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Classical logic is characterized by the familiar truth-value semantics, in which
an interpretation assigns one of two truth values to any propositional letter in the
language (in the propositional case), and a function from a power of the domain to
the set of truth values in the predicate case.1 Truth values of composite sentence
are assigned on the basis of the familiar truth functions. This abstract semantics
immediately yields an applied semantics in the sense that the truth value of an
interpreted sentence is given by the truth value of that sentence in an interpretation
in which the propositional variables are given the truth values of the statements
that interpret them. So if p is interpreted as the statement “Paris is in France”
and q as “London is in Italy” then the truth value of “p ∨ q” is |p ∨ q| where the
interpretation | | is given by |p| = T and |q| = F . And since the truth value of
|A ∨B| is defined as

|A ∨B| =

{
T if |A| = T or |B| = T

F otherwise

we have that |p ∨ q| = T , and so that “Paris is in France or London is in Italy” is
true.

On the basis of this semantics, we can, as is done in any introductory logic
textbook, define an implication relation: if X is a set of sentences, then X ⇒ A

if, for every interpretation | | such that |B| = T for all B ∈ X, also |A| = T .
This formal entailment relation can likewise be used to define a logical entailment
relation on statements. A statement A entails a statement B iff A′ ⇒ B′, where
A′ and B′ are correct symbolizations of the statements A and B, respectively.

The question of whether classical logic is the correct logic is the question of
whether the implication relation so defined agrees with the pre-theoretic notion
of implication between statements. Typically, and reasonably, we gloss over the
intermediate step of symbolizing statements in English into the formal language
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1 That is, a one-place predicate symbol is assigned a function from D to {T, F}, a two-place
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of propositional logic, and do not distinguish between the classical implication
relation between (English) statements and the implication relation between the
sentences that symbolize them. Whether or not it is admissible, always or in a
specific case, to symbolize a statement in one way or the other, may of course
have a bearing on the question. Let us set this aside, and suppose, e.g., that if p
and q are as above, p ∨ q symbolizes “Paris is in France or London is in Italy,” ¬p
symbolizes “Paris is not in France,” etc.

One strategy to argue for the thesis that classical logic is correct would be
to argue for the thesis that classical two-valued semantics faithfully captures the
intuitive semantics of truth and falsehood. That intuitive semantics relies on the
thesis that every basic statement is either true or false (and not both) at every
appropriate context of evaluation, and sentences formed by negation, conjunction,
disjunction are true or false (at a context) iff their composite sentences exhibit the
patterns of truth values specified by the classical truth functions (at a context).
Both of these together of course entail bivalence, the claim that every sentence
is true or false. This strategy faces the difficulty that there are many cases of
statements for which it is doubtful that every context of evaluation does determine
one and only one of truth or falsity as their truth value. Basic statements involving
vague predicates, such as “Mary is rich” where Mary is a borderline case of a rich
person, are perhaps the most pedestrian examples. Challengers to classical logic
have suggested other examples of statements claimed to neither be true nor false.
Dialetheists suggest that some statements are both true and false, and so also
reject one crucial assumption of the above argument.

However, the argument outlined above is not the only possible argument to
justify classical logic. For two-valued semantics is not the only semantics that
characterizes the classical entailment relation. Classical logic could be supported
by giving a parallel argument in which the role of truth values is played by some
other entities, and the connective were interpreted by functions of these other
entities, so long as that new semantics characterizes the same classical implication
relation. That is Rumfitt’s strategy in his Boundary Stones of Thought (Rumfitt
2015).

1 Pretopologies

The deviant semantics for classical logic that serves this purpose is the pretopology
semantics of Sambin (1995). It will be useful to review that semantics: Rumfitt
eases his readers into accepting that semantics bit by bit, with a precursor intro-
duced in Chapter 5, a simplified semantics leaving out negation in Chapter 6, and
a more complicated semantics in Chapter 7, including negation. So there is unfor-
tunately no one place to go to that discusses all aspects of the proposed semantics.
The appeal to Sambin’s work is crucial, but the definitions are not the same, so
one might wonder how Sambin’s results apply.

