
Internal Logicbrings together several threads of Yvon Gauthier’s work on the
foundations of mathematics and revisits his attempt to, as he puts it, radicalize
Hilbert’s Program. A radicalization of Hilbert’s Program, I take it, is supposed
to take Hilberts’ finitary viewpoint more seriously than other attempts to salvage
Hilbert’s Program have. Such a return to the “roots of Hilbert’s metamathematical
idea” will, so claims Gauthier, enable him to save Hilbert’s Program (p. 47).

Gauthier’s “radicalization” has both a positive and a negative part. The nega-
tive part consists in a critique, interspersed throughout the book, of rival attempts
to salvage Hilbert’s Program, in particular, attempts to justify Gentzen’s consis-
tency proof for Peano Arithmetic on finitary grounds, but also Gödel’sDialectica
interpretation. The positive part consists in the outline of a consistency proof of
arithmetic in Chapter 5.

Both negative and positive part of Professor Gauthier’s foundational discus-
sion rely on his view that the method of infinite descent is priviledged over com-
plete induction. This is an interesting view closely related to the distinction be-
tween potential and completed infinity. In reasoning by infinite descent, a propo-
sition is proved to hold for an arbitrary numbern by showing that the supposition
that it does not hold forn implies the existence ofm< n for which it also does not
hold. But since there can be no infinite descending sequence of natural numbers,
this is impossible.

Professor Gauthier’s discussion unfortunately does not succeed in elucidating
the relationship he takes there to be between infinite descent and induction. Pro-
fessor Gauthier tells us that one distinguishing characteristic of infinite descent
is that “it does not require a universal (classical) quantification, but [only?] an
unlimited or ‘effinite’ quantification over indefinite, potentially infinite sequences
or Brouwer’s indefinitely proceeding sequences. . . ” (p. 57). Professor Gauthier’s
“effinite” quantifier plays a crucial role here.

In classical terms, one would straightforwardly formalize the principle of infi-
nite descent as∀x(¬A(x)→∃y < x¬A(x))→∀xA(x). This, again classically (by
contraposing the conditional in the antecedent), is equivalent to∀x(∀y< xA(x)→
A(x))→ ∀xA(x). Professor Gauthier’s formalization using the effinite quantifier
∃Ex reads (in this context):

∃Ex{[¬A(x)∧∃y < x¬A(y)]→∃y∃Ez< y¬A(z)}→ ∃ExA(x)

I must admit that I am not able to make sense of this formula, and why it consti-
tutes a formalization of the principle of infinite descent. This may be due to my
incomplete grasp of the meaning of the effinite quantifier.∃ExA(x) supposedly
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means “there are effinitely manyx so thatA(x),” where “effinitely many” means
“for the infinitely proceeding sequence of natural numbers.” Professor Gauthier’s
finitary scruples suggest that the effinite quantifier is some kind of finitary univer-
sal quantifier, a way of sayingthatA(x) holds for all numbers without supposing
that there is a totality of natural numbers. If that is granted, one would assume
that replacing∃ExA(x) by ∀xA(x) would result in something that is classically
equivalent to induction. But

∀x{[¬A(x)∧∃y < x¬A(y)]→∃y∀z< y¬A(z)}→ ∀xA(x),

as is easily seen, is not true for allA. On the other hand, in the discussion of
the derivation rules for the effinite quantifier (p. 87), Professor Gauthier says that
it behaves like universal quantification in positive occurrences and like existential
quantification in negative ones. So perhaps, the classical equivalent should instead
be:

∃x{[¬A(x)∧∃y < x¬A(y)]→∃y∃z< y¬A(z)}→ ∀xA(x).

