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Abstract. Shortest possible axiomatizations for the implicational fragments of
the modal logics S4 and S5 are reported. Among these axiomatizations is included
a shortest single axiom for implicational S4—which to our knowledge is the first
reported single axiom for that system—and several new shortest single axioms for
implicational S5. A variety of automated reasoning strategies were essential to our
discoveries.
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1. Background and Conventions

The implicational fragments of the modal logics S4 and S5 have been
studied extensively over the years (see, for instance, [8], [7], [1], [5], and
[11]). Following tradition, we use the labels “C4” and “C5” to denote
the strict implicational fragments of S4 and S5, respectively. Prior [14,
Appendix I] reports a variety of Hilbert-style axiomatizations for C4
and C5. All such axiomatizations presuppose condensed detachment as
their sole rule of inference (as do ours). We also follow the convention
of writing implicational formulas in Polish notation (e.g., instead of
the infix “p — ¢”, we use the Polish “Cpq”). When we report our
deductions, we use Meredith’s D-notation (as explained in Prior’s [14,
Appendix IT]). That is, the notation “D.a.b” (appearing to the left of
each line in our deductions) is used to denote the most general possible
result of detachment (i.e., condensed detachment [6]) with a, or some
substitution in a, for the major premise Caf, and with b, or some
substitution in b, for the minor premise . All proofs reported here were
discovered with the assistance of the automated reasoning program
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OTTER [9]. The extensive role of automated reasoning in the present
research is discussed in Section 4.

2. Axiomatic C4

We begin with appropriate background to place the question we answer
in perspective.

2.1. A BRIEF HISTORY OF AXioMATIC C4

The axiomatization of C4 has an interesting history. As far as we
can tell, the first time an axiomatization for C4 appeared explicitly
in print was in Anderson and Belnap’s 1962 paper [1]. Anderson and
Belnap report the following 3-axiom basis for C4, which we adopt as
our reference C4 axiomatization (the condensed detachment rule, as
always, is presupposed to be the sole rule of inference of the systems).

Cpp
(1) CCpqCrCpq
CCpCqrCCpqCpr

Anderson and Belnap credit Kripke’s 1959 discussion [7] with providing
the original insight on how to axiomatize C4. According to Curry [3]
and Hacking [5], however, similar work was concurrently being done
independently across the Atlantic by Hacking and Smiley. The work of
Hacking and Smiley was not published until 1963 [5], but their work
on C4 was available in mimeograph form several years before this [3].

Other 3-axiom bases were later discovered for C4 (see [14, Appendix
I]), each containing 25 symbols (total) and 11 occurrences of the impli-
cation connective C. But, as far as we know, no 2-axiom bases for C4
were ever reported in the literature. Moreover, no single axiom for C4
has been discovered; indeed, this is stated as an open problem in [2,
page 83]. Ulrich [16] has shown that C4 is also the strict implicational
fragment of each modal logic between S4 and S4.3; hence, our bases are
new and shortest bases for the strict implicational fragments of these
extensions of S4 as well.

2.2. SHORTEST AXIOMATIZATIONS OF C4

Using a variety of automated reasoning strategies (see Section 4 for
more on these strategies), we have discovered many new 2-axiom bases
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for C4. The shortest of these include the following 2-basis, which con- 3. CCpCqrCCpqCpr
tains only 20 symbols and 9 occurrences of C. D.3.3 4. CCCpCqrCpqCCpCqrCpr
D.2.3 5. CpCCqCrsCCqrCqs
Ol D.3.5 6. CCpCqCrsCpCCqrCqs
(2) paq D.6.2 7. CCpqCCrpCrq
CCpCqrCCpqCsCpr D.3.7 8. CCCpqCrpCCpqCrq
So far, we have found six such 2-bases, and we know that there are at D.7.2 9. CCOpCarCpCsCar
. . . .. D.7.8 10. CCpCCqrCsqCpCCqrCsr
most eight. We suspect that there exist ezactly six. We have eliminated
) : . D.79 11. CCpCqCrsCpCqCtCrs
all other 2-bases of this complexity except for the following two can-
didates, whose status remains open: {CpCqCrr, CCpqCCqCqrCpr} D.9.2 12. CCpqCrCsCpq
) pen- A ptqtrr, L pab g arep D.12.1 13. CpCqCrr

and {CpCqq, CCpqCrCCqCqsCps}. We suspect these are not bases
for C4.1

Moreover, we have been able to show that these are the shortest
possible bases for C4. That is, no other basis for C4 (with any number
of axioms) contains fewer symbols (or occurrences of C') than the cited
2-basis. The proof of this result (omitted because of space limitations),
which proceeds by exhaustive search of all other possible candidate
bases, requires the use of only 20 distinct logical matrices of size < 4.
In Section 4, we say a bit more about how this exhaustive search was
conducted and how the matrices and bases were discovered.

