs in question are sequences of strokes (“numerals”) such as

|, ||, |||, ||||| .

The question of how exactly Hilbert understood the numerals is difficult to answer.
What is clear in any case is that they are logically primitive, i.e., they are neither
concepts (as Frege’s numbers are) nor sets. For Hilbert, the important issue is
not primarily their metaphysical status (abstract versus concrete in the current
sense of these terms), but that they do not enter into logical relations, e.g., they
cannot be predicated of anything. In Bernays’s most mature presentations of
finitism [Bernays, 1930; Hilbert and Bernays, 1939], the objects of finitism are
characterized as formal objects which are recursively generated by a process of
repetition; the stroke symbols are then concrete representations of these formal
objects (see [Sieg, 2002]).

Sometimes Hilbert’s view is presented as if Hilbert claimed that the numbers are
signs on paper. It is important to stress that this is a misrepresentation, that the
numerals are not physical objects in the sense that truths of elementary number
theory are dependent only on external physical facts or even physical possibilities
(e.g., on what sorts of stroke symbols it is possible to write down). Hilbert [1926]

made too much of the fact that for all we know, neither the infinitely small nor
the infinitely large are actualized in physical space and time, yet he certainly held
that the number of strokes in a numeral is unbounded. It is also essential to the
conception that the numerals are sequences of one kind of sign, and that they are
somehow dependent on being grasped as such a sequence, that they do not exist
independently of our intuition of them. Only our seeing or using “||||” as a sequence
of 4 strokes as opposed to a sequence of 2 symbols of the form “||” makes “||||” into
the numeral that it is. This raises the question of individuation of stroke symbols.
An alternative account would have numerals be mental constructions. However,
Bernays denied also this, writing that “the objects of intuitive number theory, the
number signs, are, according to Hilbert, also not ‘created by thought’. But this
does not mean that they exist independently of their intuitive construction, to use
the Kantian term that is quite appropriate here” [Bernays, 1923, 226]. [Kitcher,
1976] proposes the view that, whatever the numerals are, the strokes on paper or
the stroke sequences contemplated by the mind merely represent the numerals.
According to Hilbert and Bernays, the numerals are given in our representation,
but they are not merely subjective “mental cartoons” (Kitcher’s term).

If we want [. . . ] the ordinal numbers as definite objects free of all
inessential elements, then in each case we have to take the mere schema
of the relevant figure of repetition [Wiederholungsfigur] as an object;
this requires a very high abstraction. We are free, however, to represent
these purely formal objects by concrete objects (“number signs”); these
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contain then inessential, arbitrarily added properties, which, however,
are also easily grasped as such. [Bernays, 1930, 244]

One version of this view would be to hold that the numerals are types of stroke-
symbols as represented in intuition. This is the interpretation that Tait [1981]

gives. At first glance, this seems to be a viable reading of Hilbert. It takes care
of the difficulties that the reading of numerals-as-tokens (both physical and men-
tal) faces, and it gives an account of how numerals can be dependent on their
intuitive construction while at the same time not being created by thought. The
reasoning that leads Tait to put forward his reading lies in several constraints that
Hilbert and Bernays put on the numerals. For instance, [Bernays, 1923, 159] writes
that “figures [i.e., numerals] are not shapes, they have a shape.” Thus it is the
shape of the numerals, and not the numerals themselves, which is supposed to be
independent of place and time, independent of the circumstances of production,
independent of inessential differences in execution, and capable of secure recogni-
tion in all circumstances [Hilbert, 1922b, 163]. Tait infers from this that identity
between numerals is type identity, and hence, that numerals should be construed
as types of stroke symbols.

Types are ordinarily considered to be abstract objects and not located in space
or time. Taking the numerals as intuitive representations of sign types might com-
mit us to taking these abstract objects as existing independently of their intuitive
representation. That numerals are “space- and timeless” is a consequence that al-
ready [Müller, 1923, 158] thought could be drawn from Hilbert’s statements, and
that was in turn denied by Bernays. The reason is that a view on which numerals
are space- and timeless objects existing independently of us would be committed
to them existing simultaneously as a completed totality, and this is exactly what
Hilbert is objecting to.

It is by no means compatible, however, with Hilbert’s basic thoughts to
introduce the numbers as ideal objects “with quite different determina-
tions from those of sensible objects,” “which exist entirely independent
of us.” By this we would go beyond the domain of the immediately
certain. In particular, this would be evident in the fact that we would
consequently have to assume the numbers as all existing simultane-

ously. But this would mean to assume at the outset that which Hilbert
considers to be problematic. [Bernays, 1923, 225–26]

This is not to say that it is incoherent to consider the numbers as being abstract
objects, only that the finitary viewpoint prohibits such a view. Bernays goes on
to say:

Hilbert’s theory does not exclude the possibility of a philosophical at-
titude which conceives of the numbers [but not the finitist’s numerals]
as existing, non-sensible objects (and thus the same kind of ideal exis-
tence would then have to be attributed to transfinite numbers as well,
and in particular to the numbers of the so-called second number class).
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Nevertheless the aim of Hilbert’s theory is to make such an attitude
dispensable for the foundation of the exact sciences. [Bernays, 1923,
226]

Another open question in this regard is exactly what Hilbert meant by “concrete.”
He very likely did not use the term in the same sense as it is used today, i.e., as
characteristic of spatio-temporal physical objects in contrast to “abstract” objects.
However, sign types certainly are different from full-fledged abstracta like pure sets
in that all their tokens are concrete. Parsons takes account of this difference by
using the term “quasi-concrete” for such abstracta. Tait, on the other hand, thinks
that even the tokens are not concrete physical objects, but abstract themselves.

Now what is the epistemological status of the finitary objects? In order to carry
out the task of providing a secure foundation for infinitary mathematics, access
to finitary objects must be immediate and certain. Hilbert’s philosophical back-
ground was broadly Kantian, as was Bernays’s, who was closely affiliated with the
neo-Kantian school of philosophy around Leonard Nelson in Göttingen. Hilbert’s
characterization of finitism often refers to Kantian intuition, and the objects of
finitism as objects given intuitively. Indeed, in Kant’s epistemology, immediacy is
a defining characteristic of intuitive knowledge. The question is, what kind of in-
tuition is at play? Mancosu [1998b] identifies a shift in this regard. He argues that
whereas the intuition involved in Hilbert’s early papers was a kind of perceptual
intuition, in later writings (e.g., [Bernays, 1928a]) it is identified as a form of pure
intuition in the Kantian sense. Hilbert [1931b, 266–267] later sees the finite mode
of thought as a separate source of a priori knowledge in addition to pure intuition
(e.g., of space) and reason, claiming that he has “recognized and characterized the
third source of knowledge that accompanies experience and logic.” Both Bernays
and Hilbert justify finitary knowledge in broadly Kantian terms (without how-
ever going so far as to provide a transcendental deduction), characterizing finitary
reasoning as the kind of reasoning that underlies all mathematical, and indeed,
scientific, thinking, and without which such thought would be impossible.9

The simplest finitary propositions are those about equality and inequality of
numerals. The finite standpoint moreover allows operations on finitary objects.
Here the most basic is that of concatenation. The concatenation of the numerals
|| and ||| is communicated as “2 + 3,” and the statement that || concatenated
with ||| results in the same numeral as ||| concatenated with || by “2 + 3 = 3 +
2.” In actual proof-theoretic practice, as well as explicitly in [Bernays, 1930;
Hilbert and Bernays, 1934], these basic operations are generalized to operations
defined by recursion, paradigmatically, primitive recursion, e.g., multiplication and
exponentiation. Roughly, a primitive recursive definition of a numerical operation
is one in which the function to be defined, f , is given by two equations

f(0,m) = g(m)

f(n′,m) = h(n,m, f(n,m)),

9See [Kitcher, 1976] and [Parsons, 1998] for more discussion on the metaphysics and episte-
mology of finitism, and [Sieg, 1999] for historical remarks on the development of finitism.
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where g and h are functions already defined, and n′ is the successor numeral
to n. Fraktur letters are used here, as in Hilbert’s writings, as meta-variables
for numerals. For instance, if we accept the functions g(m) = m (the constant
function) and h(n,m, k) = m + k as finitary, then the equations above define a
finitary function, in this case, multiplication f(n,m) = n × m.

