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Abstract

Though Frege was interested primarily in reducing mathemat-

ics to logic, he succeeded in reducing an important part of logic to

mathematics by defining relations in terms of functions. By con-

trast, Whitehead & Russell reduced an important part of mathe-

matics to logic by defining functions in terms of relations (using

the definite description operator). We argue that there is a reason

to prefer Whitehead & Russell’s reduction of functions to relations

over Frege’s reduction of relations to functions. There is an inter-

esting system having a logic that can be properly characterized in

relational but not in functional type theory. This shows that rela-

tional type theory is more general than functional type theory. The

simplification offered by Church in his functional type theory is an

over-simplification: one can’t assimilate predication to functional

application.
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Although Frege failed to achieve his goal of reducing mathematics

to logic, he did, however, “mathematize” an important part of logic.1

Frege showed that one can reduce relations to functions and define natural

language predication in terms of function application. For Frege, a simple

natural language predication of the form ‘John is happy’ is analyzed as

the application of the function denoted by ‘( ) is happy’ to the object

denoted by ‘John’. The value of the function is a truth value. Similarly,

a Fregean would analyze ‘John loves Mary’ in terms of a binary function

that maps a pair of arguments to a truth value (or which maps its first

argument to a unary function that maps its argument to a truth value).

More recent analyses of these sentences, in which ‘John’ and ‘Mary’ are

treated as generalized quantifiers (i.e., certain higher order functions), are

variants of the Fregean analysis.

By contrast, Whitehead & Russell “logicized” an important part of

mathematics by reducing mathematical functions to functional relations

(see Linsky 2007). Those n+1-place relations R that obey the condition:

(Rx1 . . . xny &Rx1 . . . xnz) → y = z

can represent n-ary functions. In classical logic, the atomic form of predi-

cation ‘Rx1 . . . xn’ is more fundamental than function application. White-

head & Russell then use definite descriptions to define function application

in terms of atomic predication. For them, ‘John is happy’ is analyzed in

primitive notation as the predication ‘H(j)’, and ‘John loves Mary’ is an-

alyzed in primitive notation as the predication ‘L(j,m)’, with no further

analysis necessary or possible. (In what follows, we simplify this nota-

tion to ‘Hj’ and ‘Ljm’.) Further, it is a consequence of the definition at

PM, *30 · 01 that we can define f(x), when f is the functional relation

R, as ιy(Rxy).2 Under this analysis, the addition function becomes a

3-place functional relation, that is, x+ y is defined as ιz(Rxyz), where +

is analyzed as the 3-place functional relation R.

A key difference between the Fregean analysis and the Whitehead &

Russell analysis is that, on the former, every formula becomes a term, that

is, a denoting expression. (For the remainder of this paper, we use the

word ‘term’ to mean a denoting expression.) Whereas Frege thought that

1Hylton 1993 credits Burton Dreben for suggesting that the matter be put this way.

See Hylton’s footnote 28.
2In PM, *30 · 01, we see that R‘y is defined as ιx(Rxy). But to get the definition in

the text, we need to apply the converse operation at PM *31 · 02 so that f(x), when

f is a functional relation R, is defined as R̆‘x, i.e., ιy(Rxy).
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sentences named truth values, Whitehead & Russell, by contrast, don’t

require that formulas be terms or that they name anything. These two

methods led to the development of two different kinds of type theories: re-

lational type theories (RTTs) and functional type theories (FTTs). RTTs

derive from Russell 1908, a variant of which serves as the basis of the type

theory used in Principia Mathematica. FTTs derive from Church 1940,

which clearly follows Frege in treating every formula as a term.

Given the Fregean reduction of relations to functions and the Russel-

lian reduction of functions to relations, it is natural to think both that

relations and functions are interdefinable, and that there is no significant

difference between an RTT and an FTT. After all, doesn’t the interdefin-

ability show that for each RTT, there is an FTT which is a mere variant

and vice versa, and that one can equally well start with relational types

or functional types as the basis for the syntax and ontology of type the-

ory? (We put aside here for the moment the complicating factor that

Frege took functions to be extensional and Russell appeared to think of

relations as intensional.) There are theorems about equivalences between

RTTs and FTTs. For instance, Manzano (1996, 210–214) has proved

the equivalence in expressive power of a particular FTT and a particular

RTT. Andrews (2006), however, seems to suggest that the FTT based on

Church 1940 is more general than the RTT derived from Russell 1908:

In certain respects, it [Church’s type theory] is simpler and

more general than the type theory introduced by Bertrand

Russell in Russell 1908 and Whitehead & Russell [1927]. Since

properties and relations can be regarded as functions from en-

tities to truth values, the concept of a function is taken as

primitive in Church’s type theory, . . . (Andrews 2006, Intro-

duction, paragraph 3)

In this paper we develop an argument that suggests Whitehead &

Russell’s approach to the foundations of logic, which takes relations as

basic, is to be preferred to Frege’s and Church’s. Our argument goes

by way of identifying an important difference between RTTs and FTTs

with regard to their ability to represent systems containing formulas that

aren’t, and can’t be converted to, terms. We argue that the logic of such

systems, which is constituted by inferences between formulas, cannot be

reduced to a logic constituted by inferences between terms.

In addition to using ‘term’ to refer to formal expressions that are
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assigned denotations in the semantics, we shall, in what follows, use ‘for-

mula’ to refer to formal expressions that are assigned truth conditions.3 In

discussions and developments of FTTs, this distinction between formulas

and terms is frequently not observed. See, for example, the locus classicus

of simple FTT, namely, Church 1940. In what follows (Section 1.1), we

define a simple RTT and develop its logic in the standard way: the fun-

damental axioms and rules of the logic apply to formulas. By contrast,

in the standard formulation of FTT (Sections 1.2, 1.3), the fundamental

axioms and rules of the logic apply to terms.

Before we present the main argument in Section 3.2, we prepare the

reader (in Section 2) by describing and developing the properties of a par-

ticular system, namely, the object theory formulated in Zalta 1983, 1988

and elsewhere. The distinguishing feature of this system is the inclusion

of formulas that are not terms and that cannot be converted to terms

by λ-abstraction. A formula-based logic for this system is constructed in

an RTT (Section 3.1). We then consider (Section 3.2) whether the logic

of this system can be reformulated as an FTT and discover what appear

to be insoluble problems in so doing. The problems became apparent to

us when we attempted to extend the research program in computational

metaphysics initiated in Fitelson & Zalta 2007. Our attempt to use an

automated reasoning system based on FTT, namely, TPS (Andrews et

al . 1966) ran into difficulties. There was no way to translate the terms

and wffs of object theory into the language of TPS so as to capture all

its inferences. This led us to suspect there was a deeper problem with

the FTT underlying TPS. If we are correct, RTTs and FTTs are not,

after all, mere variants; the conceptual framework embodied by RTT can

represent logical inferences that FTT cannot properly represent.

In Section 4, we consider ways of undermining the argument of Section

3.2. We show that the suggested repairs to FTTs are not successful.

Consequently, our efforts show an important difference between formula-

based logics and term-based logics. This, in turn, will lead us to our

conclusion (Section 5) about the significance of the Whitehead & Russell

method of taking relations as basic in the foundations of logic.

3In the theory of formal languages as developed in computer science, the word

‘term’ is used in a more general way. In this usage, a well-formed expression in a

formal language is a term since it is a leaf of a formation tree. Thus the expressions we

call formulas are terms in this sense. We are using the word ‘term’ in a narrower way

than that. In our usage, terms are denoting expressions and formulas are expressions

having truth conditions; not all well-formed formulas are terms.
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1. Sketches of an RTT and an FTT

In this section, we sketch two simple (as opposed to ramified) type theo-

ries, one relational and one functional. Types will be used to categorize

the domains of quantification as well as the classes of expressions that

range over those domains.

1.1 A Sketch of a Representative RTT

We first sketch a relational theory RTT0 of simple types. We define the

types as follows:

• ı is a type.

• Where α1, . . . , αn are any types (n ≥ 0), 〈α1, . . . , αn〉 is a type.

Intuitively ı is the type for individuals and for the expressions that de-

note them. Also, intuitively, 〈α1, . . . , αn〉 is the type for relations among

objects of types α1, . . . , αn, for any types α1, . . . , αn (and the type for ex-

pressions which denote such relations). Since we allow n to go to 0, then

〈 〉 is a type and we may introduce the type p by definition as follows:

• p =df 〈 〉
The type p is the type for propositions or truth-values, depending on

whether one prefers an intensional or extensional interpretation of the

system. Our claims in what follows hold on either interpretation. No-

tice that since the type p can be defined as above, no primitive type for

propositions or truth values need be added to RTT.