Our automated reasoning strategies also yielded the following new

D.9.13 14. CpCqCrCss

D.4.13 15. CCpCCqqrCpr

D.4.14 16. CCpCCqCrrsCps

D.6.16 17. CCpCCqCrrCstCCpsCpt
D.15.17 18. CCpCCqCrrCpsCps

D.9.18 19. CCpCCqCrrCpsCtCps
D.10.19 20. CCpCCqCrrCpsCCstCpt
D.11.20 21. CCpCCqCrrCpsCCstCuCpt*

21-symbol (10-C) single axiom for C4: Next, we prove that (3) = (2):
(3) CCpCCqCrrCpsCCstCuCpt 1. CCpCCqCrrCpsCCstCuCpt
D.1.1 2. CCCpCqqrCsCCpCCtCuuCpor
As noted earlier, the question of the existence of a single axiom for D21 3. CpCCqCCrCssCqtCCCuuvCwlqu
C4 has been a long-standing open problem in the axiomatics of modal D33 4. CCpCCqCrrCpsCCCtHuCvCpu
logic [2, page 83]. We have ruled out all shorter single axiom candidates D.1.3 5. CCCpCqrsCtCCCuurs
(see Section 4 for more on the strategies used to eliminate and discover D.5.1 6. CpCCCqqCrsCCstCuCrt
single-axiom candidates). Therefore, (3) is a shortest possible single D.6.6 7. CCCppCqrCCrsCtCys
axiom for C4. In fact, (3) is the shortest C4 single axiom (all other D.AG 8.  CCCppgCrCCstq
21-symbol candidates have been eliminated). D.1.6 9. CCCpCqrsCtCCqrs
With a circle of three deductions, we now establish that each of (2) D18 10. CCpqCrCCCsspq
and (3) is necessary and sufficient for (1). It follows that both (2) and D97 11. CpCCqrCCrsCtCqs
(3) are bases for C4. First, we prove (1) = (3): D.7.10 12. CCCCCppgqrOsCtr
D.7.11 13. CCCCpqCrCsqtCuCCspt
1. Cpp D.1.12 14. CCpqgCrCCCCCssttpq
2. CCpgCrCpq D.12.14 15. CpCqCrCCCCCssttCCuuvv

1" An anonymous referee for this journal points out that this problem can be D.15.15 16. CpCqCCCCTCrrssCCtun

translated into a problem in combinatory logic because the formulas ‘CpCqCrr and D.16.16 17. CpCCCCCqqrrCCsstt
CCpqCqCqrCpr correspond to the combinators BBK' and BBB'W B’ respectively, D.17.17 18. CCCCCppqqCCrrss
and the question is whether these suffice to define K’, BBB'K'B’ and S.’ D.13.18 19. CpCCqCCrrsCqs
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D.18.12 20. CpCqq*

D.19.19 21. CCpCCqqrCpr
D.21.13 22. CCCCpqCrCsqtCCspt
D.21.1 23. CCpCCqCrrCpsCtCps
D.22.21 24. CCpqCCqrCpr
D.24.24 25. CCCCpqCrqsCCrps
D.25.25 26. CCpCqrCCsqCpCsr
D.24.26 27. CCCCpqCrCpstCCrCqst
D.27.21 28. CCCppCqrCCsqCsr
D.25.28 29. CCpqCCrpCrq

D.28.7 30. CCpCqrCpCsCaqr
D.24.30 31. CCCpCqCrstCCpCrst
D.31.23 32. CCpCpqCrCpq
D.29.32 33. CCpCqCqrCpCsCqr
D.27.33 34. CCpCqrCCpqCsCpr*

Finally, we prove that (2) = (1), which completes the circle:

1. CpCqq
2. CCpCqrCCpqgCsCopr
D.1.1 3. Cpp*
D.2.2 4. CCCpCqrCpqCsCCpCqrCtCpr
D.2.1 5. CCpqCrCpq*
D.4.1 6. CpCCqCqrCsCqr
D.6.6 7. CCpCpqCrCpq
D.7.7 8. CpCCqCqrCqr
D.2.8 9. CCpCqCqrCsCpCqr
D.9.2 10. CpCCqCrsCCqrCqs
D.10.10 11. CCpCqrCCpqCpr* [l