Similarly, finitary judgments may involve not just equality or inequality but also
basic decidable properties, such as “is a prime.” This is finitarily acceptable as
long as the characteristic function of such a property is itself finitary: For instance,
the operation which transforms a numeral to | if it is prime and to || otherwise
can be defined by primitive recursion and is hence finitary. Such finitary proposi-
tions may be combined by the usual logical operations of conjunction, disjunction,
negation, but also bounded quantification. Hilbert [1926] gives the example of the
proposition that “there is a prime number between p + 1 and p! + 1” where p is a
certain large prime. This statement is finitarily acceptable since it “serves merely
to abbreviate the proposition” that either p + 1 or p + 2 or p + 3 or . . . or p! + 1 is
a prime.

The problematic finitary propositions are those that express general facts about
numerals such as that 1 + n = n + 1 for any given numeral n. It is problematic
because, as Hilbert puts it, it “is from the finitist point of view incapable of being

negated” [Hilbert, 1926, 378]. By this he means that the contradictory proposition
that there is a numeral n for which 1+n 6= n+1 is not finitarily meaningful. “One
cannot, after all, try out all numbers” [Hilbert, 1928, 470]. For the same reason, a
finitary general proposition is not to be understood as an infinite conjunction but
“only as a hypothetical judgment that comes to assert something when a numeral
is given” [Hilbert, 1926, 378]. Even though they are problematic in this sense,
general finitary statements are of particular importance to Hilbert’s proof theory,
since the statement of consistency of a formal system T is of such a general form:
for any given sequence p of formulas, p is not a derivation of a contradiction in T .

Even though in general existential statements are not finitarily meaningful, they
may be given finitary meaning if the witness is given by a finitary function. For
instance, the finitary content of Euclid’s theorem that for every prime p there is a
prime > p, is that given a specific prime p one can produce, by a finitary operation,
another prime > p (viz., by testing all numbers between p and p! + 1. This view
is discussed by Bernays [1930] and plays an important role in the uses Gentzen
[1936] and others make of proof theory.

3.2 Analyses of finitism

Hilbert’s substantial philosophical claims about the finitary standpoint are diffi-
cult to flesh out. For instance, Hilbert and Bernays both appeal to the role of
Kantian intuition for our apprehension of finitary objects (they are given in the
faculty of representation). Supposing one accepts this line of epistemic justifica-
tion in principle, it is plausible that the simplest examples of finitary objects and
propositions, and perhaps even simple cases of finitary operations such as concate-
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nations of numerals can be given a satisfactory account. However, it is unclear
exactly which more complex objects, propositions, and operations should be ad-
mitted as finitary, and how the account can be extended to cover them. This has
led to substantial debate since the 1920s about the nature of finitary reasoning
and its justification.

Of crucial importance to both an understanding of finitism and of Hilbert’s proof
theory is the question of what operations and what principles of proof should be
allowed from the finitist standpoint. That a general answer is necessary is clear
from the demands of Hilbert’s proof theory, i.e., it is not to be expected that
given a formal system of mathematics (or even a single sequence of formulas) one
can “see” that it is consistent (or that it cannot be a genuine derivation of an
inconsistency) the way we can see, e.g., that ||+ ||| = |||+ ||. What is required for
a consistency proof is an operation which, given a formal derivation, transforms
such a derivation into one of a special form, plus proofs that the operation in fact
succeeds in every case and that proofs of the special kind cannot be proofs of an
inconsistency. To count as a finitary consistency proof, the operation itself must
be acceptable from the finitist standpoint, and the proofs required must use only
finitarily acceptable principles.

Hilbert never gave a general account of which operations and methods of proof
are acceptable from the finitist standpoint, but only examples of operations and
methods of inference in contentual finitary number theory which he accepted as
finitary. Contentual induction was accepted in its application to finitary state-
ments of the hypothetical, general kind explicitly in [1922b]. Hilbert [1923, 1139]

said that intuitive thought “includes recursion and intuitive induction for finite
existing totalities,” and used exponentiation in an example in 1928. Bernays
[1930] explained how exponentiation may be understood as a finitary operation
on numerals. Hilbert and Bernays [1934] give the only general account of finitary
contentual number theory; according to it, operations defined by primitive recur-
sion and proofs using induction are finitarily acceptable. All of these methods, in
their application in the domain of numbers, can be formalized in a system known
as primitive recursive arithmetic (PRA), which allows definitions of functions by
primitive recursion and induction on quantifier-free formulas. However, neither
Hilbert nor Bernays ever claimed that only primitive recursive operations count
as finitary, and non-primitive recursive methods were used in ostensibly finitary
consistency proofs already in 1923 (see [Tait, 2002] and [Zach, 2003b]). These
include, in particular, the consistency proof of a formal system of number theory
corresponding to primitive recursive arithmetic in [Hilbert and Bernays, 1923],
and a stronger system in Ackermann’s dissertation [Ackermann, 1925].10

Although Hilbert and his collaborators used methods which go beyond the prim-
itive recursive and accepted them as finitary, it is still unclear whether they (a)
realized that these methods were not primitive recursive and (b) whether they

10Ackermann in fact used transfinite induction up to ωω
ω

to justify a non-primitive recursive
reduction procedure.
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would still have accepted them as finitary if they had.11 The conceptual issue
is which operations should be considered as finitary. Since Hilbert was less than
completely clear on what the finitary standpoint consists in, there is some leeway
in setting up the constraints, epistemological and otherwise, an analysis of finitist
operation and proof must fulfill. Hilbert characterized the objects of finitary num-
ber theory as “intuitively given,” as “surveyable in all their parts,” and said that
their having basic properties must “exist intuitively” for us. Bernays [1922, 216]

suggests that in finitary mathematics, only “primitive intuitive cognitions come
into play,” and uses the term “point of view of intuitive evidence” in connection
with finitism [Bernays, 1930, 250]. This characterization of finitism as primarily
to do with intuition and intuitive knowledge has been emphasized in particular by
Parsons [1998] who argues that what can count as finitary on this understanding
is not more than those arithmetical operations that can be defined from addition
and multiplication using bounded recursion. In particular, according to Parsons,
exponentiation and general primitive recursion are not finitarily acceptable.