Given this definition of types, we may assume that there are primitive

constants and variables of every type. Then we may define ‘formula’ and

‘term’ simultaneously in the usual way:

1. (Simple) term: All primitive constants and variables of type α are

(simple) terms of type α.

2. (Atomic) formula: If Δ is a term of type 〈α1, . . . , αn〉, and τ1, . . . , τn
are terms of types α1, . . . , αn, respectively, then Δτ1 . . . τn is an

(atomic) formula. Since we allow n to go to 0, when Δ is a term of

type 〈 〉 (i.e., type p), then Δ also is an (atomic) formula.

3. (Complex) formula: ¬φ, φ→ ψ, and ∀νφ are all (complex) formulas,

whenever φ, ψ are formulas and ν is any variable of any type.
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4. (Complex) term: Where φ is any formula and ν1, . . . , νn (n ≥ 0)

are any variables (which may occur free in φ) of types α1, . . . , αn,

respectively, [λν1 . . . νn φ] is a (complex) term of type 〈α1, . . . , αn〉.

It is absolutely essential to the points we make in what follows that terms

of the form [λν1 . . . νn φ] be understood correctly. These terms are not

function expressions. They are not to be confused with the expressions

in the well-known “λ-calculus” (Church 1932, 1933; Kleene 1935). The

above λ-expressions are to be read relationally. For example, to take a

simple case, [λxy ¬Rxy] denotes the relation: being objects x and y that

fail to exemplify the relation R. The claim [λxy ¬Rxy]ab asserts that

objects a and b exemplify, or stand in, that relation. It does not assert

anything about functions or function application! In general, [λν1 . . . νnφ]

is to be read with a gerund: being objects ν1, . . . , νn such that φ. Thus,

[λxy¬Rxy]ab is to be read: a and b exemplify the relation of being objects

x and y that fail to exemplify the relation R. A predication of the form

[λν1 . . . νn φ]κ1 . . . κn is to be read: κ1, . . . , κn stand in the relation of

being objects ν1 . . . νn (respectively) such that φ. Of course, β-reduction

holds for λ-expressions interpreted relationally. Where φ[κ1,...,κn
ν1,...,νn ] is the

result of substituting the κi for the νi, respectively, in φ, β-reduction is

captured as:

[λν1 . . . νn φ]κ1 . . . κn ≡ φ[κ1,...,κn
ν1,...,νn ]

To take our example from above as an instance, we read:

[λxy ¬Rxy]ab ≡ ¬Rab

as: a and b exemplify the relation of being objects x and y that fail to

exemplify the relation R if and only if a and b fail to exemplify the relation

R. So far, this is all straightforward and well-known.

Note, however, that given clause (4) of the above definition, RTT0

allows λ-expressions in which there are no variables bound by the λ.

It is important to understand these properly. Just as the general type

〈α1, . . . , αn〉 becomes the type 〈 〉 (= type p) when n = 0, similarly, the

general form of λ-expressions [λν1 . . . νn φ] has as instances λ-expressions

of the form [λ φ] when n = 0. Since [λν1 . . . νn φ] is a term of type

〈α1, . . . , αn〉, [λ φ] is a term of type p. And as a term of type p, [λ φ]

should be read: that-φ. For example, [λ Po] might be read: that Obama

exemplifies being President. To extend the example, if ‘B’ (‘believes’) is
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a 2-place relation of type 〈ı, p〉, and ‘j’ (‘John’) is a term of type ı, the

formula B(j, [λPo]) would be read: John believes that Obama is Presi-

dent.

It is important to note, however, that since they are terms of type p,

expressions of the form [λ φ] also qualify as atomic formulas, by clause

2 of the above definition. That means that RTT has expressions (e.g.,

[λ φ]) in the language which fall under two syntactic categories: formula

and term. These expressions are typed insofar as they are terms, since

only terms (i.e., denoting expressions) are typed. But by being both a

term and a formula, one and the same expression should be read in two

different ways, depending on whether it is being used as a term or as a

formula. For example, in the previous paragraph, we saw that [λ Po],

when used as a term in the formula B(j, [λPo]), was to be read ‘that

Obama exemplifies being President’. However, in the following formula,

[λ Po] is used as a formula:

[λ Po] ≡ Po

This is a well-defined complex sentence (indeed, as we shall see, it is an

instance of β-reduction), in which the expression [λ Po] on the left side

of the biconditional should be read as a formula (i.e., it should express

a thought). Here we must read [λ Po] as: (the proposition) that Obama

is President is true. This is perfectly coherent from a logical point of

view, since the (non-semantic) concept of truth is the 0-place case of the

concept of exemplification. In other words, the notion of exemplification

expressed by the formula on the left-side of the biconditional:

[λxy ¬Rxy]ab ≡ ¬Rab
becomes the concept of truth when expressed by formulas of the form:

[λ ¬Rab] ≡ ¬Rab
We’ve already seen that the former is read: a and b exemplify the relation

of being objects x and y that fail to exemplify the relation R if and only if

a and b fail to exemplify the relation R. But since exemplification reduces

to truth in the 0-place case, the latter is read: the proposition that a and

b fail to exemplify the relation R is true if and only if a and b fail to exem-

plify the relation R. In general, then, notion of exemplification expressed

by formulas on the left-side of n-place β-reduction biconditionals of the

form:
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[λν1 . . . νn φ]κ1 . . . κn ≡ φ[κ1,...,κn
ν1,...,νn ]

becomes the concept of truth in the case of formulas on the left side of

0-place β-reduction biconditionals of the form:

[λ φ] ≡ φ

Indeed, we read [λ φ] as “the proposition that φ is true” anywhere it ap-

pears as a formula rather than in term position. As we shall see, these

facts stand in contrast with FTT, where there is only one syntactic cat-

egory (‘term’) rather than two and formulas are definable as a subset of

the category ‘term’.

One might wonder at this point whether one can eliminate the syntac-

tic category ‘formula’ from RTT, say by assigning types to the connectives

and quantifiers. This isn’t usually done because syntactically the connec-

tives and quantifiers are functions from formulas to formulas and RTT is

not the natural environment for assigning these expressions denotations

that are functionally typed. Moreover, the literature shows that this is

not the usual way to formulate RTT. One difference between RTT and

FTT in Manzano 1996 is due to the fact that the connectives and quan-

tifiers of RTT are not assigned types.4 Muskens 1989 doesn’t include

primitive formulas with connectives and quantifiers in his language for

RTT.5 Although we haven’t formulated RTT so that the connectives and

quantifiers become terms assigned particular types, our argument in Sec-

tion 3.2 is designed to establish that one should not do so, since RTT is

more flexible in the absence of such typing. Indeed, one might reasonably

stipulate that one of the principal distinctions between RTT and FTT

is that RTT includes the primitive syntactic category ‘formula’ and does

not type the connectives and quantifiers. We hope to show that it is a

mistake to eliminate this primitive syntactic category in favor of the single

primitive category of ‘term’, as in done in FTT.

4See rules (E5) and (E6) on pp. 188-189.
5See Definition 10, p. 12. In Definition 16 and 17, formulas involving connectives

and quantifiers become defined. Note that Muskens’ relational type theory is relational

only because the types are interpreted relationally; no primitive atomic formulas of his

language expresses a statement to the effect that objects are related by a relation R

(the primitive identity formulas defined in clause iii in Definition 10 are not parsed

as relation statements in which ‘=’ is a 2-place relation). In what follows, we shall

assume that a true relational type theory not only has relational types but also has

relational atomic formulas, that is, formulas of the kind that can express the thought

that some objects exemplify or stand in relation R.
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We shall not dwell here on any more specifics of RTT0. For example,

we need not consider other kinds of complex terms in addition to λ-

expressions, such as definite descriptions, since they are straightforward.

Given the above well-defined notions of term and formula, the logic of

RTT0 can be developed as a logic of formulas, that is, as a set of for-

mulas designated as axioms and inference rules that are relations among

formulas. Thus we shall assume:

1. The classical axioms and rules for propositional logic, including all

tautologies as axioms and the rule of Modus Ponens

2. The classical axioms and rules for predicate logic, including the rule

of Generalization

3. The classical axioms governing formulas containing λ-expressions,

including β-reduction and α and η conversion.

In the usual way, one defines a proof in RTT0 as a sequence of formulas

such that each member of the sequence either is an axiom or follows from

previous members of the sequence by a rule of inference.

1.2 A Sketch of a Representative FTT

Now let’s sketch a simple functional type theory FTT0. We basically fol-

low Church 1940, though we use the recursive style which is now standard.