This circle of proofs (1) = (3) = (2) = (1) has the additional property
of being pure—in the sense of [19] and [20]. That is, () the proof of (1)
= (3) does not make use of (2), (i7) the proof of (3) = (2) does not
make use of (1), and (4i) the proof of (2) = (1) does not make use of
(3). We think this circle of pure proofs provides an especially elegant
demonstration that (2) and (3) are bases of C4.
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3. Axiomatic C5

We begin with appropriate background to place our study of C5 in
perspective.

3.1. A BRIEF HISTORY OF AXioMATIC C5

The problem of axiomatizing the implicational fragment of S5 was
solved in 1956 by Lemmon, Meredith, Meredith, Prior, and Thomas.
In their seminal paper [8], Lemmon et al. report several bases for C5,
including 4-, 3-, 2-, and 1-axiom bases. We adopt the following 3-axiom
basis from [8] as our reference axiomatization of C5. (We note that
(4) is basis (ii) from Lemmon et al. [8, page 227]. This basis is C.
A. Meredith’s simplification of Lemmon’s original 4-axiom basis for
C5; see [11].)

CqCpp
(4) CCpqCCqrCpr
CCCCpqrCpqCpq

Since the late 1950s, the shortest known bases for C5 have been the
2-axiom bases (v) and (vi) of Lemmon et al. [8, page 227]. These bases
contain 20 symbols (including 9 occurrences of C'). Meredith was able
to find the following 21-symbol (10-C') single axiom for C5; and, until
now, Meredith and Prior’s work [11] seems to have been the last word
on this matter.

(5) CCCCCppqrCstCCtqCsCsq

Especially in view of that success, it is interesting to note that—as far
as we know—Meredith failed to find a single axiom for C4. This is in-
deed surprising because Meredith was responsible for finding (shortest)
single axioms for almost every system (that has one) that he studied.
We sometimes wonder whether the 21-symbol C4 single axiom we re-
ported earlier had been previously discovered (but never published) by
Meredith.

3.2. SHORTEST AXIOMATIZATIONS OF C5

Applying our automated reasoning strategies to C5 (see Section 4),
we have discovered several new (and shortest) 2-axiom bases for C5,
including the following 18-symbol, 8-C' basis.
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(©) Cpp
CCpqCCCCqrsrCopr

By examining all other possible shorter bases (with any number of
axioms), we have established that (6) is a shortest possible basis for C5.
Furthermore, we have ruled out all other 2-bases of this complexity.
Therefore, (6) is the shortest basis for C5. A corollary of this result
(coupled with the appropriate exhaustive search) asserts that there
exists no single axiom for C5 shorter than Meredith’s (5). We have,
however, discovered the following six other single axioms of length 21:

(7a) CCCCpqrCCuuqCCqtCsChpt
(7b) CCCCpqrCCuuqCtCCqsCps
(7c) CCCCpqrCCuutCsCCqtCpt
(7d) CCCCCppgrCuqCCqtCsCut
(7e) CCCCCppgrCuqCCtuCsCtq
(7f) CCCCCppCqrurCCrtCsCqt

Of these six single axioms, we note that (7d) and (7e) are in the same
resonator class as Meredith’s previously-known single axiom (5). This
means that they differ only with respect to what variables occur in each
position; they are identical in each position containing a connective. But
in spite of the fact that these three formulas are in the same resonator
class, they are not trivial alphabetic variants of each other. We also
note that (7d) and (7e) are members of the same resonator class, but
are not trivial alphabetic variants.

Due to space constraints, we will not give proofs that each of these
six formulas are single axioms for C5. Instead, we will present a circle
of three pure proofs (this time using (4) as our reference basis) that
together establish that (6) and (7a) are each bases for C5 (and, of
course, that their members are each tautologies). First, we prove that

(6) = (4):

1. CCpgCCCCqrsrCpr
2. Copp
D.1.1 3. CCCCcCcCcCCpqrqCuqtstCCupt
D.1.2 4. CCCCpqrqCpq
D.3.3 5. CCpCqrCCuqCpCur
D.5.2 6. CCpqCCqrCpr*

D.5.1
D.6.6
D.6.8
D384
D.7.9
D.6.10
D.12.7
D.4.13
D.14.2
D.15.2
D.11.16
D.6.17
D.17.18
D.19.19
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7.