The thesis that finitism coincides with primitive recursive reasoning has received
a forceful and widely accepted defense by Tait [1981]. Tait, in contrast to Parsons,
rejects the aspect of representability in intuition as the hallmark of the finitary;
instead he takes finitary reasoning to be “a minimal kind of reasoning supposed
by all nontrivial mathematical reasoning about numbers” and analyzes finitary
operations and methods of proof as those that are implicit in the very notion of
number as the form of a finite sequence. This analysis of finitism is supported
by Hilbert’s contention that finitary reasoning is a precondition for logical and
mathematical, indeed, any scientific thinking [Hilbert, 1931b, 267]. The crucial
difference between Tait’s conception of finitism and Parsons (as well as Hilbert’s
own) is that according to Tait there is no ultimate epistemological foundation for
finitism which yields the security of finitary reasoning for which Hilbert appealed
to intuition. Tait argues that

. . . no absolute conception of security is realized by finitism or any other
kind of mathematical reasoning. Rather, the special role of finitism
consists in the circumstance that it is a minimal kind of reasoning
presupposed by all nontrivial mathematical reasoning about numbers.
And for this reason it is indubitable in a Cartesian sense that there
is no preferred or even equally preferable ground on which to stand
and criticize it. Thus finitism is fundamental to number-theoretical
mathematics even if it is not a foundation in the sense Hilbert wished.
[Tait, 1981, 525]

Another interesting analysis of finitary proof, which, however, does not provide
as detailed a philosophical justification, was proposed by Kreisel [1960]. It yields
the result that exactly those functions are finitary which can be proved to be well-
defined in first-order arithmetic PA.12 Kreisel’s proposal makes use of the notions

11See Tait’s discussion in the Appendix to Chapters 1 and 2 in [Tait, 2005b].
12Kreisel [1970, Section 3.5] provides another analysis by focusing on what is “visualizable.”



Hilbert’s Program Then and Now 427

of formalizations of provability predicates and ordinal progressions of theories.
Kreisel argues that if Pr(pAq) has been recognized to be a provability predicate
for a partial formalization Σµ of finitary reasoning, and Pr(pA(0(x))q)13 is provable
in Σµ (and hence established by finitary means), then the finitist is entitled to also
accept A(x) as finitarily established. If that is the case, we may add A(x) as an
axiom to Σµ to obtain a new theory Σν which is also finitarily justified. On
Kreisel’s account, finitary provability coincides with the provability in some Σν so
obtained, starting from Σ0 = PRA. If some Σν proves ∃y A(x, y), for A(x, y) a
primitive recursive equation, then f(x) = the least y such that A(x, y), is finitarily
justified. Kreisel sketches a proof of the theorem that the functions so justified
are exactly those which are provably total in PA, and hence there are finitary
functions which are not primitive recursive.

Tait [1981, §13] also contains a discussion of Kreisel’s analysis. In order to
obtain a non-primitive recursive function on Kreisel’s account, we must properly
extend Σ0 since the provably total functions of Σ0 = PRA are just the primitive
recursive functions. So suppose we have that PRA proves the arithmetization of
the claim that ∃y A(0(x), y) is provable.14 This, according to Kreisel, justifies the
acceptance of f(x) as defined above as finitary, because a finitary proof of the
general fact that it is provable in PRA that f(x) is defined, together with the
acceptance of PRA as finitarily acceptable, amounts to a finitary proof that f(x)
is defined for all x. The weak point in this justification, according to Tait, is this:

For the finitist to recognize the validity of primitive recursive arith-
metic, he must recognize the general validity of definition of functions
by primitive recursion. But he cannot even formulate this since it
involves the notion of function.

Tait’s point here is that there is a significant difference between accepting each
primitive recursive definition individually as finitary, and accepting primitive re-
cursion in general as a finitarily valid principle. The finitist is able to do the
former, but not the latter. For to accept primitive recursion in general as a fini-
tarily valid principle of definition, one would either, as Tait puts it, need to invoke
the notion of a function (which is not a finitary object), or one needs a justification
for why, say, all primitive recursive terms are calculable for every argument — and
for this a finitary evaluation procedure for primitive recursive terms is necessary.
Such an evaluation procedure, however, cannot be primitive recursive. And prior
to the extension of PRA to include the new non-primitive recursive function f(x)
there is no reason to suppose that such an evaluation procedure exists. Although
Tait’s objection is directed at Kreisel’s analysis of finitary function, it of course
also raises doubts about Kreisel’s account of finitary proof.

The result is the same: finitary functions turn out to be just those provably total in PA.
13Here, x is a free variable, and pA(0(x))q is the function of x which computes pA(0′···′)q with

x occurrences of ′.
14In other words, there are primitive recursive functions h(x) and g(x) so that PRA proves

that g(x) codes a derivation in PRA of the formula pA(0(x), t)q, where t is the primitive recursive
term (containing only the free variable x) which is coded by h(x).
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3.3 Hilbert’s program and instrumentalism

Hilbert’s program has often been interpreted as an instrumentalist account of
mathematics. This reading relies on the distinction Hilbert makes between the
finitary part of mathematics and the non-finitary rest which is in need of grounding
(via finitary meta-mathematics). The finitary part Hilbert calls “contentual,” i.e.,
its propositions and proofs have content. The infinitary part, on the other hand,
is “not meaningful from a finitary point of view.” This distinction corresponds to
a distinction between formulas of the the axiomatic systems of mathematics for
which consistency proofs are being sought. Some of the formulas correspond to
contentual, finitary propositions: they are the “real” formulas. The rest are called
“ideal.” They are added to the real part of our mathematical theories in order to
preserve classical inferences such as the principle of the excluded middle for infinite
totalities, i.e., the principle that either all numbers have a given property or there
is a number which does not have it. This disjunction is not finitarily valid, as we
saw above. Hilbert first mentioned “ideal” propositions in [1926], although the
distinction was hinted at in [1923]. In the latter paper, Hilbert presented a formal
system of quantifier-free number theory about which he says that “the provable
formulae we acquire in this way all have the character of the finite” (1139). Then
the transfinite axioms (i.e., quantifiers) are added to simplify and complete the
theory (1144). Here he draws the analogy with the method of ideal elements: “In
my proof theory, the transfinite axioms and formulae are adjoined to the finite
axioms, just as in the theory of complex variables the imaginary elements are
adjoined to the real, and just as in geometry the ideal constructions are adjoined
to the actual” (ibid). When Hilbert, in [1926], explicitly introduces the notion
of an ideal proposition, and in [1928], when he first speaks of real propositions in
addition to the ideal, he is quite clear that the real part of the theory consists only
of decidable, variable-free formulas. They are supposed to be “directly capable
of verification” — akin to propositions derived from laws of nature which can be
checked by experiment [Hilbert, 1928, 475].15 It is this extension of the real part
of the theory by the ideal, infinitary part that is in need of justification by a
consistency proof:

For there is a condition, a single but absolutely necessary one, to which
the use of the method of ideal elements is subject, and that is the proof

of consistency ; for, extension by the addition of ideals is legitimate
only if no contradiction is thereby brought about in the old, narrower
domain, that is, if the relations that result for the old objects whenever
the ideal objects are eliminated are valid in the old domain. [Hilbert,
1926, 383]