First, let’s review Sambin’s semantics. A pretopology is a set S with a combi-
nation operator • on S and a •-compatible closure operator on ℘(S), i.e., a function
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C : ℘(S)→ ℘(S) that satisfies

C(U) • C(V ) ⊆ C(U • V ) (Stab)

U ⊆ C(U) (Inc)

U ⊆ V ⇒ C(U) ⊆ C(V ) (Mon)

C(C(U)) ⊆ C(U) (Idem)

where U •V = {a • b : a ∈ U, b ∈ V }. The operator • is associative and has a unit 1.
Sambin gives an equivalent definition in terms of a precover /; a /U iff a ∈ C(U).2

Rumfitt appeals to Sambin’s completeness results in a number of places, and
so it may also be useful to trace the relationship between Sambin’s semantics and
Rumfitt’s. Pretopologies provide a sound and complete semantics for a range of
logics, of which some are ruled out by the required soundness of a number of some
rules of inference uncontested by Rumfitt’s imagined interlocutors. Weakening
requires that for all x ∈ S, x ∈ C(1), i.e., C(1) = S. Contraction requires that
x ∈ C(x • x). And explosion requires that contradiction (⊥) is evaluated as C(∅).

The crucial link between Rumfitt’s truth-ground semantics and pretopologies is
the notion of a possibility, which are the truth-grounds of statements. Possibilities
are like possible worlds or states of affairs, but they need not determine the truth
value of every atomic statement. E.g., the possibility that a is red determines the
truth value of “a is red,” but not of “a is large.” Rumfitt defines the closure C(U)
of a set of possibilities U as the set of all possibilities which make true all state-
ments made true by every possibility in U (p. 162). Any set of possibilities of the
form C(U) (i.e., where U = Cl(U)) is called closed.3 Possibilities are partially or-
dered by the relation of determination: y determines x, x ≤ y, iff every statement
true at x is also true at y (p. 166). E.g., the possibility that a is crimson determines
the possibility that a is red. From the definitions we have that x ≤ y iff x ∈ C(y).
Assuming that no two distinct possibilities can make the same statements true,
≤ is anti-symmetric. Possibilities can be combined: the combination x • y of x
and y is the least (in the partial order ≤) possibility z which determines both x

and y. Combination is compatible with closure: C(U) • C(V ) ⊆ C(U • V ). There
is a least determinate possibility >, which makes true those statements that are
true at every possibility. The least possibility that determines both x and > is
just x itself, since every statement true at 1 is also true at x. So x •> = > •x = x.
We also assume that there is a most determinate possibility ⊥, which makes every
statement (including contradictions) true (p. 188). This, Rumfitt acknowledges, is
an idealization, a mere “bookkeeping device.”

If we accept this picture, we can establish that possibilities form a pre-topology:
the set of possibilities is S, combination of possibilities is the • operator, > is the
unit 1 of •, and C is a closure operator that satisfies Sambin’s conditions. The
closure C(>) of the least determinate possibility is S itself. So, we can use it to
define an interpretation | | of the language. Any closed set of possibilities is an
allowable interpretation of an atomic statement p. The constants > and ⊥ must
be interpreted as S and {⊥}, respectively, as > is true at every possibility and ⊥
true only at ⊥. This satisfies Sambin’s general conditions on interpretations | |,

2 Sambin uses F for both the pre-topology and its closure operator; I’ll use Rumfitt’s nota-
tion C for both.

3 “Saturated” in Sambin’s terminology.
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according to which |>| = S = C(>), and the condition mentioned above needed
to verify explosion, |⊥| = C(∅) = {⊥}. Contraction is valid since x • x = x, and so
x ∈ C(x • x).