One need not follow Church to make our point; what is essential is that

our representative FTT be developed in such a way that the formulas of

the language form a subclass of the terms, i.e., they are defined as terms

that denote a truth-value.

We define the following types:6

• ı, o are both primitive types.

• If α1, . . . , αn, β are any types, then (β, α1, . . . , αn) is a complex type

(n ≥ 1).

6This definition of types differs from that of Church. Church requires all complex

types to be of the form (αβ), and “functions of several variables are explained, after

Schönfinkel [1924], as functions of one variable whose values are functions” (Church

1940, 57). To facilitate the comparison with RTT, we have defined ‘multi-argument’

functional types to characterize functions of several variables.
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Intuitively, ı is the type for individuals, and o is the type for truth-values

or propositions (depending on whether the system is construed extension-

ally or intensionally). Similarly, intuitively, (β, α1, . . . , αn) is the type of

n-ary functions which take as arguments a sequence (of length n) of ob-

jects of types α1, . . . , αn, respectively, and which have as values objects

of type β.

The symbols of the language include: improper symbols (, ), [, ], and

λ; and the proper symbols, which include (a) variables of every type, and

(b) the logical constants: ¬ (of type (o, o)), → (of type (o, o, o)), and Π

(of type (o, o, α1, . . . , αn)).

We define terms as follows:

1. Simple terms of type α: All primitive constants and variables of

type α are terms of type α.

2. Atomic function application: Where τ1, . . . , τn are variables of types

α1, . . . , αn and Δ is a term of type (β, α1, . . . , αn), then Δ(τ1, . . . , τn)

is a term of type β.

3. Complex terms of type (β, α1, . . . , αn): Where φ is any term of type

β and ν1, . . . , νn are any variables of types α1, . . . , αn, respectively,

(which may or may not occur free in φ) then [λν1 . . . νn φ] is a

(complex) term of type (β, α1, . . . , αn).

There are four observations to make about this definition.

1. Terms (including terms of type o) can be open (i.e., have free oc-

currences of variables) or closed.

2. One can pick out a class of terms of FTT that correspond to the

formulas of RTT, namely, terms of type o, i.e., terms that denote

truth-values (relative to an assignment to the variables). We may

call any type-o term of the form f(τ1 . . . τn) an ‘atomic formula’

whenever f is a term of type (o, α1, . . . , αn) and τ1, . . . , τn are terms

of types α1, . . . , αn, respectively.

3. The expressions of FTT which correspond to the ‘molecular formu-

las’ of RTT are terms. Negation (¬) and conditionalization (→) are

simply represented as functions of type (o, o) and type (o, o, o), re-

spectively. So where φ is a term of type o, ¬φ is also a term of type

o. Where, φ, ψ are terms of type o, so is → φψ. (In what follows,

we shall put → in infix notation, abbreviating →φψ as φ→ ψ.)
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4. The expressions of FTT which correspond to the quantified formulas

of RTT also become terms. We may define the variable-binding

universal quantifier ‘∀’ by letting

∀ν1 . . . νnφ
(where φ is a term of type o and ν1, . . . , νn are terms of types

α1, . . . , αn) abbreviate the following term of type o

Π([λν1 . . . νn φ]).

Intuitively, the formula Π([λν1 . . . νn φ]) asserts that every sequence

of elements of types α1, . . . , αn satisfies φ.

Note that Church (1940) didn’t take ‘formula’ (in our sense, as an expres-

sion that is assigned satisfaction, or truth, conditions) to be a primitive

syntactic type in his system. Instead, every denoting expression in his

system is a ‘well-formed formula’. We will not adopt this use of ‘formula’.

In what follows, the terms of FTT0 are just its denoting expressions, and

the well-formed formulas of FTT0 are restricted to terms of type o (we

may call the other well-formed expressions ‘well-formed terms’).

1.3 A Term Logic For FTT0

To develop a term logic for FTT0,
7 we use the standard definitions for

the truth functional connectives. The Rules of Inference are:

1. Modus Ponens. From φ and φ→ ψ infer ψ.

2. Generalization. From φ infer ∀νφ, where ν is of any type.

The axiom schemata are:

1. All tautologies are axioms.

2. ∀νφ→ φ[τ/ν], where τ is any term substitutable for ν.

3. ∀ν(φ→ ψ) → (φ→ ∀νψ), provided ν is not free in φ.

4. [λν1 . . . νn φ](μ1, . . . , μn) ≡ φ′, where φ is a term of type o, and

ν1, . . . , νn and μ1, . . . , μn are variables of types α1, . . . , αn, and φ′

is the result of substituting μ1, . . . , μn simultaneously for ν1, . . . , νn
in φ.

7See Church 1940, 60–63; Andrews 2002, 204.
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5. [λν1 . . . νn Δ(ν1, . . . , νn)] = Δ, where ν1, . . . , νn are any variables of

types α1, . . . , αn, and Δ any function term of type (β, α1, . . . , αn),

and [λν1 . . . νn Δ(ν1, . . . , νn)] is an ‘elementary’ λ-expression (i.e.,

one where the matrix is an atomic formula).

6. [λν1 . . . νn φ] = [λμ1 . . . μn φ
′], where μ1, . . . , μn are variables that

are substitutable for the variables ν1, . . . , νn, respectively, in φ and

φ and φ′ are alphabetic variants with respect to the νi and μi.

Axioms 4, 5, and 6 ground the rules of β and η reduction, and α conver-

sion, respectively. Note that we have not asserted any axiom of extension-

ality, so as to leave open the possibility of an intensional interpretation

of the formalism. Note also that although the definition of a proof is

identical to that for RTT0, the distinguishing feature of FTT0’s logic is

that every line of every proof is a term, and so the rules of inference are

relations between terms. In RTT0, formulas are not terms, so the in-

ferential relations between formulas are not inferential relations between

terms. The important point here is that the inferences of FTT0 are be-

tween syntactic expressions which must be terms as well as formulas. As

we shall see, this is a crucial difference between RTT0 and FTT0.

1.4 Important Differences Between RTTs and FTTs

It is natural to observe that:

(a) There is a subsystem of each FTT which is an RTT, namely, the

subsystem that results when that FTT is restricted to the functional

types of the form (β, α1, . . . , αn) when β = o, and

(b) There is a subsystem of each RTT which is an FTT, namely, the

subsystem that results when that RTT is restricted to functional

relations.8

We think many readers will conclude from this observation that it doesn’t

matter whether we formulate type theory relationally or functionally and

thus that it doesn’t matter whether we start with relations or functions

at the foundation of logic. We also suspect that many readers (e.g.,

8A functional relation, in the context of an RTT, is any relation R of type

〈α1, . . . , αn, αn+1〉 (for n ≥ 1) such that, for any objects x1, . . . , xn, y, z, where

x1, . . . , xn are of types α1, . . . , αn, respectively, and y, z are of type αn+1, R satis-

fies the condition: Rx1 . . . xny &Rx1 . . . xnz → y = z.
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those trained in computer science departments) may prefer the ‘Fregean’

method of mathematizing logic by taking mathematical functions as ba-

sic. We hope to show that this conclusion and preference are mistaken

by providing evidence for thinking that the use of relations as primitive

is logically more fundamental and offers a better foundation for logic and

mathematics than the use of functions as primitive. We think it is impor-

tant not to collapse the distinction between terms and formulas because

that collapses the distinction between naming and predication, resulting

in the undesirable consequences described below.

The following observations, about how RTT0 and FTT0 reveal dis-

tinctions between RTTs and FTTs, will be salient for our argument in

Section 3.2. These observations concern the differences between relations

and functions.

One crucial difference between RTTs and FTTs is that the former

have no need of a special primitive type for propositions, whereas FTTs

do need a distinguished primitive type for truth-values (or propositions),

In RTT0, propositions come for free as 0-place relations, i.e., relations of

type p.9 Moreover, in FTT0 it would be impossible to formulate state-

ments anything without introducing a primitive type for truth-values or

propositions.

Another crucial difference between RTTs and FTTs is that in the

former, it is possible to assert formulas without those formulas being

names of anything; i.e., a formula must have truth conditions but need

not have a denotation. The definition of truth yields truth conditions for

every formula φ, but the definition of denotation (for terms) need not

assign formulas denotations. By contrast, in FTT0, every formula must

be assigned a denotation.10

9In FTTs, the empty sequence of types can’t be a type. In the clause in the

definition of types that asserts:

If α1, . . . , αn, β are any types, then (β, α1, . . . , αn) is a complex type (n ≥ 1).

we can’t let n go to 0. Though logicians and computer scientists sometimes extend the

notion of function so that constants are treated as 0-place functions, such an extension

is not grounded in Frege’s idea of a function as a map from arguments to values.