Weyl [1925] described Hilbert’s project as replacing meaningful mathematics by a
meaningless game of formulas. He noted that Hilbert wanted to “secure not truth,

15This reading is not universally accepted. [Detlefsen, 1990], for instance, considers the real
formulas to also include the general formulas, i.e., formulas with free variables. See [Zach, 2004]

for a defense of the reading given here.
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but the consistency of analysis” and suggested a criticism that echoes an earlier
one by Frege: Why should we take consistency of a formal system of mathematics
as a reason to believe in the truth of the pre-formal mathematics it codifies?
Is Hilbert’s meaningless inventory of formulas not just “the bloodless ghost of
analysis”? Weyl suggested a solution:

[I]f mathematics is to remain a serious cultural concern, then some
sense must be attached to Hilbert’s game of formulae, and I see only
one possibility of attributing to it (including its transfinite compo-
nents) an independent intellectual meaning. In theoretical physics we
have before us the great example of a [kind of] knowledge of com-
pletely different character than the common or phenomenal knowledge
that expresses purely what is given in intuition. While in this case
every judgment has its own sense that is completely realizable within
intuition, this is by no means the case for the statements of theoreti-
cal physics. In that case it is rather the system as a whole that is in
question if confronted with experience. [Weyl, 1925, 140]

The analogy with physics is striking. Hilbert himself used a similar analogy in
[1928]. He there suggested that consistency is not the only virtue ideal mathe-
matics has: transfinite inference simplifies and abbreviates proofs, “brevity and
economy of thought are the raison d’être of existence proofs” (476). The formal
system of transfinite logic is not arbitrary: “This formula game is carried out
according to certain definite rules, in which the technique of our thinking is ex-
pressed. . . The fundamental idea of my proof theory is none other than to describe
the activity of our understanding, to make a protocol of the rules according to
which our thinking actually proceeds” (ibid).

Although these remarks are suggestive, they do not force an interpretation of
Hilbert as an instrumentalist. Most commentators have taken this reading (includ-
ing [?; Giaquinto, 1983; Sieg, 1990], and in particular [Detlefsen, 1986]), in that
they interpret Hilbert’s explanation that the ideal propositions “have no meaning
in themselves” [Hilbert, 1926, 381] as claiming that classical mathematics is a mere

instrument, and that statements of transfinite mathematics have no truth value.
To the extent that this is accurate, however, it must be understood as a method-
ological instrumentalism: A successful execution of the proof-theoretic program
would show that one could pretend as if mathematics was meaningless.16 The
analogy with physics is therefore not: transfinite propositions have no meaning
just as propositions involving theoretical terms have no meaning, but: transfinite
propositions require no direct intuitive meaning just as one does not have to di-
rectly see electrons in order to theorize about them. Hallett [1990], taking into
account the 19th century mathematical background from which Hilbert came as
well as published and unpublished sources from Hilbert’s entire career (in particu-
lar [Hilbert, 1992], the most extensive discussion of the method of ideal elements)
comes to the following conclusion:

16On this point see also [Sieg, 1999], esp. B3 and the conclusion, and [Sieg, 2002].
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[Hilbert’s treatment of philosophical questions] is not meant as a kind
of instrumentalist agnosticism about existence and truth and so forth.
On the contrary, it is meant to provide a non-skeptical and positive
solution to such problems, a solution couched in cognitively accessible
terms. And, it appears, the same solution holds for both mathematical
and physical theories. Once new concepts or “ideal elements” or new
theoretical terms have been accepted, then they exist in the sense in
which any theoretical entities exist. [Hallett, 1990, 239]

This conclusion is in line with Weyl’s assessment in [1928]. When Weyl eventually
turned away from intuitionism,17 he emphasized the purpose of Hilbert’s proof
theory, not to turn mathematics into a meaningless game of symbols, but to turn
it into a theoretical science which codifies scientific (mathematical) practice.

The reading of Hilbert as an instrumentalist goes hand in hand with a reading
of the proof-theoretic program as a reductionist project. The instrumentalist read-
ing interprets ideal mathematics as a meaningless formalism, which simplifies and
“rounds out” mathematical reasoning. But a consistency proof of ideal mathemat-
ics by itself does not explain what ideal mathematics is an instrument for. Thus,
commentators have sought to elaborate on Hilbert’s discussion of consistency by
pointing out that consistency proofs do not just establish that ideal theories are
free from formal contradictions, but that they establish more than mere consis-
tency. They establish conservativity of the ideal over the real part of the theory,
in the following sense: If the ideal theory proves a real statement, then the real
statement is also provable by real, finitary means. Such reductivist projects were
common in the philosophy of science at the time, as was pointed out by Giaquinto
[1983]. A conservativity proof justifies the use of transfinite mathematics: it is not
only internally consistent, but it proves only true intuitive propositions.

On this picture, classical mathematics is to be formalized in a system which
includes formalizations of all the directly verifiable (by calculation) propositions
of contentual finite number theory. The consistency proof should show that all real
propositions which can be proved by ideal methods are true, i.e., can be directly
verified by finite calculation. Actual proofs such as the ε-substitution procedure
are of such a kind: they provide finitary procedures which eliminate transfinite
elements from proofs of real statements. In particular, they turn putative ideal
derivations of 0 = 1 into derivations in the real part of the theory; the impossibility
of such a derivation establishes consistency of the theory. Indeed, Hilbert saw that
something stronger is true: not only does a consistency proof establish truth of
real formulas provable by ideal methods, but it yields finitary proofs of finitary
general propositions if the corresponding free-variable formula is derivable by ideal
methods [Hilbert, 1928, 474].

It bears pointing out that Hilbert never clearly articulated conservativity of the
ideal over the real for finitary general statements as an aim of his foundational
project. There are contemporary commentators, e.g., von Neumann [1931] who

17For the reasons for Weyl’s rejection of intuitionism, see [Mancosu and Ryckman, 2002].
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attribute to Hilbert an interest in conservativity proofs, but it was only Bernays in
the Grundlagen der Mathematik who pointed out that consistency proofs them-
selves established not only the truth of variable-free formulas provable by ideal
methods, but also of free-variable theorems. In this context, Bernays used the
term ‘verifiable’ (verifizierbar): a free-variable formula A(x) is verifiable if each
numerical instance A(z) is (finitarily) true. The proof transformation methods
used in consistency proofs for systems of arithmetic in [Hilbert and Bernays, 1934,
248, 298] can be applied not only to putative proofs of 0 = 1, but generally to
proofs of formulas with free-variables. If we have a proof of A(x), then the fol-
lowing method constitutes a finitary proof that, for any z, A(z) is true. From the
derivation of A(x) we obtain a derivation of A(z) by substitution. The procedure
given in the consistency proof transforms this derivation into a variable-free deriva-
tion of A(z) in the real part of the theory, which codifies a finitary calculation that
A(z) is true.