The evaluation clauses for the connectives Rumfitt proposes are:

|A ∧B| = |A| ∩ |B| (C)

|A ∨B| = C(|A| ∪ |B|) (D)

|A→ B| = |A| →C |B| (I)

|¬A| = |A|⊥ (N)

(C) and (D) agree with Sambin’s definitions for & and ⊕, but Sambin does not
give a clause for ¬. Instead, ¬A is defined as A → ⊥, and we have an evaluation
function →C for the conditional. In Sambin, we have:

|¬A| = |A| →C |⊥| = |A| →C {⊥}

Rumfitt’s ⊥ is the operation of orthocomplement, based on the notion of incompat-
ibility: two possibilities are incompatible if x•y = ⊥. U⊥ is the set of all possibilities
incompatible with every possibility in U , i.e., U⊥ = {x : x • y = ⊥ for all y ∈ U}
(p. 167). The evaluation function for the “logician’s conditional” is given by
U →C V = {x : x • y ∈ V for all y ∈ U} (p. 183).4 If we set V = {⊥}, the condition
becomes x • y ∈ {⊥}, i.e., x • y = ⊥, so the definitions of |¬A| agree.

2 Negation

The semantics of possibilities as a pre-topology is intuitively compelling, and Rum-
fitt ably shows how the evaluation rules for the connectives are forced upon us if
we want to hold on to the usual inference rules being sound and complete. The
critical assumption that makes the difference between intuitionistic and classical
logic, however, is not one that is forced by an inference rule accepted on all sides:
It is the condition that for any A, (|A|⊥)⊥ = |A|. It is forced by double negation
elimination, i.e., ¬¬A⇒ A, but validity of this rule is of course exactly at issue in
the debate between intuitionistic and classical logic.

Not being able to appeal to an accepted inference rule to justify the condition
characteristic of classical logic, Rumfitt needs a different strategy. It can easily be
seen that ((|B|⊥)⊥)⊥ = |B|⊥, for any B. So if it is the case that |A| = |B|⊥, for
some B, then we would have

(|A|⊥)⊥ = ((|B|⊥)⊥)⊥ = |B|⊥ = |A|⊥ .

The crucial condition that (|A|⊥)⊥ = |A|, and with it the validity of double-
negation elimination, comes down to this: is the set of possibilities that make A
true always the same as the set of possibilities that are incompatible with some
other closed set of possibilities? The A with this property are said to have a back:

the back of A is the set of those possibilities incompatible with A, and |A| = |¬B| iff

4 Sambin defines U →C V = {x : x • y ∈ C(V ) for all y ∈ U}, and in our context we are
only concerned with V where V = C(V ).
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|B| is the back of A. Putative examples of failures of double-negation elimination
(and of the law of excluded middle) involve statements A for which |¬A| is perhaps
not the back of A: then |¬¬A| 6= |A| and |A ∨ ¬A| 6= S.

Since possibilities are introduced as the truth grounds of possible statements,
it seems the only way we can have evidence for the existence or non-existence of
specific possibilities is as the truth grounds for possible statements. In other words,
evidence that there is such a thing as the possibility that p is the existence of a
possible statement that would be true at that possibility. Supposing that for any
statement A its negation ¬A is always a statement, there always is a possibility
incompatible with the truth-grounds for A. If nothing else, the possibilities that
together form the truth grounds for ¬A all have this property, and at least ⊥ is
one such. But there may not be enough possibilities which are truth grounds of ¬A
to guarantee that |¬¬A| = |A| and |A ∨ ¬A| = S.

One way to justify that |¬A| is always large enough is to appeal to the intuitive
validity of some rule of inference. This strategy, however, is not available. Any rule
sufficiently strong to guarantee it, such as ¬¬A ⇒ A, will be one the validity of
which is rejected by those who deny the universal validity of non-intuitionistically
valid inferences. This is a weakness built into the semantics of possibilities, since
they only exist as truth-grounds for possible statements, and so we need prior
evidence of the truth of a possible statement (e.g., that it is the conclusion of
an intuitively accepted inference from true statements). Realist possible worlds
semantics, e.g., does not face this problem. One may argue that certain (kinds
of) possible worlds exist on grounds that do not depend on the truth or falsity
of statements, or the intuitive validity of certain inference rules (say, maximality
principles). A way to make this point vivid is this: A has a back if there is some
statement B such that A is equivalent to ¬B, i.e., |A| = |¬B|—then |B| is the back
of A. But there is no prima facie reason that every statement A is equivalent to
such a negation, other than perhaps to the negation of ¬A. But whether A and
¬¬A are always equivalent is exactly what’s at issue.