Given that idea of a function, if there are no arguments to be mapped, then there is

no function.
10This difference may hold the key to the question of whether Russell’s own type

theory was a relational type theory, given that he seemed more inclined to work with

propositional functions than with relations. This question of Russell scholarship goes

beyond the scope of this paper. One might argue that Russell developed an RTT from

the fact that this difference, and the one just previously mentioned, apply to his type
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It is also worth observing that relations can be understood primarily

as intensional entities that characterize their relata. By contrast, math-

ematical functions are typically understood as extensional entities that

simply correlate their arguments and values.11 This difference between

our intuitive notions of characterization and correlation is philosophically

important, for the former is tied to the notion of predication while the

latter is tied to the notion of functional application. In a predication, the

properties and relations denoted by the predicates characterize the ob-

jects denoted by the subject and object terms. But in the corresponding

analysis of statements in terms of functional application, the function does

nothing more than map its arguments to propositions or truth-values. For

example, the primitive predications of the form Fa and Rab in RTTs say,

respectively, that the property F characterizes the object a and that the

relation R characterizes the related objects a and b. No such intuitive

reading is assumed for the FTT formulas Fa and Rab.

Of course, this ‘intended interpretation’ of RTT may not carry much

weight with some logicians and computer scientists. They may note that

for all serious model-theoretic investigations, the truth conditions of the

primitive relational statement Rxy is given by the claim that the ordered

pair consisting of the objects assigned to x and y (in that order) is an

element of the set of ordered pairs assigned to R. And then it will be

noted that R can be assigned a function instead, namely, the characteristic

function of the set of ordered pairs assigned to R. But our point here is

only that the following facts do not imply that relations just are functions

or that functions just are relations:

• that relations and functions are interdefinable (when considered ex-

tensionally),

theory. Russell can be read as holding the view that there is no special distinguished

type for propositions that serves as the type of outputs of propositional functions, in

which case, propositional functions are nothing other than relations, with propositions

as 0-place relations. Moreover, the formulas of PM aren’t (convertible into) terms that

denote propositions.
11Church (1940) describes his theory of simple types as open to interpretations in

which the types can be either extensional or intensional. So when the logical functions

(predication, the truth functions, and quantification) are defined as particular mathe-

matical functions, then even if the outputs of the logical functions are intensional ob-

jects, those functions are still mere correlations, and hence extensional. We’ll consider

below whether the use of intensional propositions instead of extensional truth-values

as a basic type in FTT0 offers a solution to the problem we develop. (It doesn’t.)
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• that RTT0 has a subsystem that constitutes an FTT, and

• that FTT0 has a subsystem that constitutes an RTT.

From the point of view of philosophical logic, one may conceive functions

and relations as very different fundamental entities and one may therefore

interpret RTTs very differently from FTTs. There are real philosophical

differences between taking relations as primitive and taking functions as

primitive. We plan to show, in what follows, that there is reason to think

that these two approaches are not equivalent as foundations for logic.

It is important to mention one final group of interesting features con-

cerning RTTs and FTTs. RTTs have two basic syntactic categories (for-

mula and term), and may include expressions that are categorized as both

formulas and terms. We saw examples of this earlier (Section 1.1), when

we discussed the fact that the expression [λ φ] (in which the λ binds no

variables) is both a term (i.e., denoting expression) and a formula (ex-

pression assigned truth conditions). So in RTTs, expressions can be of

more than one syntactic category (though as terms, they can have only

one type). By contrast, FTTs don’t have ‘formula’ as a primitive syn-

tactic category. Formulas are defined as special kinds of terms, and so

FTT doesn’t include expressions that fall under more than one syntactic

category.

2. A Theory of Abstract Objects12

2.1 The language of the theory

So as to make the present paper self-contained, we review the most im-

portant elements of the theory of abstract objects (Zalta 1983, 1988). We

shall henceforth call this theory ‘object theory’.13 In its simplest form,

this theory is couched in a second-order modal language (without iden-

tity) modified only so as to admit a second kind of atomic formula. This

distinctive feature, namely, the presence of two forms of atomic predica-

tion, derives from Mally (1912). This distinction between two kinds of

predication is preserved in the formulation of higher-order object theory,

but for now, let’s focus on the simpler second-order version of the theory.

12This section has been added at the request of the referees.
13The objects of this theory are not to be confused with the objects of object-oriented

programming languages, nor with the objects that are instances of abstract data types.
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To introduce these two kinds of atomic formulas, let κ1, κ2, . . . be any

object terms (either primitive object terms such as constants a, b, c, . . . or

variables x, y, z, . . ., or complex object terms such as definite descriptions,

to be defined below) and let Θn
1 ,Θ

n
2 , . . . be any n-place relation terms,

n ≥ 0 (either primitive relation terms, such as constants Pn, Qn, . . . or

variables Fn, Gn, . . ., or complex relation terms, such as λ-expressions,

to be defined below). Then the language of object theory will include

both the usual atomic formulas of the form Θnκ1 . . . κn and new atomic

formulas of the form κΘ1.14 In the definition of a second-order language

with encoding, there are two base clauses for atomic formulas:

Where Θn is any n-place relation term and τ1, . . . , τn are any object

terms, then Θnτ1 . . . τn is an atomic (exemplification) formula.

Where Θ1 is any 1-place relation term and τ is any object term,

then τΘ1 is an atomic (encoding) formula.

We read the first kind of atomic formula as: objects κ1, . . . , κn exemplify

the relation Θn. We read the second kind of atomic formula as: object κ

encodes property Θ1. We will discuss the new atomic encoding formulas

in more detail below. But given these atomic formulas as the base case of

a recursive definition, the molecular, quantified and modal formulas are

the usual ones: if φ and ψ are any formulas and ν any object or relation

variable, then ¬φ, φ→ ψ, ∀νφ, and �φ are formulas. In what follows, we

suppose φ& ψ, φ ∨ ψ, and φ ≡ ψ are defined in the usual way.

In object theory the notions of ‘formula’ and ‘term’ are defined si-

multaneously, and the definition of ‘term’ has clauses for the formation

of definite descriptions and λ-expressions. We therefore use the following

two clauses to introduce the complex terms:

1. Where ν is any object variable and φ is any formula, then ıνφ is a

complex object term. We read ıνφ as: the object ν such that φ.

2. Where ν1, . . . , νn are any object variables and φ is any formula that

has no encoding subformulas, then [λν1, . . . , νn φ] is a complex n-

place relation term (for n ≥ 0).

We read the expression [λν1, . . . , νn φ] in either of the following ways:

14In the case where n = 0, the first kind of formula, Θnκ1 . . . κn, becomes the 0-place

relation (= propositional) term Θ0, which may be, for example, either the propositional

constant P 0 or the propositional variable F 0.
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• being objects ν1, . . . , νn such that φ

• the relation that objects ν1, . . . , νn exemplify just in case φ

For example:

• The λ-expression [λx ¬Rx] might be read: being an object x such

that x fails to exemplify being round

• The λ-expression [λxy Rx & ¬Py] might be read: being objects x

and y such that x exemplifies R and y fails to exemplify P .

• The λ-expression [λxy Rx & ¬Py] might be read: being objects x

and y such that x exemplifies R and y fails to exemplify P .

Clearly, we are understanding λ-expressions relationally and not function-

ally, i.e., as denoting relations rather than functions.

In the clause introducing λ-expressions, we let ‘subformula’ have the

simple definition:

1. If φ is any of the formulas, ¬ψ, ψ → χ, ∀νψ, or �ψ, then ψ (χ) is

a subformula of φ.

2. If ψ is a subformula of χ and χ is a subformula of φ, then ψ is a

subformula of φ.

Notice that the encoding formula ‘xG’ is not a subformula of ‘Fıx(xG)’,

since it is embedded in a term within the formula. Thus λ-expressions

such as [λy Ryıx(xG)] are well-formed. The matrix Ryıx(xG) has no

encoding subformulas, given our definition. However, the ‘no encoding

subformulas’ restriction implies that the expression [λxy Px → �yQ] is

not well-formed: ‘yQ’ is a subformula of ‘�yQ’ formula, and ‘�yQ’ is a

subformula of ‘Px → �yQ’, making ‘yQ’ a subformula of ‘Px → �yQ’.

Since this latter has an encoding subformula, it is not allowed in any

λ-expressions of the form [λν1, . . . , νn φ] (n ≥ 0).

The simultaneous definition of formula and term yields following ex-

amples of formulas:

• [λy Ray & ¬∃z(Qzy)]b. This is an atomic exemplification formula

with a complex relation term. It asserts that object b exemplifies

the (complex) property of being an object y such that a bears R to

y and such that it is not the case that something bears Q to y.
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• ıx(Rx&Qx)P . This is an atomic encoding formula with a complex

object term. It asserts that the object x which is both R and Q

encodes the property P .