Kreisel was most influential in promoting the interpretation of the aim of
Hilbert’s program as an attempt to establish conservativity of the ideal theory
for finitary general propositions all along. Kreisel [1951] cites Bernays’s results;
but in [Kreisel, 1960] and later, he instead points to the argument in [Hilbert,
1928, 474]. This argument, unlike Bernays’s, does not rely on a particular form
of the consistency proof. It assumes only that a finitary consistency proof for an
ideal theory is available. Assume there is a derivation of A(x). Now suppose that
for a given z, A(z) is not true. Then ¬A(z) would be true,18 and so there would be
a derivation of ¬A(z) in the ideal theory (which includes all real theorems). But
from the derivation of A(x) we obtain, by substitution, a derivation of A(z), and
hence a contradiction. Since we assume that we have a finitary consistency proof
of T , this cannot be the case. Hence, A(z) must be true.

3.4 Hilbert’s program and Gödel’s incompleteness theorems

Gödel announced the second incompleteness theorem in an abstract published in
October 1930: no consistency proof of systems such as Principia, Zermelo-Fraenkel
set theory, or the systems investigated by Ackermann and von Neumann is possible
by methods which can be formulated in these systems. In the full version of his
paper, Gödel [1931] left open the possibility that there could be finitary methods
which are not formalizable in these systems and which would yield the required
consistency proofs. Bernays’s first reaction in a letter to Gödel in January 1931
was likewise that “if, as von Neumann does, one takes it as certain that any and
every finitary consideration may be formalized within the system P — like you,
I regard that in no way as settled — one comes to the conclusion that a finitary
demonstration of the consistency of P is impossible” [Gödel, 2003a, 87].

Through a careful (“Gödel”-) coding of sequences of symbols (formulas, proofs)
by numbers, Gödel showed that in theories T which contain a sufficient amount

18This inference uses tertium non datur, but only regarding the unproblematic finitary state-
ment A(z).
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of arithmetic, it is possible to produce a formula Pr(x, y) which expresses that x

is (the code of) a proof of (the formula with code) y. Specifically, if p0 = 1q is
the code of the formula 0 = 1, then ConT ≡ ∀x¬Pr(x, p0 = 1q) expresses that T

is consistent (no number is the code of a derivation in T of 0 = 1). The second
incompleteness theorem (G2) says that under certain assumptions about T and
the coding apparatus, T does not prove ConT . Now suppose there were a finitary
consistency proof of T . The methods used in such a proof would presumably be
formalizable in T . (“Formalizable” means that, roughly, if the proof uses a finitary
operation f on derivations which transforms any derivation d into a derivation
f(d) of a simple form; then there is a formula F (x, y) so that, for all derivations
d, T ⊢ F (pdq, pf(d)q).) The consistency of T would be finitarily expressed as the
general hypothetical claim that, if d is any given sequence of symbols, d is not
a derivation in T of the formula 0 = 1. The formalization of this proposition is
the formula ¬Pr(x, p0 = 1q) in which the variable x occurs free. If there were a
finitary proof of the consistency of T , its formalization would yield a derivation in
T of ¬Pr(x, p0 = 1q), from which ConT can be derived in T by simple universal
generalization on x. Yet, a derivation of ConT in T is ruled out by G2.

Gödel and Bernays initially thought that the difficulty for the consistency proof
of Peano arithmetic PA could be overcome by employing methods which, although
not formalizable in PA, are nonetheless finitary. Bernays did not seem to have any
particular candidates for such a method in mind, and he thought that all methods
which were up to then employed in finitary considerations were in fact formalizable
in PA. Another option he considered was an extension of the notion of an axiomatic
theory by a finitary version of the ω-rule proposed by Hilbert [1931a; 1931b]. Such
theories might avoid the impact of Gödel’s incompleteness theorem since they do
not satisfy the conditions of the incompleteness theorems: the set of axioms would
not be decidable. It is fair to say, however, that since about 1934 it has been
almost universally accepted that the methods of proof accepted as finitary prior
to Gödel’s results are all formalizable in PA and that the incompleteness theorems
do show that there can be no finitary consistency proofs for axiomatic theories of
the kind originally considered by Hilbert.

The reaction to the incompleteness theorems in the Hilbert school then focused
on extensions of the original finitary standpoint in which consistency proofs for
substantial theories like PA can be carried out. Such extensions have been pro-
posed and defended on broadly finitary grounds, e.g., Gentzen [1936] defended
the use of transfinite induction up to ε0 in his consistency proof for PA as “in-
disputable,” and Takeuti [1987] gave another defense. In the Gentzen-Schütte
tradition of proof theory by ordinal analysis, the proof methods used to give con-
sistency proofs are all of this sort. To wit, one uses transfinite induction on ordinal
notation systems which name larger and larger ordinals. The more complicated
the ordering, the more difficult it is to see that the induction principle in question
is finitarily justified. Another extension of the finitary standpoint is due to Gödel
[1958].



Hilbert’s Program Then and Now 433

Smoryński [1977], following earlier suggestions by Kreisel, has argued that al-
ready the first incompleteness theorem defeats Hilbert’s program. This argument
uses the fact that a finitary consistency proof of an ideal theory T implies the
conservativity of T over finitary, real mathematics for general finitary statements
of the form A(x) (with free variable x). Now Gödel’s first incompleteness theorem
(G1) states that for any sufficiently strong, consistent formal theory S there is a
sentence GS which is not derivable in S if S is consistent. GS is a general real
sentence. Consider a theory T which formalizes ideal mathematics and contains
the theory S, which formalizes real mathematics, as a subtheory. S satisfies the
conditions of G1 and hence S does not derive GS . Yet T , being a formalization
of all of mathematics, proves (via a formalization of G1) that if S is consistent,
then GS , but it also proves the consistency (indeed, the soundness) of S. Hence
T proves GS . Thus, we have a true real statement which is provable in ideal
mathematics but not in real mathematics.19

4 HILBERT’S PROGRAM NOW

4.1 Detlefsen’s Hilbertian instrumentalism

Detlefsen [1979; 1986; 2001] has proposed a wide-ranging instrumentalist account
of mathematics based on Hilbert’s program which is designed to escape the difficul-
ties that Gödel’s incompleteness theorems poses for Hilbert’s original consistency
project. The project has several parts: Detlefsen [1986] first gives a detailed anal-
ysis and defense of a general instrumentalist view of mathematics along Hilbertian
lines. This includes an analysis of the epistemic import of ideal proofs of real
statements, which answers a question that was hardly addressed by Hilbert, either
in his mature writings in the 1920s or in his exchange with Frege on formalism
and consistency. This is the question of how manipulation of meaningless strings
of symbols can ever lead to knowledge (of finitary truths). Detlefsen then ana-
lyzes the characteristics of formal systems of ideal mathematics qua instruments.
On Detlefsen’s view, even though, say, full set theory is commonly accepted as a
formalization of infinitary mathematics, only parts of set theory are in fact instru-
mentally useful. In particular, (1) ideal proofs of real theorems which are more
complex than any real proof of the same theorem do not yield an instrumental
advantage, and hence are not instrumentally useful; and (2) ideal proofs which are
too long or complex to be comprehended by humans, and hence never play a role
in actual mathematical reasoning, are also of no instrumental value. A proof theo-
retic justification of instrumental mathematics, i.e., the proof of the conservativity
of the ideal theory over real mathematics, is only required, so Detlefsen, for the
instrumentally useful part. Detlefsen introduces the term “Hilbertian residue” for
that part of ideal mathematics that is instrumentally useful and hence in need of

19The argument appeals to a number of perhaps contentious assumptions, such as that T

proves the soundness of S. For a critique, see [Detlefsen, 1990].
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proof-theoretic justification. On his view, then, we only need a consistency proof
for the Hilbertian residue, not for all of ideal mathematics.