A dialectically weaker strategy is to examine putative examples of statements
that do not have backs, i.e., where the set of possibilities incompatible with the
truth grounds of A do not form a closed set, and so are not all of the truth grounds
of ¬A.

3 Intuitionistic Mathematics

The first such example considered by Rumfitt are so-called weak counterexamples
in intuitionistic number theory. A weak counterexample (to the law of excluded
middle) is a statement A where A ∨ ¬A is not intuitionistically true. Suppose we
have a decidable property of natural numbers, P (n), e.g., “the sequence s does not
occur before the n-th place in the decimal expansion of π,” or “if n is even and > 2,
then n is equal to the sum of two primes.”5 Then ∀xP (x) is the statement that s
never appears in the decimal expansion of π, or that Goldbach’s Conjecture is true,
respectively. At present, we have neither a proof nor a refutation of either. Hence
∀xP (x) ∨ ¬∀xP (x) is not intuitionistically true. In the context of truth-ground

5 Rumfitt uses Brouwer’s original example of the occurrence of 0123456789 in the decimal
extension of π. It is now known that it does occur (Borwein 1998), so assume s is a sequence
which so far has not been found among the decimal expansion of π.
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semantics, this means: we do not know if the set of truth-grounds for ¬∀xP (x) is
the entirety of the possibilities incompatible with the truth grounds of ∀xP (x), i.e.,
we do not know if ∀xP (x) has a back. However, the question should be, Rumfitt
urges, whether we should take that as evidence that ∀xP (x) has no back, rather
than, say, we simply don’t yet know if it does.

The argument that we should not is roughly the following: since P (n) is decid-
able, we are entitled to assert that ∀x(P (x)∨¬P (x)). So whether or not ∀xP (x) or
¬∀xP (x) does not hinge on the question if there are n such that the state of P (n)
is somehow indeterminate. It merely hinges on the questions of what the truth
grounds for ∀xP (x) are. The possibility that there is a proof of ∀xP (x), say, from
the axioms of Heyting arithmetic HA, is one truth-ground of ∀xP (x). But could
it be that P (n) merely happens to be true for every natural number n, without
this being provable from HA or otherwise “lie in the rule for” determining P (n)?

Rumfitt (p. 206ff) invites us to consider the result that ancestral logic—i.e.,
first-order logic augmented by an ancestral operator6—suffices to categorically
characterize the natural numbers. Once we have a categorical characterization
of the natural number structure, we can reason from the determinacy of all in-
stances P (n) to the determinacy of quantified statements over the instances and
get ∀xP (x) ∨ ∃x¬P (x), from which the contested instance of excluded middle,
∀xP (x) ∨ ¬∀xP (x) follows intuitionistically.

Rumfitt is of course right to say that the the intuitionist “will understand the
explanation of the ancestral operator” (p. 207) and that “ancestral logic is part
of the common ground [classical logicians] share with intuitionists” (p. 208). How-
ever, in order to make the crucial step from ∀x(P (x)∨¬P (x)) to ∀xP (x)∨∃x¬P (x),
the intuitionist must also accept the result that ancestral logic provides a categor-
ical characterization of the natural number structure. But it is not clear that he
must. For the proof that ancestral logic does this requires classical reasoning about
all models. Although I don’t have a proof that no intuitionistically acceptable ar-
gument can be given, two reasons suggest that it is unlikely. The first reason is
simply that the content of what would have to be proved would involve reasoning
about models, i.e., quantification over completed infinite sets. The second is this:
If the ancestral operator is strong enough to make quantification over the natural
numbers determinate in the relevant sense, it would be expected that the mere
addition of the ancestral operator to Heyting arithmetic would already result in a
stronger system, as it does in the classical case. However, adding the ancestral to
Heyting arithmetic is conservative (Arai 2010).