• ∀F (aF → Fa). This quantified formula asserts that object a exem-

plifies every property that it encodes.

• �∃x(A!x & ∀F (xF ≡ Fb)). This modal, quantified formula asserts

that necessarily, there is an object x that exemplifies the property

A! and which is such that it encodes all and only the properties

exemplified by object b.

Before we turn to some of the important definitions in object theory,

such as that of identity, it would serve well to examine the effect of letting

n go to 0 in [λν1, . . . , νn φ]. [λ φ] is an acceptable λ-expression and it

denotes a 0-place relation (i.e., a proposition). Recalling our work in

Section 1.1, this λ-expression is to be read as: that φ. For example,

the permissible expression [λ Pa], where λ binds no variables is read:

that a exemplifies P . For purposes of clarity, we stipulate that the λ

takes precedence over all the connectives and quantifiers in the matrix

governed by the λ. Thus, in the expression [λ Pa → �Qb], the entire

formula following the λ falls within the scope of the λ and so the expression

denotes the conditional proposition that if a exemplifies P then necessarily

b exemplifies Q. Note, finally, that the 0-place λ-expressions like [λPa] are

to be distinguished from 1-place λ-expressions like [λx Pa]. The former

denotes a proposition, whereas the latter denotes a property. The former

denotes the proposition that a exemplifies P , whereas the latter denotes

the property of being an object x such a exemplifies P . The difference

here is crucial, since the former expression denotes a 0-place relation while

the latter denotes a 1-place relation.

In the next series of definitions, we assume that there is a single dis-

tinguished one-place predicate, namely, E!. For present purposes, we

may interpret E!x as asserting that x exemplifies the property of being

concrete. We may therefore define two kinds of objects: the ordinary

objects are those that might possibly be concrete (i.e., O!x =df �E!x)

and the abstract objects are those that couldn’t possibly be concrete

(A!x =df ¬�E!x). This distinction is crucial to the theory, for whereas

ordinary objects only exemplify properties, abstract objects may encode

as well as exemplify properties. There will be a comprehension principle

that asserts that for any condition on properties φ, there is an abstract
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object that encodes exactly the properties that satisfy (in Tarski’s sense)

the condition φ.

We may now define identity for objects, properties, relations, and

propositions, respectively:

• x = y =df

[O!x&O!y &�∀F (Fx ≡ Fy)] ∨ [A!x&A!y &�∀F (xF ≡ yF )]

• F 1 = G1 =df �∀x(xF ≡ xG)

• Fn = Gn =df [omitted for simplicity]

• F 0 = G0 =df [λx F 0] = [λx G0]

The first definition tells us that objects x and y are identical iff either

(a) they are both ordinary objects that necessarily exemplify the same

properties, or (b) they are both abstract objects that necessarily encode

the same properties. The second definition asserts that properties F 1

and G1 are identical whenever they are necessarily encoded by the same

objects. The third definition is omitted for simplicity, but basically, Fn

and Gn are identical whenever each way of plugging n−1 objects into Fn

and Gn (plugging them in the same order) always results in two 1-place

properties that are identical according to the definition of F 1 = G1.15

Finally, the fourth definition asserts that propositions F 0 and G0 are

identical just in case the property being an x such that F 0 is identical to

the property of being an x such that G0, thereby reducing it to a previous

case.

2.2 The Semantics

We interpret the language of object theory in the most straightforward

way possible, namely, by assuming that the object variables and con-

stants range over a domain of objects and that the relation variables and

constants range over a domain of relations among those objects. To be

more precise, let the object terms take denotations in, or range over, the

members of a domain of objectsD, and the n-place relation terms take de-

notations in, or range over, the members of a domain of n-place relations

15See Zalta 1993, note 21. An example illustrates the definition. For F 3 and G3

to be identical, the following identities must hold (for arbitrarily chosen objects x, y):

(a) [λz Fzxy] = [λz Gzxy], (b) [λz Fxzy] = [λz Gxzy], and (c) [λz Fxyz] = [λz Gxyz].

This reduces relation identity to property identity.
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Rn (and let R =
⋃

n≥0Rn). Assuming a primitive domain of possible

worlds, each n-place relation is assigned an exemplification extension that

can vary from world to world, while each 1-place property is assigned an

encoding extension that doesn’t vary with the worlds. Thus, a function

extw assigns sets of n-tuples (whose elements are in D) to each rn in

Rn. A second function, extA assigns a subset of D to each member r1

in R1. So this second function is independent of the possible worlds, and

will be used to interpret atomic encoding formulas. Now, given (a) some

interpretation function I that assigns each object and relation constant

to a member of the appropriate domain, (b) some appropriate assignment

f to the variables, and (c) a denotation function dI,f which agrees with

the interpretation function I on the constants and agrees with the assign-

ment function f on the variables, we may interpret our atomic formulas

by defining satisfaction with respect to a world, as follows (ignoring the

presence of definite descriptions, for simplicity):

1. Where φ is an atomic exemplification formula of the form Θnκ1 . . . κn,

f satisfies φ with respect to world w iff 〈dI,f (κ1), . . . ,dI,f (κn)〉 ∈
extw(dI,f (Θ

n))

2. Where φ is an atomic encoding formula of the form κΘ1, f satisfies

φ with respect to world w iff dI,f (κ) ∈ extA(dI,f (Θ
1))

These definitions can be modified in the usual way to allow for non-

denoting definite descriptions and terms that might contain them.16 Note

that worlds w play no role in the definition of satisfaction for atomic

encoding formulas, since the properties an object encodes will not vary

from world to world.

2.3 Logic

The logic for this language is as simple as it could be modulo the presence

of definite descriptions which are interpreted as rigidly designating the

16The definitions then become:

1. Where φ is an atomic exemplification formula of the form Θnκ1 . . . κn, f satisfies

φ with respect to world w iff ∃o1 . . .∃on ∈ D,∃rn ∈ R[o1 = dI,f (κ1) and

. . . and on = dI,f (κn) and rn = dI,f (Θ
n) and 〈o1, . . . ,on〉 ∈ extw(rn)].

2. Where φ is an atomic encoding formula of the form κΘ1, f satisfies φ with

respect to world w iff ∃o ∈ D, ∃r1 ∈ R[o = dI,f (κ) and r1 = dI,f (Θ
1) and

o ∈ extA(r1)].
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unique objects satisfying their matrices. No changes to the axioms and

rules of second-order logic are required to accommodate atomic encoding

formulas, though there is a special modal axiom for encoding formulas.

We take as axioms the modal closures of all the usual axioms of clas-

sical propositional logic, classical quantification theory, and classical S5

modal logic. To this basis, we add all of the instances of the following

modal principle for encoding:

�xF → �xF

In other words, encoding is not relative to any circumstance. This is

validated semantically by the fact that the satisfaction conditions, at a

world, for atomic encoding formulas are independent of the worlds.

Given that we have two sorts of complex terms in the language, we may

conclude the statement of the axioms by saying which axioms govern the

λ-expressions and the definite descriptions. λ-expressions are governed by

the modal closures of the usual axioms that ground the derived rules for

λ-conversion (β reduction, η reduction, and α conversion, respectively):

(β) [λx1 . . . xn φ]y1 . . . yn ≡ φy1,...,yn
x1,...,xn

(φ free of descriptions)

(η) [λx1 . . . xn F
nx1 . . . xn] = Fn

(α) [λx1 . . . xn φ] = [λx′1 . . . x
′
n φ

′] (φ, φ′ alphabetic variants in x, x′)

Since the definite descriptions of the form ıxφ are treated semantically

as rigidly designating the object that satisfies the matrix at the actual

world, they are governed by an axiom schema the instances of which are

contingent, i.e., the instances of the following axiom schema governing

descriptions are logical truths that are not necessary (Zalta 1988, 90):

Descriptions: ψıxφ
y ≡ ∃x(φ & ∀z(φzx → z=x) & ψx

y ), for any atomic

formula or defined identity formula ψ(y) in which y is free.

Consequently, we take as axioms only the instances of Descriptions, not

arbitrary modal closures of those instances.

To these axioms, we annex the usual rules of MP and GEN, and

complete the logic with a Rule of Necessitation (RN) restricted only so

that it does not apply to any line that depends on an instance of the

Descriptions axiom (since those instances are not necessary truths).
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2.4 The Proper Theory and Its Consequences

There are two non-logical axioms in object theory:

1. O!x→ �¬∃F xF

2. ∃x(A!x & ∀F (xF ≡ φ)), where φ has no free xs

The first asserts that ordinary objects necessarily fail to encode properties.