8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

CCpCCCqrsrCCtqCpCtr
CCCCpqCrquCCrpu
CCCCpqrsCCCCqtCptrs
CCpCqCprCqCpr
CCpCqrCCCCuqtCurCpCur
CCCpCqrsCCqCpCaqrs
CCCCpgrCuCCCpqrqCCtpCuCltq
CCpqCCrpCuCrq
CCpqCrCpq

CpCqq*

CCCCpqrCpqCuCpq
CCCpCqrsCCCCqrtCqrs
CpCCCCqrsCqrCqr
CCCCpqrCpqCpq*

Next, we show that (4) = (7a).

D11
D.1.3
D44
D.4.2
D.6.4
D.6.3
D47
D.1.9
D.11.10
D.6.12
D.1.5
D.11.13
D.1.13
D.16.2
D.14.17
D.16.18
D.8.19
D.20.15

i A e e

NN — = === O
O ©ooNo Ot W = O

CCpqCCqrCopr
CCCCpqgrCpqCpq

CpCqq
CCCCpqCrquCCrpu
CCCppqgCrq
CCpCqrCCuqCpCur
CCpCpqCpq
CCpCqrCCCCrsCqstCpt
CCpqCrCpq
CCCpgpCCpqq
CCCpCqrsCCqrs
CCpqCCCpgqrr
CCpCCqrsCCqrCps
CCCpqrCCCuugr
CCCpqrCCpqCur
CCCCpqCrstCCrCCpgst
CCpCCCpqrqCpq
CCCppCCCqrsrCqr
CCCCpqrCCuuqCpq
CCCCpqCrquCCCCrptCCsspu
CCCCpqrCCuuqCCqtCsCpt*
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Finally, we complete the circle by showing that (7a) = (6).

1. CCCCpqrCCuuqCCqtCsCpt
D.1.1 2. CCCpCqrsCtCCqru
D.2.1 3. CpCCCqqrCCrsCtCus
D.3.3 4. CCCppqCCqrCuCtr
D.1.3 5. CCCCCppqCrCuqtCsCt6t
D.2.4 6. CpCCqrCCCqrsCtCsu
D.1.5 7. CCCpCqrsCtCCCuuru
D.4.6 8. CCCCpgCCCpqrCuCtrsCt6CtT7s
D.1.7 9. CCCCCppqqrCuCtr
D.1.8 10. CCCCCpqrCuCtrsCt6CCpgs
D.1.9 11. CCCpqrCuCCCttCpgr
D.1.10 12. CCCCpqCrstCuCCCpqst
D.9.11 13. CpCqCrCCCuuCCttss
D.12.1 14. CpCCCCqrsrCCrtCuCqt

D.13.13 15. CpCqCCCrrCCsstt
D.14.14 16. CCCCpqrqCCquCtCpu
D.15.15 17. CpCCCqqCCrrss

D.16.16 18. CCCCpqCrCuqtCsCCupt
D.17.17 19. CCCppCCaqqrr

D.1.18 20. CCCCpqCprsCtCCqrs
D.19.19 21. Cpp*

D.19.20 22. CCpqCCrpCrq

D.9.22 23. CpCqCCrCCsstCrt
D.19.23 24. CCpCCqqrCpr

D.22.24 25. CCpCqCCrrsCpCqs
D.25.16 26. CCCCpqgrqCCquCpu
D.26.26 27. CCCCpqCrquCCrpu
D.24.26 28. CCCCpqgrqCpq

D.27.27 29. CCpCqrCCuqCpCur
D.29.28 30. CCpqCCCCqrsrCpr* O

4. The Role of Automated Reasoning in Our Research

Throughout our investigations into axiomatic C4 and C5, automated
reasoning strategies played a crucial role. In particular, we relied heav-
ily on William McCune’s automated reasoning program OTTER [9],
H. Zhang and J. Zhang’s model finder SEM [24], and John Slaney’s
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model finder MAGIC [15]. Here, we outline the approach used to ob-
tain these results and briefly discuss some of the automated reasoning
strategies.

1.

First, we wrote computer programs to generate a large list of can-
didate formulas that were to be tested as axioms. For most of
the research, it was practical to generate an exhaustive list of all
formulas with as many as twenty-one symbols.