In Section 7.4, Rumfitt considers the case of smooth infinitesimal analysis (sia)
and concedes that classical logic cannot be applied within it. Here, the problem lies
not in the indeterminacy of quantification (and hence the question whether, say,
∀xP (x) has a back), but already in the indeterminacy of atomic statements. In sia,
the predicate “is identical to 0” has no back. One might think that sia is an obscure
theory, and that the failure of classical logic here is inextricably linked to the ex-
istence of nilsquares (quantities different from 0 whose square equals 0). However,
the same kinds of counterexamples can be found in “ordinary” intuitionistic anal-
ysis, where identity (with 0) is likewise indeterminate, i.e., ∀x(x = 0∨¬x = 0) does
not hold. But in intuitionistic analysis things are worse for the defender of classi-

6 The ancestral R∗ of a relation R is the relation which holds between x and y iff there is a
finite sequence zi such that xRz1Rz2 . . . znRy.
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cal logic. As in sia, we face examples of predicates without backs (“x = 0”) and
corresponding failures of the law of excluded middle. Moreover, for some choices
of P (x), intuitionistic analysis not only fails to prove the corresponding instance of
excluded middle, but proves its negations, i.e., ¬∀x(P (x)∨¬P (x)) (e.g., when P (x)
is x = 0, or Brouwer’s own example, “x is rational”). This makes it hard to see
how Rumfitt’s truth-ground semantics can be expanded to deal with intuitionistic
analysis, even without accepting the principle that every statement (property) has
a back or bringing in mysterios objects such as nilsquares.

4 Vagueness

In Chapter 8, Rumfitt takes on the challenge to classical logic arising from the
consideration of vague predicates. Vague predicates, such as “is tall” or “is red,”
have often been taken to produce statements that violate excluded middle. When a
is borderline red, there is a strong intuitive inclination to deny, or at least withhold
assent from, both A and ¬A (where A is “a is red”). Rumfitt puts forward another
topological semantics which allows us to keep this intuition—deny bivalence for
vague statements—and still yields classical logic.

In Rumfitt’s semantics for polar predicates such as “x is red,” the extensions of
predicates are regular open sets in a certain topology. Suppose, for instance, that
we’re considering 100 colored tubes, a1, . . . , a100, each one indiscriminable from
the next. Tube a1 is red, and a100 is orange. The predicate R(x) is “x is red” and
the predicate O(x) is “x is orange.” (The (shades of) the tubes a1 and a100 are
the poles in this case.) The elements U of the topology are the (shades of) the ai.
The interior Int(X) of a set X ⊆ U is the set of those elements in the set that are
maximally close in color to one of the poles (i.e., no other pole is at least as close),
and a set is open if it is equal to its own interior. This defines a topology on U .
The extension of a color predicate R(x) is then given by the set of those ai that
the red pole a1 is maximally close to (in the sense that no other pole is as close),
and the extension of O(x) are those ai to which the orange pole a100 is maximally
close.

Extensions so defined are not just open sets, i.e., identical to their interior,
but also identical to the interior of their closure. (In any topology, the closure
of an open set is the complement of the interior of the complement: Cl(X) =
U − Int(U −X).) Rumfitt shows that in the case of extensions of color predicates,
this condition is satisfied, so extensions of color predicates are regular open sets
in the topology on U . Again appealing to the validity of introduction and elimi-
nation rules for “and” and “or,” he stipulates that the extension of the conjunc-
tion pA(x) andB(x)q of two predicates must be the intersection of the extensions,
and the extension of a disjunction pA(x)orB(x)q must be the smallest regular open
set containing both extensions, which is the interior of the closure of the union.
If X is the extension of A(x), the extension of pnotA(x)q is X⊥ = Int(U − X).
Rumfitt motivates this as required by the intuitive meaning of negation: the ex-
tension of pnotA(x)q consists of those ai “whose color status is incompatible with
being A.” This does not simply mean that they fail to satisfy A(x), for then a
borderline red tube, failing to be red, would lie in the extension of pnotR(x)q.
However, Rumfitt does not discuss the relevant notion of incompatibility in de-
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tail.7 We may, however, motivate the assignment of X⊥ to notA(x) on the basis
of an accepted inference: A(a),notA(a) ⇒ ⊥. So certainly the extension of A(x)
and notA(x) must be disjoint. And the largest regular open set disjoint from X