Encoding is a mode of predication that applies only to abstract objects.

The second proper axiom is the comprehension schema for abstract ob-

jects. It asserts, for any condition φ, that there exists an abstract object

that encodes all and only the properties satisfying φ. Here are some ex-

amples of comprehension, where ‘p’ in the following formulas ranges over

propositions (0-place relations) and ≈E is the relation that two properties

F andG bear to one another just in case there is a one-one correspondence

between the ordinary objects exemplifying them:

• ∃x(A!x & ∀F (xF ≡ Fy))

• ∃x(A!x & ∀F (xF ≡ ∃p(p & F =[λz p])))

• ∃x(A!x & ∀F (xF ≡ �∀y(Gy → Fy)))

• ∃x(A!x & ∀F (xF ≡ F ≈E G))

The first asserts the existence of an abstract object that encodes exactly

the properties exemplified by a given object y; the second that of an

abstract object that encodes exactly properties F of the form [λz p] con-

structed out of true propositions p; the third that of an abstract object

that encodes all the properties F necessarily implied by a given prop-

erty G; and the fourth that of an abstract object that encodes exactly

the properties F equinumerous with respect to the ordinary objects to a

given property G.17

Note that in the presence of the definition of identity for objects,

each instance of comprehension implies the existence of a unique abstract

object satisfying the defining condition φ. That in turn entails that, for

each description of the form:

ıx(A!x& ∀F (xF ≡ φ)), where φ has no free xs

17This is a variant of Frege’s notion of equinumerosity, and in Zalta 1999, it is used in

the derivation of the Dedekind-Peano axioms for number theory as theorems of object

theory.
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there is a theorem of the form:

∃y(y = ıx(A!x & ∀F (xF ≡ φ)))

Therefore, these descriptions become canonical in the sense that they are

guaranteed to have denotations no matter what the matrix φ. Here are

examples of such descriptions, which correspond, respectively, with the

above examples of comprehension and which are all well-defined:

• The complete concept of y (ȳ):

ȳ = ıx(A!x & ∀F (xF ≡ Fy))

• The actual world (wα):

wα = ıx(A!x & ∀F (xF ≡ ∃p(p & F =[λz p])))

• The Platonic Form of G (ΦG):

ΦG = ıx(A!x & ∀F (xF ≡ �∀y(Gy → Fy)))

• The Fregean Number of Gs (#G):

#G = ıx(A!x & ∀F (xF ≡ F ≈E G))

These examples should give one a good idea of the variety of abstract

objects asserted to exist by the theory.

Research on object theory has demonstrated its importance for foun-

dations of mathematics, (foundations of) metaphysics, (foundations of)

epistemology, and for regimenting philosophically interesting parts of nat-

ural language. The theory can correctly represent sentences and inferences

(preserving truth value and validity, respectively) from these subjects that

few other axiomatized theory can. Anderson 1993 analyzes the intensional

logic and discusses the solution to the paradoxes of object theory. Deutsch

1993 analyzes the way the theory analyzes substitution into propositional

attitude contexts. It is established that the theory allows us to reason,

and prove fundamental theorems, about possible worlds (Zalta 1983), Pla-

tonic Forms (Pelletier and Zalta 2000), the natural numbers (Zalta 1999),

Leibnizian concepts (Zalta 2000a), and Fregean extensions (Anderson &

Zalta 2004). Moreover, the theory also provides a general foundation for

mathematics (Zalta 2000b, Linsky & Zalta 2006). Models of the theory

developed by Dana Scott and Peter Aczel were reported in Zalta 1983

and Zalta 1999, respectively.
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3. The Problem

We’ve now outlined the basics of object theory in some detail. To com-

plete our preparations for the statement of the problem, we need to iden-

tify some interesting formulas and their properties. Notice that whereas

(a) [λx¬Px] and [λxy ∀F (Fx ≡ Fy)] are well-formed 1-place and 2-place

relation terms, respectively, and (b) [λ ∀F (Fa ≡ Fb)] is a well-defined

0-place relation term (which denotes a proposition), the following expres-

sions are not well-formed λ-expressions:

[λx ∃F (xF & ¬Fx)]

[λ ∃F (bF & ¬Fb)]

These formulas will play a role in our argument, in Section 3.2, to the

conclusion that the logic of object theory cannot be formulated in an

FTT. We plan to show that the logic of object theory has to be presented

as a logic of formulas , and not as a logic of terms. Otherwise, it would

miss the inferences involving formulas with encoding subformulas.

To appreciate the argument in Section 3.2, it must be clear why encod-

ing subformulas have been banished from λ-expressions in the language

of object theory. Consider what would happen if the following expression

were allowed as a term:

[λx ∃F (xF & ¬Fx)]

Let us abbreviate this expression as ‘K’. If such an expression were a

term, we could formulate the following instance of the comprehension

principle for abstract objects:

∃x(A!x & ∀F (xF ≡ F =K))

This asserts the existence of an abstract object, call it b, which encodes

exactly one property, namely, K. Now to see how a paradox would result,

ask the question, does b exemplify K? Suppose b exemplifies K. Then,

by the definition of K and β-reduction, there is a property that b encodes

but which it fails to exemplify. Since, by definition of b, b encodes only

K, b must therefore fail to exemplify K, contrary to hypothesis. So let’s

suppose b doesn’t exemplify K. Then, by the definition of K and β-

reduction, it is not the case that there is a property that b encodes and

fails to exemplify, i.e., every property b encodes is one it exemplifies. But,
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by definition of b, b encodes K, and so exemplifies K, again contrary to

assumption.

This contradiction is avoided by banishing encoding subformulas from

λ-expressions. As a consequence, the formulas with encoding subformulas

become expressions that have truth conditions but are not and cannot be

converted to terms (i.e., denoting expressions). We developed the logic of

object theory as a logic of formulas so that we could represent inferences

even involving expressions that were not convertible to terms. And as we

shall see in Section 3.1, we can formulate the logic of object theory in RTT

as a classical logic of formulas: the classical axioms and rules for propo-

sitional logic, predicate logic, and modal S5 can all be preserved in RTT.

3.1 Formulating Object Theory in RTT

Object theory is straightforwardly reformulated in relational type theory,

and the logic is essentially preserved, by changing RTT to allow for new

(atomic) encoding formulas of the form ‘τΔ’ for any term τ of type t and

for any predicate Δ of type 〈t〉. (For example, if ‘x’ is a term of type t and

‘F ’ is a term of type 〈t〉, then ‘xF ’ is a formula.) Thus, the representation

of object theory in RTT requires the following types:

• i is the type for individuals

• 〈α1, . . . , αn〉 is the type for relations among entities having types

α1, . . . , αn

And as a special case when n = 0, we have

• 〈 〉 (or more simply, p)

as the type for propositions. Then we may type the terms in atomic

exemplification formulas of the form Fnx1 . . . xn (n ≥ 0) as:

F 〈α1,...,αn〉xα1
1 . . . xαn

n

So when n = 0, F p is a an exemplification formula.

We also type the terms in atomic encoding formulas of the form xF

as:

xαF 〈α〉

An n-place λ-expression (n ≥ 0) such as:
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[λxα1

1 . . . xαn
n φ]

is an expression of type 〈α1, . . . , αn〉, and when n = 0, [λφ] is an expression

of type p.

The logic of type-theoretic object theory may now be developed in

the usual way as a logic of formulas. This is almost straightforward and

the details will not be provided here. For the present purposes, we apply

the logic assumed for RTT at the end of Section 1.2. To see how this

might go in further detail in an enhanced RTT, one may consult Zalta

1983 (Section VI) or Zalta 1988 (Appendix). The main facts to note about

such a logic are that inferences are transitions among formulas and that it

doesn’t matter whether or not the formulas appearing in those inferences

are terms, i.e., expressions having denotations. Indeed, the inferences

among encoding formulas and formulas that have encoding subformulas

are examples of the latter fact, since these are formulas that cannot be

construed as denoting terms.

3.2 Formulating Object Theory in FTT

Things are very different when we try to represent type-theoretic object

theory in FTT. FTT assumes that every formula is a term and moreover,

that every formula can be put inside a λ-expression to form another term.

However, in object theory, as we’ve seen, there are two kinds of formulas:

(1) formulas that either are terms or can be put inside λ-expressions

to form terms, and (2) formulas that are not terms and cannot be put

inside λ-expressions to form terms. Let us call the former ‘propositional

formulas’ and the latter ‘non-propositional formulas’. The representation

of the inferences involving non-propositional formulas will turn out to

be the problem for FTT. Note that in object theory, any propositional

formula can be put into a λ-expression, where the λ binds no variables,

to form a term that denotes a proposition (relative to assignments to the

variables), not a truth-value. For example, as we saw above, in object

theory ‘Pa→ �Qb’ is a closed propositional formula and can be put into

the λ-expression, [λ Pa → �Qb]. This expression denotes a proposition,

not a truth-value.