. All the formulas in the list were tested (by using matrices) to see

which were likely to be tautologies in the system in question. Non-
tautologies were eliminated from the list of candidate formulas.
We used finite matrices rather than decision procedures or se-
mantic arguments because testing for validity on small matrices
is very efficient, and those formulas that survived the filters could
be subjected to more conclusive tests later in the search.

We immediately eliminated large numbers of formulas by applying
known results about axiomatizations in the various systems. For
example, as reported by Lemmon et al., every axiomatization for
C5 must contain a formula with Cpp as a (possibly improper)
subformula [8]. Another useful result is the Diamond-McKinsey
theorem that no Boolean algebra can be axiomatized by formulas
containing fewer than three distinct propositional letters [2, p. 83].

An arbitrary set of formulas was selected from the list. Using either
SEM or a program we ourselves wrote, we found a matrix model
that respects modus ponens, invalidates a known axiom basis for
the system, but validates the formulas selected from the list. Such
a model suffices to show that the formulas are not single axioms for
the system.

All the remaining formulas in the list were tested against that
matrix. Every formula validated by that matrix was eliminated.

Steps 4 and 5 were repeated until the list of candidate formulas was
reduced to a small number, or eliminated entirely.

Finally, we used OTTER to attempt to prove a known axiom ba-
sis from each of the remaining candidates. Following the standard
approach in automated reasoning, we sought in each case a proof
by contradiction and, therefore, assumed the conclusion to be false.
By choosing the appropriate list from among those offered by Mc-
Cune’s program, the so-called denial of the conclusion was used
only to detect proof completion; any proof that was discovered
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relied solely on reasoning forward. Regarding strategy to direct
the program’s reasoning, we used the resonance strategy, which
enables the researcher to provide patterns (formulas or equations)
that are treated as attractive because of their functional shape (ig-
noring their variables) [18]. For the same purpose, we used Veroff’s
hints strategy in which the researcher provides attractive patterns,
patterns that are keyed upon themselves and also on patterns that
subsume or are subsumed by them [17]. We restricted the program’s
reasoning by placing bounds on the complexity of retained conclu-
sions and on the number of distinct letters occurring in such. Purity
(of the circles of proofs) was achieved by instructing the program
to immediately discard an unwanted specific deduction. With var-
ious methodologies based on offered strategies that included the
cramming strategy, we also sought proofs of minimal length. With
cramming, one instructs the program to rely heavily on chosen steps
of a proof with the objective of cramming most or all of them into
another proof of interest [21].

Obvious changes were made when we searched for axiom bases with
more than a single formula. For example, in contrast to the study of a
possible single axiom where its denial was placed in what is called the
passive list, the study of a possible basis with more than one member
caused us to place its denial in a list called usable. For a second exam-
ple, when we sought a proof for a basis other than a single axiom, we
sometimes used (through the cramming strategy) the proof of one its
members to aid us in completing the proof for the entire basis.

Upon implementing the given procedure, we were surprised to dis-
cover that even a small number of simple matrix models can eliminate
a very large proportion of candidate formulas. For example, by using
ten (and possibly fewer) matrices, none of which have more than five
elements, one can show that no formula with nineteen symbols is a
single axiom for C5. Because of the efficiency of this procedure, we
were able to complete all of our searches using a PC and occasionally
a Linux workstation.

We believe that this approach for finding axiom bases in Hilbert-
style systems could be used for a wide variety of logics, with equal
success. For instance, we have used this approach to discover the short-
est known basis for the implicational fragment of the logic RM (first
axiomatized by Meyer and Parks [12], [13]) [4], and McCune and Veroff
have successfully used a similar approach to find short single axioms in
lattice theory [10].

Currently, however, an exhaustive search such as the one used in
the present study is prohibitively time consuming when applied to
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logics with a more complete vocabulary of sentential connectives. The
reason rests with the fact that the addition of new connectives causes
the number of candidate axiomatizations to increase exponentially.
Moreover, when additional connectives are added to the language, the
matrices and proofs tend to be larger and more complex. Currently,
it is difficult, and sometimes impossible, to discover large matrices for
many such problems. Significantly, however, methodologies now exist
for using McCune’s program to discover extremely complex and diffi-
cult proofs. For example, OTTER has yielded proofs consisting of 200
applications of condensed detachment for theorems of significant depth.
(See [23] and [22] for information on the solution of challenge problems
using OTTER, as well as for open problems.) We believe that further
results regarding axiomatizations for more complex logics await future
advances in automated reasoning.
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