But this fares even worse: this sentence is false whenever∀xA(x) is false.
On p. 81 Professor Gauthier states that “from a (classical) logical point of

view, infinite descent is identified with the least number principle,” and on p. 57,
after introducing the formalized version of infinite descent, he states that the least
number principle is only classically equivalent to complete induction. Are we to
suppose then that, from the standpoint of Kronecker-Fermat arithmetic, infinite
descent somehow is closer, or perhaps evenamountsto the least number principle
∃xA(x)→∃x(A(x)∧∀y < x¬A(x))? What counts in favor of this suspicion is the
fact that the least number principle does not contain unbounded universal quanti-
fiers of the kind Professor Gauthier finds objectionable in the schema of complete
induction. On the other hand, Professor Gauthier seems to aim for some position
close to intuitionism. Yet, in intuitionistic arithmetic, the induction principle is an
axiom whereas the least number principle cannot be proved.1

Perhaps the difficulties in the discussion of the formalization of infinite descent
could be overcome by providing a semantics and proof theory for the logic in
which Professor Gauthier’s Kronecker-fermat arithmetic is to be couched. This
Professor Gauthier aims to do in Chapter 4. One would expect here a precise
formulation of a logical calculus, of a semantics, and a proof of soundness and
perhaps completeness of the former with respect to the latter. Unfortunately, no

1See e.g., A. S. Troelstra and D. van Dalen,Constructivism in Mathematics. vol. I, Amsterdam:
North-Holland, 1988, p. 129.
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such proofs are offered. Indeed, I have serious difficulty understanding Professor
Gauthier’s proposed semantics (p. 88). The notion of a structureM looks familiar
enough: a domainDM (in practice, the set of natural numbers), and interpretations
of predicates and function symbols. Then Professor Gauthier offers a definition
of a functionϕM which maps closed formulas to either 0 or 1. Evidently,ϕM(A)
is supposed to give the truth value ofA. But the definition ofϕ is somewhat
confusing. For instance, the clause for conjunction is

ϕM(A∧B)[n×m] = 1 iff An ∈ DM andBn ∈ DM.

If ϕM is a function from formulas to{0,1}, then what is the role of the extra argu-
mentn×m? And what areAn andBm? Perhaps they are the “valuators” Professor
Gauthier hints at several lines above, “a number which locates the formula in the
arithmetical universe.” IfAn andBm are numbers, andDM is the set of natural
numbers, it seems to me, the left-hand side of the definition is always true—but
surely not every conjunction can evaluate to 1?

These and other shortcomings of the presentation of the technical details make
it difficult to ascertain what exactly Professor Gauthier is attempting to achieve in
his consistency proof. A mapping of formulas and proofs to polynomials is im-
portant, and infinite descent on some ordering of polynomials is then applied to
obtain the consistency result. I suspect that this approach to the problem is at its
root not so very different from the approaches of the consistency proofs by Acker-
mann and Gentzen. They, too, proceed by establishing a mapping from proofs to
polynomials, but in their case polynomials in whichω works as a variable, and in
which exponents may themselves be polynomials. In other words, there is a natu-
ral way in which the Cantor normal form of an ordinal less thanε0—ordinal nota-
tions as used by Gentzen and Ackermann—can be seen as a polynomial. Gentzen
and Ackermann’s proofs do not require any kind of transfinite induction in the set-
theoretical sense. The induction—indeed, in these cases, it is infinite descent that
is used, and not induction—proceeds over suchω-polynomials. Cantor’s normal
form theorem is not at all a “basic ingredient” (p. 48) of Gentzen and Acker-
mann’s work. Perhaps Professor Gauthier is right in doubting the subsistence of
the limit ordinals< ε0—not they, but instead ordinalexpressionsplay a role in the
consistency proofs.

What is at stake in the discussion of the status of consistency proofs like
Gentzen and Ackermann’s is not whether they employ infinitary objects, i.e.,
ordinals—they obviously do not—but whether the finitist is entitled to the insight
that there are no infinitely descending sequences of ordinal notations of the kind
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used. Professor Gauthier seems to think that this insight cannot be finitarily jus-
tified, and the argument (on p. 64) seems to rest on the undeniable circumstance
that “limit ordinals” have no immediate predecessor in the relevant order. It seems
to me, however, that the same can be said of the polynomials Professor Gauthier
uses in his consistency proof. What is the immediate predecessor ofx2 +x in the
ordering of polynomials along which his method of infinite descent proceeds? He
seems to be in a situation vis-a-vis his polynomials that entirely parallels that of
Gentzen and Takeuti vis-a-vis ordinal notations. Without providing a more de-
tailed and precise account of the basic framework in which his consistency proof
is carried out, and the proof methods used, it will be hard to shake the suspicion
that the complications of his proof obscure, but do not avoid, the difficulties faced
by Gentzen’s proof.
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