To see why the logic of non-propositional formulas cannot be repre-

sented in FTT, let us consider how to represent various formulas of object

theory in FTT. First consider a (propositional) quantified formula of ob-

ject theory with no encoding subformulas, such as
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(A) ∀x(Rxa)
To represent (A) in FTT, one must assign R the type (o, ι, ι), and assign

both x and a the type ι. By observation 4 at the end of Section 1.2, (A)

then becomes, in FTT, an abbreviation of:

(B) Π([λx Rxa])

In (B), [λx Rxa] is of type (o, ι), Π is of type (o, o, ι), and thus the term

(B) is itself of type o, by clause 2 (functional application) of the definition

of terms in FTT (Section 1.2 above).

Now, by contrast, consider a (non-propositional) quantified formula of

object theory with encoding subformulas, such as

(C) ∀x(xP → Px)

To represent this formula in FTT, we have to answer the question, “How

should FTT be modified so as to include encoding formulas?”

The simplest modification to FTT that accommodates encoding for-

mulas is to add the name of a new binary function, Enc, that maps objects

and property-type entities to truth values. We may suppose that the type

of Enc is (o, α, (o, α)), for any type α. So, for example, the simplest for-

mula with Enc will be of the form Enc(x, F ), where x is of type ι and F

is of type (o, ι). The whole formula Enc(x, F ) is therefore a term of type

o. The formula Enc(x, F ) intuitively asserts that x encodes F .

So in translating from object theory to FTT, (C) becomes (C′):

(C′) ∀x(Enc(x, P ) → Px)

In (C′), P appears to be of type (o, ι), and x of type ι, and (C′) itself

should be of type o. However, it turns out that (C′) is not even well-

formed, because given our representation of the universal quantifier, it is

an abbreviation of:

(D) Π([λx Enc(x, P ) → Px])

But we learned from our discussion above that we can’t allow encoding

subformulas into λ-expressions. For if we could, we could formulate:

(E) [λx ∃F (Enc(x, F ) & ¬Fx)]
If this putative λ-expression were well-formed, the paradox discussed

above would be derivable.

Paul Oppenheimer and Edward N. Zalta 28

The moral here is clear. If we introduce encoding formulas into FTT

in the natural way, we can’t define the universal quantifier in terms of

applying the function Π to a λ-expression, since not all formulas in the

scope of a quantifier can be converted to λ-expressions. Indeed, the quan-

tifier function Π can’t be introduced as a primitive function symbol. Note

that if we were to instead introduce the quantifier as a variable binding

operator, then there would be closed formulas like ∃F (Enc(b, F ) & ¬Fb)
which would be terms of type o. By λ-abstraction, we could then form

terms like [λx ∃F (Enc(x, F ) & ¬Fx)], thereby introducing the property

that leads to contradiction. The only way to avoid this would be to some-

how stipulate that ∃F (Enc(b, F ) & ¬Fb) is not a term of any type. But

then we would have formulas which aren’t terms, contrary to the idea

that closed formulas in FTT are just terms of type o.

We’ve just described one problem with the translation of type-theoretic

object theory into FTT. But there is also a second problem, one which

arises for expressions of object theory that don’t involve quantifiers. Con-

sider the following two formulas:

(F) Pa& ¬Pa
(G) aP & ¬Pa
In object theory, both of these are formulas and they are assigned truth

conditions by the definition of truth. The first can be converted into the

term [λ Pa& ¬Pa]; the second cannot be converted into a term.

Now suppose we translate these formulas into FTT with Enc. They

would become:

(F′) Pa& ¬Pa
(G′) Enc(a, P ) & ¬Pa
Both expressions would be formulas, i.e., terms of type o. But if we allow

(G′) to be a term of type o, then it could be placed inside a λ-expression

to form a new term. But this leads to our previous problem, since if

‘Enc(a, P ) & ¬Pa’ were a term, then no matter how quantification is

handled within the system, ‘∃F (Enc(a, F )&¬Fa)’ would become a term,

and by λ abstraction, ‘[λx ∃F (Enc(x, F ) &¬Fx)]’ would become a term.

This would recreate the λ-expression that leads to paradox.

So we can’t even introduce the function Enc and assign it a type. For

any type we assign to it would turn Enc(x, F ) into a term of some type
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or other. Once it is a term of some type or other, it can be included in

expressions to form more complex terms using any of the rules of forma-

tion, and in particular, the rule of λ-abstraction. So there is no way to

prevent the contradiction-generating λ-expression from being formed.

These two problems now present an obstacle that, we claim, can’t be

overcome, namely, that FTT cannot represent the logic of the following

derivation:

aP & ¬Pa  ∃F (aF & ¬Fa)

This is an instance of Existential Generalization that can’t be represented

in FTT. To represent the derivation in FTT, one would have to have terms

on both sides of the derivation sign. But formulas in object theory with

encoding subformulas can’t be represented as terms of type o in FTT.

Thus, a term logic cannot represent those inferences in object theory

which relate two formulas with encoding subformulas. Such inferences,

however, are valid in the representation of object theory in RTT because

the formulas have well-defined truth conditions, and the rules of inference

relate formulas, not terms. This establishes that the formula-based logic

of RTT is more general than the term-based logic of FTT.

4. Are There Ways To Dodge This Problem?

We’ve seen that if one were to represent all object theory formulas as

terms, then non-propositional formulas would be embeddable into λ-

expressions, leading to paradox. Non-propositional formulas, therefore,

can’t be terms.

4.1 Would Interpreting FTT Intensionally Help?

Now someone might object that we have assumed the standard exten-

sional interpretation of FTT, in which the terms of type o in FTT denote

truth-values, and that by interpreting the terms of type o in FTT inten-

sionally, so as to regard the terms of type o as denoting propositions, the

formulas of object theory could be represented as terms denoting propo-

sitions. Thus, the non-propositional formulas of object theory could get

represented as terms denoting propositions.

This suggestion doesn’t help, however. If non-propositional formulas

were represented as terms denoting propositions, we would be able to ab-
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stract over them. Consider, for example, the formula ∃F (aF & ¬Fa). If

this were to denote a proposition, then we could abstract out the property

[λx ∃F (xF & ¬Fx)]. Such a property would yield a contradiction, as de-

scribed above in Section 3. Thus, it doesn’t help to assume an intensional

interpretation of FTT.

4.2 Would Free Logic Help?

One might make the following suggestion. Why not reformulate FTT

with a free logic? The suggestion here would be to alter the logic of

FTT so that it allows for closed terms that don’t denote anything. Such

terms could be used to represent formulas of object theory with encoding

subformulas. If such formulas are represented as non-denoting terms,

then we can’t abstract out the properties that lead to contradiction. To

implement this suggestion in FTT, the logic would have to be adjusted

so that the instantiation and substitution of terms is allowed only when

one knows that the terms denote.

This suggestion won’t work either. We can’t make this modification to

FTT and still retain or represent the classical logic of object theory. For

the suggested modification would require that one allow for formulas (i.e.,

expressions of type o) that have no denotation. Such formulas would not

denote truth-values. But if such expressions don’t denote truth-values,

then they are neither true nor false and so can’t be governed by the

principles of classical logic. By contrast, the logic of non-propositional

formulas in object theory is classical. For example, it is a theorem of

object theory that ∃FaF ∨ ¬∃FaF . However, if ‘∃FaF ’ were represented
in FTT by the term ∃FEnc(a, F ) and that term were to denote noth-

ing, then a fortiori it wouldn’t denote a truth value. The representation

of its negation, ¬∃FEnc(a, F ), therefore, would denote nothing, and so

wouldn’t denote a truth value. If either the representation of ∃FaF or

the representation of its negation were to fail to denote, then the repre-

sentation of their disjunction, ∃FEnc(a, F ) ∨ ¬∃FEnc(a, F ), wouldn’t
denote anything. In particular, it wouldn’t denote the True and therefore

couldn’t be valid.

Thus, if we made the logic of FTT free, some logical theorems of object

theory that follow from classical propositional logic alone would not be

preserved. Object theory preserves the classical principle of bivalence,

but its representation in FTT would not. This proposal then fails to offer
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a faithful representation of object theory.