This move from a required justification for all of infinitary mathematics to a
justification of only the Hilbertian residue is one step toward Detlefsen’s defense of
instrumentalism against Gödel’s incompleteness theorems. For the incompleteness
theorems only apply under certain conditions, e.g., only when the theory in ques-
tion contains enough basic arithmetic to carry out Gödel coding, formalization of
a proof predicate, and to prove the diagonal lemma. The Hilbertian residue of a
theory, however, need not contain a sufficiently strong arithmetical subtheory be-
cause of (1) above. This provides part of Detlefsen’s defense against the challenge
posed by the first incompleteness theorem [Detlefsen, 1986, Appendix]. Detlefsen
[1990] also argues that instrumentalism escapes the argument from G1 by denying
that ideal mathematics must be conservative over the real part. According to him,
Hilbertian instrumentalism requires only that the ideal theory not prove anything
which is in conflict with the real theory; it is not required that all its real theorems
are also provable by real means. If this defense is successful, Detlefsen is right to
claim that not G1, but only G2 poses a real challenge to instrumentalism.

Detlefsen presents several lines of defense against the argument from G2, one
of which [1979] echoes [Hilbert, 1931b]. If a version of the ω-rule is finitarily
acceptable, then we would have found a finitarily acceptable method of proof which
is not capable of formalization. Hence, real mathematics is not a subtheory of the
ideal instrument, but this was an assumption necessary to draw the conclusion that
there can be no real consistency proof of the ideal theory. Ignjatovič [1994] raised
serious doubts about the acceptability of Detlefsen’s version of the ω-rule, however.
Detlefsen’s other argument against the common interpretation of Gödel’s second
theorem focuses on the notion of formalization. That the particular formalization
of “T is consistent” by Gödel’s formula ConT is not provable does not imply that
there could not be other formulas, which are provable in T , and which have as much
right to be called “formalizations of the consistency of T .” These rely on different
formalizations of the provability predicate PrT than the standard ones. It is known
that formalized consistency statements are unprovable whenever the provability
predicate obeys certain general derivability conditions. Detlefsen argues that these
conditions are not necessary for a predicate to count as a genuine provability
predicate, and indeed there are provability predicates which violate the provability
conditions and which give rise to consistency formulas which are provable in their
corresponding theories. These, however, depend on nonstandard conceptions of
provability which would likely not have been accepted by Hilbert. One quite basic
example is the use of Rosser provability instead of ordinary provability. On this
approach, a derivation of a formula A only counts as a proof if no derivation
with smaller Gödel number is a derivation of ¬A. If Prov(x, pAq) is the standard
formalization of “x is the code of a derivation of the formula A,” then the Rosser
provability predicate is given by

RPr(pAq) ≡ ∃x(Prov(x, pAq) ∧ ∀y < x¬Prov(y, p¬Aq)).
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For this provability predicate, ¬RPr(p0 = 1q) is provable in, e.g., first-order Peano
arithmetic. Provability of a formula A, however, is no longer just a matter of
deriving it from the axioms; one also has to check that all shorter derivations
do not end in ¬A. Other “consistency minded” theories which prove their own
consistency are discussed, e.g., in [Jeroslow, 1971; Jeroslow, 1975] and especially
[Visser, 1989]. The Rosser provability predicate is studied in, e.g., [Guaspari and
Solovay, 1979] and [Arai, 1990].20

Another interesting aspect of Detlefsen’s approach to instrumentalism and
Hilbert’s program related to technical work in proof theory is the emphasis on
instrumental utility of ideal proofs. Hilbert, as we saw above, himself noted the
theoretical and cognitive advantage of ideal methods, such as increased simplicity
of proofs. In Detlefsen’s instrumentalism, such considerations take center stage.
Even if it is conceded that Gödel’s theorems call the success of instrumentalism in
its most general form into question, it would still be of substantial interest to study
restricted cases of conservative extensions of real mathematics which are instru-
mentally useful. To flesh out the notion of “instrumental usefulness,” one obvious
characteristic of formal proofs is length. For instance, one might take an ideal
theory to be useful if its proofs are substantially shorter than proofs in, say, PRA

of the same theorems. This question is amenable to precise proof theoretical study.
Caldon and Ignjatovič [2005] prove some related, but on the whole, negative re-
sults: The subsystem of first-order arithmetic IΣ1 in which induction is limited to
Σ1 formulas has super-exponential “speed-up” over PRA. This indicates that us-
ing induction over non-finitary formulas (Σ1 formulas have unbounded existential
quantifiers) yields significantly shorter proofs than proofs without. However, more
comprehensive theories (RCA, WKL, see below) which contain some second-order
apparatus, do not significantly shorten proofs vis-à-vis IΣ1.

4.2 Generalized Hilbert programs

The work of Gentzen on consistency proofs for mathematical theories using meth-
ods that go beyond the strictly finitary marks the beginning of an important line
of proof-theoretic research. As outlined in 2.3 above, Gentzen’s approach was to
retain the aim of Hilbert’s program, viz., to give consistency proofs for strong
mathematical theories by restricted means. Because of Gödel’s incompleteness
theorems, these restricted means are necessarily not themselves formalizable in
the theories whose consistency is established by them. Nevertheless, they retain a
constructive character, and attempts have been made to justify them on finitary
grounds.

The consistency proof of Gentzen [1936], as discussed above, uses the principle
of transfinite induction up to ε0 in order to establish the consistency of first-
order Peano arithmetic. Gentzen’s use of a system of notations for ordinals less

20For technical background, discussion of intensional provability predicates and examples, see
[Feferman, 1960]. For discussion, see also [Resnik, 1974b], [Auerbach, 1985; Auerbach, 1992] and
[Steiner, 1991].
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than ε0, and the proof of the termination of a reduction procedure for derivations
in PA based on induction on these ordinal notations, provide the model for the
proof theoretic analysis of axiomatic systems along these lines. In order to give
an “ordinal analysis” of a theory T , one typically produces an ordinal notation
system for ordinals less than some ordinal α such that for every β < α, the
formalization TI (β) of the transfinite induction principle for β is provable in T .
In practice, using transfinite induction up to α itself and otherwise only strictly
finitary methods, one can prove the consistency of T . The fact that induction up
to ε0 establishes the consistency of PA, together with the result of [Gentzen, 1943]

that shows that for all β < ε0, PA proves TI (β) for all β < ε0 constitutes an
ordinal analysis of PA, and we say that ε0 is the proof theoretic ordinal of PA.

Proof theory in the tradition of Gentzen and Schütte as well as Takeuti has
focused on such ordinal analyses of theories of increasing strength. In recent work,
Rathjen [2005b; 2005a] has pushed the boundaries of this approach in giving an
ordinal analysis of a very strong subsystem of analysis called Π1

2-comprehension.21

The consistency proofs in this tradition are, for the most part, based on the ap-
proach of [Schütte, 1960], which uses a variant of Gentzen’s formalization using
infinitary derivations. A second tradition has pursued ordinal analysis using ex-
tensions of Ackermann’s ε-substitution method [1940], for examples see [Mints and
Tupailo, 1999] and [Arai, 2003].