is Int(U − X). In the resulting semantics, it may happen that neither R(x) nor
notR(x) applies to a given a—as we may expect for a borderline red object a—
and yet pR(x) or notR(x)q applies to everything. For if X is the extension of R(x),
then the extension of pR(x) or notR(x)q is

Int(Cl(X ∪ Int(U −X))) = U

Although Rumfitt’s semantics for vague predicates makes use of similar math-
ematical machinery as his truth-ground semantics, it bears pointing out that here
we deal with a topology on the domain while there we considered a set of semantic

values endowed with a pre-topology. In the present semantics for vagueness, every
predicate either does or does not apply to an element of the domain. Specifically,
it’s not as if, for a borderline red a, R(a) has some intermediate truth value in
the semantics. For any a, either a is in the extension of R(x), or it is not. If it
fails to be in the extension of R(x), however, that does not guarantee that it is
in the extension of notR(x). But any assignment of extensions to predicates will
induce an assignment of one of two truth values, T or F, to every statement.
In truth-ground semantics, however, the semantic value—the value assigned to a
statement—is not either T or F, but the set of its truth grounds. The failure of
bivalence is explained by allowing both R(x) and notR(x) to fail to apply to a,
rather than by assigning some non-true non-false value to R(a). Other proposed
semantics for vagueness, e.g., using degrees of truth, do assign non-true non-false
values to R(a). In fact, one such semantics assigns elements of a Boolean algebra
to R(a); then any non-top non-bottom element of the algebra represents a possible
borderline case. Since the elements form a Boolean algebra, however, we still have
classical logic (Weatherson 2004).8

Rumfitt’s approach has much to recommend it. It takes into account that
many vague predicates are what he calls polar. It makes precise the intuition that
clear cases of red are surrounded by a “neighborhood” of red. It accounts for the
intuition that every ai along the spectrum between red and orange should satisfy
pR(x) or O(x)q, and provides a way in which we can explain that they also all
satisfy pR(x) or notR(x)q (including those ai that satisfy neither disjunct).

While the semantics is informative and appealing in the case of color poles
and monadic predicates, the extension to multi-place predicate and its application
to inference is less so. In order to accommodate inferences involving statement
with terms for multiple objects, we should, according to Rumfitt, consider multi-
place predicates in a new topological space. In order to deal with a statement like

7 He merely states: “[W]hich color predicates an object satisfies depends on which poles are
maximally close in color to it. Hence, . . . the members of X⊥ will be those objects whose color
status is incompatible with being A” (p. 244).

8 Rumfitt’s proposal for a semantics underwriting Wright’s approach to the sorites using
intuitionistic logic in Section 8.3 seems to also follow this pattern, as the appeal to Tarski’s
completeness result suggests that an interpretation maps statements to open sets in a topology.
However, in the ensuing discussion, it seems that the open sets are, like in the semantics for
polar predicates, extensions of the predicates and not possible values of statements. It is not
obvious to me that we can this easily switch between a semantics of statements and a semantics
of predicates and assume that the resulting logic is the same.
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R(b) ∧ O(c) we should consider instead the two-place predicate pR(x) and O(y)q
and a topology on the set of pairs of colors, in which every pair of poles makes
a new pole that is used to define the open sets of that new topology. So, 〈b, c〉 is
in the extension of pR(x) and O(y)q iff the pole 〈a1, a100〉 is maximally close to
〈b, c〉 (distance, presumably, taken pointwise). Rumfitt does not provide a detailed
account of this topology, how it is generated from the original topology, and what
the defining clauses for disjunction, conjunction, and negation amount to in the
resulting topology. There are details that have to filled in, e.g., how the order
and multiplicity of variables in a composite predicate determines which poles are
considered in what order. There are some “sanity checks” that would have to be
done, e.g., proofs that the semantics on the product topology agrees with the basic
topology when all variables are identified. In any case, the intuitive appeal of the
polar semantics in the case of monadic predicates is quickly lost when considering
the product topology for multi-place relations.