It does no good to consider amending the free logic for FTT by

adding a third truth value, say ‘undefined’. The amended proposal still

wouldn’t preserve the truth values of theorems of object theory. For ex-

ample, ∃FaF ∨ ¬∃FaF is provable as a theorem of object theory. But

on the amended proposal, its representation in FTT would receive the

truth-value ‘undefined’, because at least one disjunct of ∃FEnc(a, F ) ∨
¬∃FEnc(a, F ) would be a term with the truth value ‘undefined’. That

would clearly sever the connection between theoremhood and truth.

4.3 Would it Help to Add a New Primitive Type?

Another suggestion, however, presents itself: why not repair FTT by

adding a new primitive type: in addition to primitive types ι (for indi-

viduals) and o (for truth-values), why not add the primitive type π (for

propositions)? Call the resulting functional type theory FTT′. The idea

would then be to represent formulas of object theory in FTT′ as follows:

• Propositional formulas (i.e., formulas that can be put inside λ-

expressions to form terms) are to be represented in FTT′ as terms

of type π. Terms of type π denote propositions, not truth values.

• Non-propositional formulas (which can’t be converted to terms)

would be represented in FTT′ as terms of type o. Terms of type o

denote truth values, not propositions.

Though this suggestion looks simple and natural enough, the fact is that

(a) it doesn’t solve the previously-described problem of representing quan-

tified non-propositional formulas of object theory, and (b) it introduces a

serious problem concerning the logical connectives.

The addition of a new type π for propositional formulas doesn’t solve

the problem of representing quantified formulas with encoding subfor-

mulas in FTT. Recall that the formula ∀x(Enc(x, P ) → Px) can’t be

represented as:

(D) Π([λx Enc(x, P ) → Px])

because encoding formulas cannot be embedded in λ-expressions. So the

addition of a new type doesn’t do anything to solve this problem.
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But a new and serious problem arises when one considers the logical

constants under this new proposal for revising FTT0. Given the defini-

tion of FTT0, we observed (Section 1.2, observation 3) that the logical

connectives are introduced so that:

Negation (¬) and conditionalization (→) are simply represented as

functions of type (o, o) and type (o, o, o), respectively. So where φ is

a term of type o, ¬φ is also a term of type o. Where φ, ψ are terms

of type o, so is → φψ.

The types of the logical constants, as defined in FTT0 are functional types

applying to terms of type o. Unless we broaden this definition, there would

be no way to allow for molecular formulas with subformulas of type π,

and so no way to represent the object theoretic formula Pa &Qb. Thus

propositional formulas can’t be put into truth-functional combination, nor

can one have quantified truth-functional propositional formulas.

Desperate moves might be considered: (a) introduce two different

forms of conjunction, negation, conditionalization, quantification, etc.,

one for propositional formulas and one for non-propositional formulas.

This would, of course, require two separate logical systems, one for the

the molecular and quantified formulas of type π and one for the molec-

ular and quantified formulas of type o. If that is what is required, then

clearly FTT can’t be as general as RTT, since no such bifurcation of the

logic is needed to represent object theory in RTT. Nor could one revise

the introduction of the connectives and quantifiers so that they become

functions solely applying to formulas of type π. For this would prevent

us from representing molecular and quantified non-propositional formu-

las, since on such a suggestion, there would no longer be connectives

and quantifiers relating formulas of type o. This latter move abandons all

hope of revising FTT so as to solve the problem of representing quantified

non-propositional formulas discussed in the middle of Section 3.2.

Since every formula in object theory is governed by the definition of

truth and receives truth conditions, propositional formulas are assigned

truth conditions. When the truth conditions of a propositional formula

obtain, the proposition it denotes has the truth value The True as an ex-

tension. Thus, the fundamental problem for representing object theory in

functional type theory is that object theory has two kinds of expressions

with truth conditions: (1) propositional formulas that denote proposi-

tions, and (2) non-propositional formulas that aren’t terms and can’t be
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converted to terms. The attempt to translate formulas of object theory

which denote propositions into FTT′ fails to represent them in terms of

an expression that has the right type: on the one hand, such formulas

should be represented as being of type π because they denote proposi-

tions, but on the other hand, they should also be represented as being of

type o because each propositional formula receives truth conditions and

(indirectly) a truth value (namely, the extension of the proposition it de-

notes). Since type theory doesn’t allow unambiguous denoting expressions

to be of more than one (primitive) type, one can’t classify propositional

formulas as both of type π and of type o.18 FTT′ therefore offers no way

to represent propositional formulas of object theory so that they not only

denote propositions but also receive truth conditions and a truth value.

4.4 Can We Add a New Mode of Functional Applica-

tion?

It might be observed, finally, that we extended RTT with a new atomic

mode of predication. Could we extend FTT similarly with a new form of

functional application?19 Any answer to this question should be grounded

in philosophical conceptions of predication and functional application. We

understand what it is for there to be multiple modes of predication; this

can be cashed out in terms of multiple ways in which a property might

characterize an object. But we don’t understand what it would be for

there to be multiple modes of functional application. For the idea of a

function is grounded in that of a mapping or a correlation, in which some

objects are mapped or correlated with some other objects. While there

may be multiple ways in which a property can characterize an object,

there seems to be only one kind of correlation that functions can achieve.

Clearly, the extensional notion of a function, i.e., the one with which ev-

eryone is comfortable, seems to admit only one kind of mapping. Though

18Type theory requires that every simple and complex denoting expression be cate-

gorized with a unique type, since each primitive denoting expression is then assigned

a unique value from the domain of the relevant type, and each complex denoting ex-

pression will be assigned a unique semantic value on the basis of the semantic rule

that corresponds to the syntactic rule governing the way in which the expression was

formed. No denoting expression, whether simple or complex, can be assigned two types

without becoming ambiguous. Polymorphic type theories in which a function can take

arguments of different types are not relevant here.
19We’d like to thank Uri Nodelman for raising this possibility. We can’t claim to

have done justice to the idea, but it is a point worth pursuing in greater depth.
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one might argue that an intensional notion of function might admit of

kinds, at present, we aren’t sure what those kinds might be. Until this

suggestion can be fleshed out and given a precise meaning or systemati-

zation, we aren’t sure how to give an answer to the opening question.

Even if some sense could be made of the notion of two kinds of func-

tional application, there remains the fact that in RTT propositions come

for free, as the empty type, whereas in FTT, propositions or truth-values

have to be added as a distinguished type. Even if there were a second

kind of functional application, the output of the new kind of functional

application couldn’t be propositions over which abstraction applies. So if

classical functional application can map some entities to propositions, the

new form of functional application would have to have to output values

of some other type. We don’t know of any values and types that would

not lead back to one of the problems discussed above.

5. Conclusion

We believe our argument establishes that FTT is less general than RTT.

We have suggested that functional type theory doesn’t have the resources

for capturing logics that are easily representable in RTT. The logic of

object theory is expressed in a language in which there are formulas that

are not terms and that cannot be converted to terms by embedding them

in λ-expressions. This logic is representable in RTT but not in FTT.

Moreover, our results establish that non-propositional complex formulas

involve connectives and quantifiers that cannot be represented as func-

tions. Indeed, we believe we have shown that it is a mistake to eliminate

the primitive syntactic category ‘formula’ in favor of the single primitive

category of ‘term’, as is done in FTT. We think it is a mistake to suppose

that functional type theory is the only kind of type theory there is, or

that RTT is simply a variant of FTT.

There is a deeper philosophical point that can be made, however. It

seems clear that some of those who pursue functional type theories (e.g.,

Church and others inspired by Frege’s work) do so in the belief that

functional application is more fundamental than predication. They have

concluded not only that functions (rather than relations) should be taken

as primitive in the foundations of logic, but also that predication can be

reduced to to a special case of functional application and naming The

True. But such a reduction fails to capture the unique kinds of inferences
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found in the applications and theorems of object theory, many of which

involve a distinctive way of defining and reasoning about mathematical

objects. When predication is collapsed to functional application, such

forms of reasoning about mathematical objects are lost.

Our work shows that a philosophically and mathematically rich sys-

tem based on (modes of) predication cannot be reduced to a system that

employs only functional application and naming. Relational type the-

ory can serve as the background framework for a type-theoretic version

of object theory, but functional type theory cannot. This fact takes on

larger significance in the presence of the fact mentioned at the outset,

namely, that relations and predication suffice for defining functions and

functional application. Recall that Whitehead & Russell showed that (a)

Rxy & Rxz → y = z, (b) R = f , and (c) y = ιzRxz together define the

function f as the relation R and define functional application f(x) = y in

terms of predication. They thought that relations and predication con-

stitute a better cornerstone for the foundations of logic than functions

and functional application. We think they were right. Not only is RTT

is more general than FTT, but predication is more general than func-

tional application, since the former admits of kinds, one of which can’t

be reduced to functional application.
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