Although generalized Hilbert programs in this tradition have certainly produced
important mathematical work, its philosophical underpinnings are thin. Takeuti
[1987] attempted to give a finitary justification for the proof theoretic ordinal ε0,
but it is unclear to what extent more complex ordinal notation systems are finitar-
ily acceptable. Even if one concedes, as, e.g., Schütte does, that the consistency
proofs in question are constructive (although no longer strictly finitary), it is still
unclear what the philosophical significance of the technical results is. Feferman
[1988, 366] offers this assessment:

[A]s the systems of ordinal notation used for consistency proofs of
stronger and stronger theories become more and more complicated,
the significance to noncognoscenti of what is thereby accomplished de-
creases in inverse proportion. Thus, on the one hand, to say that one
has obtained a constructive consistency proof of a theory T — without
saying anything more — is too general to be informative; and, on the
other hand, to say that the proof has been carried out by transfinite
induction on a certain complicated recursive ordering for some very
large ordinal tells us nothing about what constructive principles are
involved in the proof of this well-ordering.22

Another important proof-theoretical approach in which the analysis of systems
of classical mathematics is accomplished using a generalization of the finitary

21See [Pohlers, 1987] for a survey of the work in the Schütte school, and [Pohlers, 1998] for a
more recent technical survey.

22For a more forceful criticism of proof theory in this tradition, see [Kreisel, 1976].
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standpoint is that of functional interpretations. The model for this approach
is Gödel’s Dialectica interpretation [1958]. The Dialectica interpretation shows
how one can reduce an infinitary theory T (in this case, intuitionistic first-order
arithmetic) to a quantifier-free theory F .23 An ordinal analysis of a theory does
something similar, for instance, one can view Gentzen’s consistency proof as re-
ducing Peano arithmetic to a quantifier-free theory (PRA) extended by a certain
infinitary induction principle (TI (ε0)). In the case of functional interpretations,
the quantifier-free theory F is also not strictly finitary: it does not just mention
finite objects but also certain infinitary objects, viz., functionals of finite type. A
functional interpretation can be seen as a reduction of the infinitary theory T to
the theory of functionals F in question. The approach using functional interpre-
tations has the following advantage over the Gentzen-Schütte approach. It is a
consequence of the reduction of T to F that every recursive function which can
be proved to be total in T is represented by a term of F . Because the functionals
of F in practice characterize natural classes of functions, a functional interpreta-
tion yields an appealing analysis of the computational content of F . Moreover, the
conceptual import of the reduction is more apparent than in the case of ordinal
analysis: already in the case of PA, Gödel’s functionals of finite type provide a
much clearer account of the character of the constructive methods appealed to
than induction up to ε0.

24

4.3 Relativized Hilbert programs

A philosophically more satisfactory continuation of Hilbert’s program in proof
theoretic terms has been suggested by Kreisel [1954; 1968; 1983] and has been
elaborated especially by Feferman. This work proceeds from a wider conception of
Hilbert’s program as an attempt to justify ideal mathematics by restricted means.
On this conception, the aim of Hilbert’s proof theory was to show that, at least as
far as a certain class of real propositions is concerned, ideal mathematics does not
go beyond real mathematics, and in this sense finitary mathematics is a foundation
for ideal mathematics. A finitary consistency proof of the kind envisaged by Hilbert
would have accomplished this for all of classical mathematics.

The scope of the foundational project, however, need not necessarily be all
of higher mathematics. So-called relativized Hilbert programs are projects in
which one considers certain fragments of higher mathematics as the theory for
which a foundation is sought (and, indeed, also theories stronger than finitism
as candidates for the reducing theory, e.g., predicative theories). Examples of
these are Feferman’s work on explicit mathematics and predicative subsystems
of analysis, and to some extent also the Friedman-Simpson program of reverse
mathematics (see below). What is common to these approaches to mathematical

23Via the interpretation of classical arithmetic in intuitionistic arithmetic [Gentzen, 1933;
Gödel, 1933], the Dialectica interpretation also yields a functional interpretation of classical
arithmetic.

24For an excellent survey of this approach, see [Avigad and Feferman, 1998].
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foundations is that they concentrate on so-called proof-theoretic reductions of
systems of classical mathematics to more restricted systems. The reduction is
carried out using finitist means, and therein lies its philosophical significance.

A foundational reduction in Feferman’s sense [1988; 1993a] is accomplished if
it can be shown that a body of mathematics which is justified by a foundational
framework F1 (e.g, finitary, constructive, predicative, infinitary, set-theoretic) can
already be justified, in a certain sense, in a weaker, or stricter foundational frame-
work F2. This is in general not possible in a wholesale fashion, however, partial
foundational reductions can and have been achieved. Suppose a theory T1 is justi-
fied by a foundational framework F1, and a theory T2 by a weaker framework F2.
A proof theoretic reduction of T1 to T2 (conservative for Φ) is a partial recursive
function f such that

1. whenever x is (the code of) a proof in T1 of a formula (with code) y in Φ,
then f(x) is (the code of) a proof of y in T2, and

2. T2 proves the formalization of (1).

If there is such a function f , we write T1 ≤ T2[Φ]. Now if T1 is directly justified by
a foundational framework F1, and T2 by F2, then, so Feferman, a proof-theoretic
reduction that establishes T1 ≤ T2[Φ] is a partial foundational reduction of F1

to F2. Clause (2) in the definition ensures that the reduction (the function f)
itself is justified by the weaker framework F2. In the reductions achieved in prac-
tice, it turns out that f is actually primitive recursive and the formalization of
(1) can even be proved in primitive recursive arithmetic PRA. Since PRA is di-
rectly justified by the finitary framework, such partial foundational reductions are
therefore all finitarily justified. Feferman’s main philosophical conclusion from
the possibility of giving such foundational reductions is this: The main argument
for set-theoretical realism is the Quine-Putnam indispensability argument, which
proceeds from the premises that set-theory is indispensable to science. Feferman
has shown, first, that much, if not all, of scientifically applicable mathematics can
actually be formalized in much weaker systems (e.g., Feferman’s system W , which
is justified by a predicative foundational framework), and second, that predicative
mathematics can be reduced to the countably infinite (in the sense that there is
a partial foundational reduction of predicative mathematics to countably infinite
mathematics, given by a proof-theoretic reduction of W to Peano Arithmetic PA).
He concludes that,

even if one accepts the indispensability argument, practically nothing
philosophically definite can be said of the entities which are then sup-
posed to have the same status — ontologically and epistemologically
— as the entities of natural science. That being the case, what do the
indispensability arguments amount to? As far as I’m concerned, they
are completely vitiated. [Feferman, 1993b]

Independently of the question of mathematical realism and of the scope and force of
the indispensability arguments, proof-theoretic reductions give precise answers to
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questions of the relation between foundational frameworks. Since a proof-theoretic
reduction of T1 to T2 also yields a consistency proof of T1 in T2 (i.e., a relative con-
sistency result), establishing a proof-theoretic reduction also provides a solution to
Hilbert’s program relativized to T1 and T2. Feferman summarizes the importance
of proof-theoretic reductions thus:

In general, the kinds of results presented here serve to sharpen what is
to be said in favor of, or in opposition to, the various philosophies of
mathematics such as finitism, predicativism, constructivism, and set-
theoretical realism. Whether or not one takes one or another of these
philosophies seriously for ontological and/or epistemological reasons,
it is important to know which parts of mathematics are in the end
justifiable on the basis of the respective philosophies and which are
not. The uninformed common view — that adopting one of the non-
platonistic positions means pretty much giving up mathematics as we
know it — needs to be drastically corrected, and that should also
no longer serve as the last-ditch stand of set-theoretical realism. On
the other hand, would-be nonplatonists must recognize the now clearly
marked sacrifices required by such a commitment and should have well-
thought out reasons for making them. [Feferman, 1993a]

Proof theorists have obtained a number of such results, including reductions of
theories which on their face require a significant amount of ideal mathematics for
their justification (e.g., subsystems of analysis) to finitary systems.25

The program of so-called reverse mathematics developed by, in particular, Fried-
man and Simpson, is another continuation of Hilbert’s program. In the face of
Gödel’s results showing that not all of classical mathematics can be reduced to
the finitary, they seek to answer the question: how much of classical mathematics
can be so reduced? Reverse mathematics aims to give a precise answer to this
question by investigating which theorems of classical mathematics are provable
in weak subsystems of analysis which are reducible to finitary mathematics (in
the sense discussed above). A typical result is that the Hahn-Banach theorem
of functional analysis is provable in a theory known as WKL0 (for “weak König
lemma”); WKL0 is proof-theoretically reducible to PRA for Π0

2 sentences (i.e.,
sentences of the form ∀x∃y A(x, y).26

Reverse mathematics in this tradition is primarily concerned with infinitary
theories, e.g., subsystems of analysis. Gödel’s theorems show, however, that not
even all truths of first-order number theory are provable in Peano arithmetic, and
hence that not even the domain of all arithmetical truths can be given a foun-
dation on finitary principles. This suggests the questions of whether there are
“mathematically interesting” statements of number theory which are not provable

25For a discussion of the philosophical significance of such proof theoretic reductions, see
[Feferman, 2000] and [Hofweber, 2000].

26See [Simpson, 1988] for an overview, [Simpson, 1999] for a technical introduction to reverse
mathematics, and also the collection [Simpson, 2005].
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in systems that can be reduced to the finitary. The most celebrated result in this
regard is the proof by Paris and Harrington [1977] that a version of the finite
Ramsey theorem is not provable in Peano arithmetic. However, this and other
examples of independent number theoretic statements are constructed specifically
to be independent of Peano arithmetic. It turns out that a great many “ordinary”
number theoretic results are provable even in weak fragments of first-order number
theory, and this has led Friedman to conjecture that “every theorem published in
the Annals of Mathematics whose statement involves only finitary mathematical
objects (i.e., what logicians call an arithmetical statement) can be proved in ele-
mentary arithmetic.” (Here, elementary arithmetic is a very weak theory which
can be proved consistent by primitive recursive methods.) Avigad [2003] gives an
excellent survey of the issues and results related to this conjecture and places it
in the philosophical context of Hilbert’s program.27

The results surveyed in this section are all natural continuations of Hilbert’s
original ideas. A central aspect of recent proof-theoretical investigations and
of Hilbert’s original program alike is that they study formalized systems using
metamathematical tools with the aim of understanding the structure and con-
tent of these systems. Hilbert’s original consistency project, the conservativity
project that Kreisel and others interpret Hilbert as having been engaged in, as
well as reductive proof theory are all examples of this, and this is also part of
the reason why many practicing proof theorists see themselves as still working
on Hilbert’s program. Ordinal analysis, functional interpretations, proof theoretic
reductions and reverse mathematics are only some of the most prominent areas
of proof theory, and those most explicitly situated in the tradition of Hilbert’s
program. Many other areas of proof theory other than those directly concerned
with consistency and foundational reductions of theories are related to the aims
of Hilbert’s program, e.g., the no-counterexample interpretation [Kreisel, 1951;
Tait, 2005a] and work on the structure and complexity of formal proofs more
generally [Pudlák, 1998].

5 CONCLUSION

Although it has been a commonplace in the literature on the philosophy of math-
ematics and logic from 1950 onward that Hilbert’s program has not only been
“killed” by Gödel’s incompleteness theorems but that it was over-ambitions if not
ill-conceived from the start, in the current literature a more positive evaluation
has emerged. This is in large part due to the attention which unpublished writings
in the Hilbert school (especially lecture notes to Hilbert’s courses) have received
recently, as well as to the availability of more of the published writings in English
translation (e.g., in [Ewald, 1996] and [Mancosu, 1998a]). But it is also due to a
growing recognition that the common characterizations of Hilbert’s program are

27See also [Raatikainen, 2003] on the current status of the various branches of proof-theoretic
research relating to Hilbert’s program.
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caricatures, and to a clearer philosophical engagement with the recent results of
proof theory. For instance, Ramsey’s characterization that, according to Hilbert,
“Mathematics proper is thus regarded as a sort of game, played with meaning-
less marks on paper rather like noughts and crosses” [Ramsey, 1926, 231], and
the view that Hilbert held a naive formalist and instrumentalist view of mathe-
matics, have been criticized by various writers. It remains to be seen in what ways
Hilbert’s philosophical views can be resuscitated (in the manner in which, e.g.,
Frege’s logicist program has experienced a renaissance in the neo-logicist writings
of, e.g., Boolos, Heck, and Hale and Wright). It should be clear in any case from
the discussion in the preceding section that ideas closely related to Hilbert’s own
have been hugely successful. And it is also clear from the recent historical studies
of Hilbert’s unpublished writings as well as from the study of the proof theoret-
ical practice of the Hilbert school that the ideas which underpin much of recent
and current proof theoretical research are not merely “inspired by” Hilbert’s pro-
gram. Hilbert’s fundamental aim was, all along, to make mathematical reasoning
amenable to mathematical investigation, and to carry out such an investigation
which yields an analysis of non-constructive reasoning in terms of restricted meth-
ods. Hilbert, of course, emphasized consistency of non-constructive systems as the
most interesting property to be investigated, and emphasized finitary methods as
those in terms of which such an analysis should be carried out. But even in the
1920s, in the practice of consistency proofs in the work of Ackermann, Bernays,
and von Neumann, among others, more broadly constructive methods were em-
ployed in this analysis, and results about properties other than consistency were
obtained. Gentzen’s work of the 1930s and subsequent proof theoretical studies
should thus not be seen as merely a response to Gödel’s incompleteness results, but
more broadly as advancing Hilbert’s original aim of investigating the structure of
mathematical reasoning. Seen in this light, again, proof theory as a foundational
enterprise is very much alive. Although Gödel’s theorems show that Hilbert’s
original expectations about what exactly can be analyzed in which way and with
what restricted methods can not be fulfilled, proof theory and Hilbert’s aims more
generally have been advanced tremendously over the last half-century.
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[Hilbert, 1900b] D. Hilbert. Über den Zahlbegriff. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 8:180–84, 1900. English translation in [Ewald, 1996, 1089–1096].
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137(1–2):59–101, 2003.

[Mancosu, 2004] P. Mancosu. Review of Kurt Gödel, Collected Works, vols. IV and V, Solomon
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