There is a deeper worry, however. In order to evaluate an argument, we have
to know how many poles there are—and the poles are now not just determined by
the application (e.g., which basic color predicates are in play), but by how many
singular terms are in play. The example Rumfitt considers involves 100 of them,
and so there are 2100 poles in the product topology. If we add another color tube to
the sorites sequence, we double the number of poles. But this is deeply unsatisfying:
we have not changed the color predicates, we’ve just added one shade: to account
for that single shade, we’d expect the elements of the topology to simply include
this new shade with poles remaining fixed. But the product topology adds 100100

new elements!
This highlights a logical feature of the setup as well: When we analyze a com-

plex argument such as the sorites, we can no longer consider each step in isolation.
For even though a single step only involves two singular terms (e.g., ai and ai+1),
we must evaluate all of them in the complete product topology. This opens the
possibility that a single step, valid when evaluated relative to a topology of pairs,
is no longer valid when evaluated relative to a topology of 100-tuples.

If the resulting semantics saves classical logic in the context of vagueness, then
it should explain what goes wrong in the sorites. Here’s a slightly different version
of the argument: The claim that there is no borderline between ai and ai+1 can
simply be stated as Ai = ¬(R(ai) ∧ ¬R(ai+1)). So the vagueness of the color
continuum between red and orange is expressed by the set or conjunction of all Ai

(i = 1, . . . , 99). The Ai together with R(a1) and ¬R(a100) are jointly inconsistent
classically. I do not know if, in the power topology, all Ai are true (i.e., every
〈ai, ai+1〉 is in the extension of the two-place predicate pnot (R(x) and notR(y))q.
If they all are, the semantics does not save classical logic. If one of them is not, it
seems according to the semantics we have a borderline case and so not succeeded
in giving a semantic interpretation of vagueness.

5 Conclusion

Rumfitt’s book puts forward a number of challenges that any opponent of classical
logic has to grapple with. It also provides logicians with a wealth of promising ideas
ripe for further development. The truth-ground semantics of possibilities could be
certainly be expanded. How should we deal with quantifiers? How exactly does
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it deal with logical truth and consequence? What is the role of the “logician’s
conditional” and its relation to “if . . . then”? Can it be adapted to serve the aims
of those who reject some of the assumptions made? For instance, can it be made
to apply to cases where statements can be both true and false at a possibility
(other than ⊥), or to accommodate purported counterexamples to explosion, cut,
or weakening? The technical development of polar semantics for vague predicates is
so far somewhat underdescribed. How does it deal with quantification? What is the
relation between the statement operators ¬, ∨, ∧ and the operators on predicates?
Are we justified in moving between judgments about truth of statements and
judgments of whether tuples of elements of the domain satisfy complex properties?
Specifically, what is the relation of “not” applied to predicates and the “¬” applied
to statements?

Further development of the semantics sketched by Rumfitt promises to help
clarify the underlying logical and semantic issues raised by challenges to classical
logic. The picture I laid out in the introduction above suggests a further method-
ological task. It is one thing to give a semantics which, while validating classical
logic, also provides an explanation for why, say, purported failures of excluded
middle are not in fact failures. It is at this point that intuitive, and in some cases
well-informed, judgments about such purported failures run up against the expla-
nations provided by the proposed semantics. If there are good reasons why, say, we
are inclined to deny “a is red or a is not red” in certain cases (e.g., evidence of the
actual use of such judgments by English speakers), we must weigh the strength of
these reasons against the persuasiveness of the proposed semantical explanation.
The more complex the explanation, of course, the easier it is to reject it in the
final analysis. One may reject it on technical grounds, say, if it does not validate
a required inference. But one may also reject it as not being faithful to the data,
and ∧, ∨, ¬ as not correctly capturing the correspnding English expressions.
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